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Analytical formulae for the energy gradient within the quadratic configuration interaction singles and doubles (QCISD) method 
are derived and their implementation is discussed. The method is applied to 6-3 lG(d) computations on H,O and HzOz. 

1. Introduction 

Analytical methods for the evaluation of energy gradients have proven to be a powerful tool in state-of-the- 
art ab initio calculations. They are widely used for the characterization of potential energy surfaces [ 11, and 
in particular to locate energy minima, transition states, and reaction paths [2]. In addition the use of ana- 
lytically evaluated energy derivatives facilitates the computation of vibrational spectra [ 3 1. 

Analytical gradients are now routinely available for Hartree-Fock (HF) [ 41, MC SCF [ 51, and CI [ 61 wave- 
functions. Additionally, energy gradients have been successfully implemented within second- (MP2) [ 71, third- 
(MP3) [ 8,9 1, and fourth-order singles, doubles and quadruples Maller-Plesset (MP4( SDQ ) ) perturbation 
theory [ 9 ] as well as within the coupled-cluster singles and doubles (CCSD) approach [ lo]. Since the po- 
tential energy surfaces and molecular properties derived from them are strongly affected by the inclusion of 
electron correlation, gradients for correlation corrected methods [ 5-101 have received particular attention. 

Recently, Pople et al. [ 111 have introduced as a new technique for calculating correlation energies the single 
and double excitation quadratic CI (QCISD) approach. This method is obtained by correcting the CI equa- 
tions in a simple manner to restore size consistency sacrificing the variational character of the energy. This is 
achieved by the inclusion of additional terms, which are quadratic in the configuration coefficients. Test cal- 
culations [ 111 demonstrate that the QCISD method is superior to the CI approach as well as to fourth-order 
MP perturbation theory. On the other hand, QCISD energies are quite close to those of the CCSD method. 
This is not surprising since QCISD is derived by neglecting higher-order terms in the CCSD method thus sim- 
plifying it significantly [ 11 1. QCID is identical with CCD. 

For a quantum-chemical method to be competitive, it should provide analytical techniques for the economic 
evaluation of energy gradients. We present in this paper the theory of analytical first QCISD energy derivatives. 
The implementation of the resulting final expression is discussed and the applicability of the developed pro- 
grams is demonstrated by test calculations. 

2. Theory 

Let Y, be the HF determinantal wavefunction with n occupied spin orbitals 0,, .,., @,,, which are eigen- 
functions of the Fock operator. The corresponding eigenvalues are the orbital energies E,, . . . . E,. For a finite 
atomic orbital basis with dimension N there are in addition N-n unoccupied (virtual) spin orbitals @,,+ , , . . . . 
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&. We shall use the labels i, j, k, . . . for occupied spin orbitals, labels a, b, c, d, . . for virtual, and labels p, q, 
r, S, . . . for genera1 spin orbitals. 

In QCISD theory [ 111 single and double excitations with respect to a given HF reference wavefunction are 
considered in order to account for electron correlation. The amplitudes a; and a$ of these two types of ex- 
citations are determined by the QCISD equations [ 111 

(~U-t,)ap+w(i,a)+V(i,a)=O (Ia) 
and 

(tote,-c;-~,)uf’+(abllij)+w(ij,ab)tv(ij,ab)=O, 

where (abllij) are antisymmetrized two-electron integrals 

(Pqllrs)= jj @:,(1)~32)l~l -r~I-i[~~(1)~~(2)-~~(1)~,(2)ld~1 h. 

w( i, a) and w(ij, ab) denote terms which are linear in the configuration coefficients a: and ud 

w(i,u)=- C 1 (jullib)up-1 
i b 

C C (i4lWaf- 4 1 1 (.hWb>$‘f3 
j b.c 1.k b 

w(ij, ub)= C ((ubllcj)uf-(ubllci)uf)+ 1 (-(kb(lij)u&t (kuIIij)a~)+t 1 (ubllcd)af 
c k c,d 

+4 ; (klllij)a $‘- z T ((kbllic)u$t (kuIlic)u~~+(kbllic)u~~t (kullic)u$) , 

(lb) 

(2) 

VW 

(3b) 

while V( i, a) and v( ij, ub) are quadratic arrays, 

v(i,a)=$ 11 (jkllbc)(uPu~~tu~u~,f+2a,bu~~), 
i,k b,c 

(da) 

The QCISD equations are solved iteratively using methods from coupled-cluster theory [ 12,13 1. The corre- 
lation energy in the QCISD approach is given by [ 111 

E(QCISD)=t 5 ,c, Wij>~;b 
. . (5) 

and involves only the coefficients azb of the double excitations. 
Differentiation of the QCISD energy expression (eq. (5) ) with respect to an external perturbation parameter 

A, e.g. the displacement of a nuclear coordinate or a static electric field, yields 

dE(QCISD) 
a ,. 

=a F ,C (abllij> latbt$ G ,C, (abllij>$f, 
1 1 (6) 

where (ijllab) ’ denotes the total derivative of the two-electron integral (ijllab) with respect to A. Since the 
QCISD energy does not obey the variation principle, the derivative amplitudes daGb/dA have to be determined 
by solving the coupled-perturbed QCISD (CPQCISD) equations which are obtained by differentiating the 
QCISD equations (eqs. ( 1) ) with respect to A and which can be written in the following form (see appendix 
for the definitions of the B and C terms) 

(7b) 
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Explicit solution of the CPQCISD equations is very costly, because it requires for each perturbation param- 
eter I approximately the same time as the foregoing QCISD calculation. 

Utilizing the Z-vector method of Handy and Schaefer [ 141 direct determination of the derivative amplitudes 
day /dA and daEbldA can be avoided. By defining the z-amplitudes z: and z”,” for the QCISD approach by 

(gal 

the term in eq. (6) which depends on datb/dA is replaced by 

The advantage of the Z-vector method is that only one coupled system of linear equations has to be solved in 
order to determine zP and z$~. The cost is similar to that for the solution of the QCISD equations. 

The final expression for the QCISD energy gradient is then given by 

<abllc4”a~d+ F, (k4lij)W 

- C C 2((kblljc)“a$-t (ka]~c)“a$‘t (kb]lic)“a$;t (kallic)“a$) 
k c 

where xtb is defined as 

(11) 

Since QCISD can be derived by neglecting several higher-order terms in the CCSD approach, an expression 
for the QCISD energy gradient can be obtained alternatively by neglecting the corresponding terms in the CCSD 
energy gradient expression [ lo,15 1. 

The total derivatives (pqllrs) ’ of the MO two-electron integrals are given within standard coupled-perturbed 
HF (CPHF) theory [16] as 
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where (pull ap) ’ denotes the derivatives of the A0 two-electron integrals with respect to ,? and where Vi, are 
the first-order changes in the MO coeffkients Cam These coefficients are obtained by solving the CPHF equa- 
tions [ 161. Eq. ( 10) for the QCISD energy gradient can be rearranged into the following form: 

(13) 

where St, denotes the A0 overlap integral derivatives rotated into the MO basis. The factors Tpvop, 
Lbi, L&, K;, and K$ in eq. ( 13) are independent of the perturbation parameter I and are easily obtained by 
substituting eq. ( 12) into eq. ( 10). We note further that solution of the CPHF equations can be avoided by 
using the Z-vector method of Handy and Schaefer [ 141. A full account of the elimination of the coefficients 
U;, from the gradient expressions for correlated wavefunctions is given in refs. [ 9,17 1. 

3. Implementation 

Computer programs for the analytical evaluation of QCISD energy gradients based on eqs. ( 10) and ( 13) 
have been written for the program system COLOGNE [ 181 “. The steps required for a gradient calculation 
as currently implemented are as follows: 

( 1) The one- and two-electron integrals are evaluated in the atomic orbital basis. 
(2) The SCF procedure is carried out to obtain the HF reference wavefunction. 
(3) The two-electron integrals are transformed into the MO basis. 
(4) The amplitudes aQ and u;’ are determined by iteratively solving the QCISD equations. Convergence 

is accelerated using a DIIS procedure [ 13 1. 
(5) The Z-vector equation of the CPQCISD theory is iteratively solved in order to evaluate zp and z”,“. 
(6) The derivatives of the one-electron integrals are computed and stored. 
(7) The prefactors T,,vop of the A0 two-electron integral derivatives are calculated in the MO basis, trans- 

formed into the A0 basis, and sorted according to the different shell combinations [ 91. 
(8) The two-electron integral derivatives (,uv]la,)” are formed and immediately contracted with the ap- 

propriate prefactor T,,vop. 
(9) The factors Lb,, Lia, K:j, and Kzb are computed and stored. 

( 10) The CPHF equations are solved for U”,, and all contributions to the QCISD energy gradient are summed 
UP. 

The solution of the QCISD as well as the Z-vector equations requires o(~~(N-rz)~) multiplication per it- 
eration. In the subsequent gradient evaluation, transformation of the elements Tpvgo from the MO into the A0 
basis involves 0(N5) operations in the most expensive step. Depending on the ratio n/N, timings for the QCISD 
gradient calculation are similar to those of the preceding energy calculation. 

Coupled-cluster doubles (CCD) gradients [ 201 can be evaluated within the same program by omitting all 
contributions due to single excitations. 

To illustrate the applicability of the implemented computer programs, we have calculated the equilibrium 
geometry for Hz0 at the QCISD level using analytically evaluated gradients using the 6-3 1 G(d) [ 2 1 ] and a 

*I COLOGNE is a program system developed for a CDC Cyber 176 computer and contains parts of GAUSSIAN 82 [ 191. 
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Table 1 
Theoretical geometries, energies, dipole moments, harmonic vibrational frequencies, and infrared intensities of H20 using analytical 
gradients ‘j 

HF 

6-31G(d) TZ+ZP 

CCD 

6-31G(d) TZ+ZP 

QCISD 

6-31G(d) TZ+ZP 

Experimental ‘) 

bn 0.947 0.941 0.968 0.956 0.969 0.957 0.958 
@IOH 105.5 106.1 104.2 104.5 104.2 104.5 104.5 
E -76.01075 - 76.0525 1 - 76.20740 -76.31120 -76.20821 -76.31276 
p 2.199 _ 2.183 2.178 1.85 
VI 4189 3901 3879 3756 (3942) 
v2 4071 3776 3753 3657 (3832) 
“3 1827 1746 1744 1595(1648) 
I, 58.1 27.4 24.7 44.6 
Iz 18.2 3.7 2.8 2.2 
13 107.3 87.7 85.6 53.6 

‘) Energies in hartree, distances in A, angles in deg, dipole moment p in D, vibrational frequencies v in cm-‘, and intensities I in km/ 
mol. 

b, r, geometry from ref. [ 231, dipole moment from ref. [24], vibrational frequencies from ref. [25], and intensities from ref. [ 261. 
Experimentally derived harmonic frequencies are given in parentheses [ 271. 

Table 2 
Theoretical geometries and energies of hydrogen peroxide, H202 a1 

mo 
rOH 
OOH 
THOOH 

E 

HF/6-3lG(d) b, MP4(SDQ)/6_31G(d) ‘) QCISD/6-31G(d) 

1.397 1.464 1.464 
0.949 0.974 0.975 
102.1 99.3 99.4 
116.0 120.9 120.8 

- 150.76479 -1.51.14689 - 151.14775 

‘) Energies in hartree, distances in A, and angles in deg. b1 Ref. [28]. ‘) Ref. [9]. 

[5s3p2d/3s2p] Dunning-Huzinaga basis set (TZ+2P) [22] ” (see table 1). In addition, QCISD/6-3lG(d) 
gradients have been used to obtain harmonic frequencies and infrared intensities, which are also shown in table 
1. These data indicate that molecular properties with spectroscopic accuracy can be obtained at the QCISD 
level provided a sufficiently large basis set is used. In another application the equilibrium geometry of H202 
has been calculated at the QCISD/6-3 1G (d) level (see table 2). Using the MP4 (SDQ) /6-3 1 G(d) geometry 
for H202 [ 91 as an initial guess the optimization converged in two cycles, indicating that both levels of theory 
lead to similar improvements compared to the HF geometry [ 28 1. 
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Appendix 

The various terms in the CPQCISD equations (eqs. (7) ) are given by 

(A.11 

(A.21 

(A.3) 
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