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Formulas for the analytical gradients of the third- and fourth-order Meller-Plesset perturbation theory (MP3 and MP4( SDQ)) 
are given and their implementation discussed. The analytical gradients are applied to optimize the geometries of Hz0 and H202 
at the MP3/6-3lG* and MP4(SDQ)/6-3lG* levels. For Hz0 in addition, dipole moment, vibrational frequencies and infrared 
intensities are calculated 

1. Introduction 

Analytical derivatives of the energy have become a powerful tool in modem electronic structure calculations. 
They are widely used in exploring potential energy surfaces [ 11, determining equilibrium geometries [ 21, and 
calculating vibrational spectra [ 31. At the HF, MC SCF and the CI level analytical gradients methods are rou- 
tinely available [ 41. However, gradient studies based on Moller-Plesset (MP) perturbation theory [ 5-81 have 
in general been restricted to the second-order level (MP2) [ 91. In view of the fact that MP perturbation theory 
is one of the simplest methods of accounting for correlation effects in a systematic manner, the development 
and application of analytical gradients for third and fourth order (MP-3 and MP4) is highly desirable. 

Preliminary steps in this direction were made by Jorgensen and Simons [ lo] who derived an analytical 
expression for MP3 gradients. Recently, Fitzgerald and co-workers [ 1 I] reported on the successful imple- 
mentation of analytical third-order many-body perturbation theory (MBPT3) gradients. Formulae for ana- 
lytical MBPT4 gradients appeared in a publication by Fitzgerald, Harrison and Bartlett [ 121, after this work 
was completed. 

While previous work on analytical gradients for third- and fourth-order perturbation theory was mainly based 
on MBPT and its coupled cluster extension [ 121, we will derive here expressions for MP3 and MP4 gradients 
by straightforward differentiation of the MP energy formulae, as given by Pople and co-workers [ 6-81. In addi- 
tion, we report on the implementation of third- and fourth-order MP gradients, neglecting only the contribution 
of the triples in the fourth-order expression [ 71. This level, denoted MP4( SDQ), has been shown to yield a 
good compromise between the applicability of the method and accuracy of the results. Details concerning the 
implementation are discussed and the applicability of the developed programs are demonstrated by test 
calculations. 

2. Theory 

Let ‘YO be the Hartree-Fock (HF) determinantal wavefunction with n occupied spin orbitals @i, . . . . en which 
are eigenfunctions of the Fock operator F with corresponding eigenvalues ei, . . . . en. If the atomic orbital basis 
consists of N basis functions, there will be N-n unoccupied (virtual) orbitals @,,+ I, . . . . &. In the following, 
labels i, j, k, I, m denote occupied spin orbitals, labels a, b, c, d, e virtual spin orbitals and labels p, q, r, s general 
orbitals. 
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In Moller-Plesset perturbation theory [ 51 the unperturbed Hamiltonian HO is chosen as a sum of Fock 
operators: 

H,=CP@) (1) 01 

and the perturbed Hamiltonian H’ is given as the difference between the electronic Hamiltonian H and Ho. 
With this choice the second-order perturbation correction to the energy is given by [ 51 

E(MP2)=f;g a(& ab) <ijllab> , (2) 

where a( zj, ub) denotes the first-order correction to the HF wavefunction: 

u(ij,ub)=(ijllub)l(t,+~,-~~-~~)) (3) 
and where the two-electron integral (pq(lrs) is defined by 

Millet) =J-j-@Y 1 t@(2) I rl -r2 I-‘[Ml) @s,(2)-@s,(1) &(2)1 d7,b . (4) 

At third order the correlation correction is [ 61 

E(MP3)=tCCu(ij, ub)w(ij, ub) (5) 1, a6 

with 

w(ij,ub)=~~(kl~~ij)u(kl,ub)+f~(ubllcd)u(~,cd) 
kl cd 

-~~[(kallic)u(kj,cb)+(kal~c)u(ik,cb)+(kbllic)u(kj,ac)+(kbl~c)u(ik,ac)] . (6) 

The fourth-order correction includes terms due to single, double, triple and quadruple excitations [ 71. How- 
ever, the contribution of the triples is the most expensive ( 0 (n 3N4) operations), so that the fourth-order cor- 
rection is often approximated by considering only single, double and quadruple excitations [ 71 which requires 
only fJ?( n3N3) operations. The corresponding energy expression is given by 

E(MP4(SDQ))=~~~u(ijuab)[vs(ij,ub)+~(ij,ub)+vQ(~,ub)], (7) 1, ab 

where vs, up and uQ denote terms due to single, double, and quadruple excitations #I, 

vs(& ab)=C[ (aWjM(i, cl+ (4W~Ci, c)l -T[ (WlijMk a)+ <~lliO4k b)l , 
c (8) 

-2[u(ik, ub)u(jl, cd)+u(ik, cd)&& ub)] +4[u(ik, uc)u(il, bd) +a(&, bd)u(jl, ac)]} (10) 

*I The renormalization term is included here in the contribution of the quadruple excitations. 
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with 

d(i,a)=w(i,a)/(E,--E,) 

and 

(11) 

(12) 

This approximate fourth-order expression possesses the same properties as the exact fourth-order term, i.e. size 
consistency and invariance under transformations amongst the occupied (virtual) orbitals [ 71. 

~~0~~ the perturbed HF orbitals are not required for the evaluation of analytical MPn gradients [ 131, 
it is convenient to use them in the derivation of the final formulae for the MPn gradients. The cocfftcients of 
the perturbed orbitals cf;,, are usually expanded in terms of the unperturbed orbit& c, [9]: 

ci$ = c %c,, . (13) 
4 

The derivatives Vi, are obtained by solving the coupled perturbed Hartree-Fock (CPHF) equations [ 9,143 
for the HF wavefunction. They can bc given in terms of the derivatives of the Fock matrix F& and of the 
overlap matrix S$, 

(14a) 

In the case of degeneracies Vi9 has a zero denominator and is no longer defined [ 91. However, these terms 
can be eliminated from the corresponding gradient expressions by abandoning the requirement that the per- 
turbed orbitals are canonical [ 151. The derivatives U$ and I&, are then chosen in the simplest possible way 
1151 by 

V .=-4s;: (15a) 
and 

WA nb=-h%. USb) 

Differentiation of the MP3 energy expression (5) with respect to A yields 

dE(MP3)ldL f r, C (@l}ub)“d( ij, ab) 
r, a6 

Q~(krllii>“n(kl,ub)+~~<ubllcd)“a(~,cd)- 
I 

- @here the derivatives of the two-electron integral (~llub) are given by [ 91 

(17) 
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(18) 

(191 
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and d( zj, ab) by 

d(ij,ab)=w(ij,ffab)l(6+t,-E,-~b). 

The derivatives of the Lagrangian multipliers (“w are 

&=h&,+ c ~atrc~ll~p>~~n~~c~~“~~~~c~~~CC~~r~~P~Il4i~+~Pill44~~ 
ww 4 I 

-~~S~({P~ll~)+ (P~liq~))-~(~~+~~)s~ * 
?I 

By substituting eq. (17) into eq. (16) and reordering of the expression with respect to the different A-dependent 
quantities, one obtains the formula 

dE(MP3)ldk c (a(~vllap>lan)r~~~+CCIU;1,(L~13’-L:h’”’) 
lrvoP a t 

-fC~~[~~(‘)+(~,+t,)K;,(3’]-f~S~*[~~~3)+(~=+t~)~~~P)l 
0 

- ;~S:oL;:‘3’ + ;h;K;(3’ + ~h:&‘J3’ . 

The various terms in eq. (20) have the following meaning: 

Tl;l, = 4 C &,,cV,cO,c,&(ij, ab) rl ob 

fj b rl b 

Kf3’ 
If = -Fga(ik, ab)d(jk, ab) , 

KJ’,J3)=~~a(ij,ac)d(ij, bc) . 

(20) 

An alternative formula for the MP3 gradient where all derivatives U$ have been eliminated is derived in the 
appendix. 
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An expression for the E( MP4(SDQ)) gradient is obtained in an analogous way. Differentiation of (7) leads 
to 

f~(klllij)ad(ld,ub)+~~(ubllcd)'d(ij,cd)-2~~(kallic)'d(kj,cb) 
kl c > 

--CCd(m, 4&4i, a)+CCd(i, d&-,d(i, a) , 
mr a I ac 

with 

(22) 

(23) 

-2[u(ik, ub)u(jI, cd)+u(ik, cd)u(J, ub)] +4[u(ik,uc)u(jl, bd)+u(ik, bd)u(jl, uc)]} . (24) 

Substituting eq. (17) into the expression for the MP4( SDQ) gradient, eq. (22), and reordering leads to (for 
an alternative expression see the appendix) 

dE(MP4)lti= C (a(~uv(lop)lan)T~b,+CCU~,(L:,‘4’-L:,’4’) 
POP II 1 

- 4 CSi[ L;(4) +  (Ei +  c~)K~‘“‘] - f zSh[LiJ” + (to + Eb)Kij4)] 

II 

- c ~S;1,~5&‘~’ + Ch;l,K:,(4’ + sh:&:(4’ , 
(I , Ii 

where the arrays T (4), L'(4), L't(4), K,c4), and K"c4) are defined according to 

(25) 

a2 The contribution of the quadruples to E( MP4) is given alternatively by E(MP4(Q)) = fC,JZd( ollnb)x( u, ab). 
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CW 

V6b) 

-f-i~~d(ij,ab) ~<pblcd)a(ij,cd)-4F~<kpl~ic)a~~,cb) ( > 

+~~~a(~,ab)(gbllcj)d(i,c)+~~a(ij,~)(bcll~i)d(i,a)-~~a(ij,ab)(k~l[ji)d(k,b) , (26~) 

Kbc4) = - C&z(ik, ub)[e@, ab) + fx(jk, ub)] -fCsd(ik, ab)dtjk, ab)-Gd(i, a)d(j, a) , 
k ab ka 

(264 
a 

K$j4” =CCa(ij,uc)[e(ij, bc)+fx(ij, bc)]+ixCd(ij, ac)d(ij, bc)+Cd(i, a)d(i, b) . 
lj c ij c I 

WeI 
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It should be noted that at each order of MP perturbation theory the gradient expression can be written in the 
following form: 

(27) 

where the factors T(“j, A’(“), L”c”), R (“j, and K” w are independent of the perturbation parameter A. All the 
derivatives Vi, can be eliminated from the MPn gradient expression (27) as is showu in the appendix. 

3. Implementation 

For a MP4(SDQ) calculation, the arrays a(& ab), w(& ab),~o(ij, ab) and w(i, a) are required for deter- 
mining the molecular energy, In addition, for a gradient ~c~ation the arrays &(rj, ab), r+,(ij, ab) and 
x( zj, ab) have to be evaluated. Using these arrays and the transformed two-electron integrals (pqllrs), the fac- 
tors Liqr L;,, Kh4 and Ki, in eqs. (20) and (25) are computed and stored. The current implementation of the 
MP3 and MP4( SDQ) gradient requires the solution of the CPHF equations. This, however, is a relatively inex- 
pensive step compared to other parts of the MP3 and MP4(SDQ) gradient calculation. 

The evaluation of the term Tpap requires a four-index transformation from the MO basis to the A0 basis. 
In order to avoid the storage of the two-electron integral derivatives the co~spon~ng cont~bution to the MPn 
gradient is formed immediately after the integral derivative d (,~]lo~)l&t has been calculated [ 161. A sort of 
the TWop elements according to the different shell combinations prior to the integral derivative calculation is 
required in this case. In order to avoid redundant operations all ~nt~butions to the energy gradient from the 
different orders MP perturbation theory are evaluated simultaneously. 

Programs for evaluating the MP3 and MP4 ( SDQ) gradients based on the final formulae (20)) ( 2 I), (25 ) 
and (26) have been written and implemented in the program system COLOGNE [ 17 ] #3. Careful checking of 
the programs has been carried out by comparisons with numerically evaluated energy gradients. 

4. Applications 

To illustrate the applicability of the implemented computer programs, we calculated for H@ the equilibrium 
geometry, the dipole moment, harmonic vibrational frequencies, and infrared intensities at the MP3 and 
MP4(SDQ) levels using analytically evaluated gradients and the 6-3iG* basis [ 191. The dipole moment is 
determined as the derivative of the energy with respect to a static electric field. Force constants and dipole 
moment derivatives were evaluated by numerical differentiation. The results obtained are summarized in table 
1 along with the ~~es~ndi~ results at the HF and MP2 level [ 20-22 1. 

In addition, we optimized the geometry of Hz& at the MP3/6-3 1 G*, MP4( SDQ)/d-3 lG* and MP4( SDQ)/& 
3 11-l- + G** level, respectively. The geometrical parameters are listed in table 2 together with the corresponding 
HF and MP2 results [28] and the experimentally determined geometry. Clearly, the HF method fails to repro- 
duce the correct equilib~um geometry, in particular the 00 bond length is too short by 0.06 A. Inspection of 
table 2 reveals that the main effect of electron correlation on the equilibrium geometry is covered by the MP2 

x3 COLOGNE is a program system developed for a CDC Cytw 176 computer and contains Ige parts of GAUSSIAN 82 [ 181. 
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Table 1 
Theoretical energies, geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities of HZ0 a) 

HF/6-3 1 G* b, MP2/6-3 1 G* c, MP3/6-3 lG* MP4( SDQ)/ 
6-31G* 

Exp. *) 

0.9473 0.9685 0.9666 0.9686 
105.50 104.05 104.24 104.11 

- 76.01075 - 76.19924 -76.20488 - 76.20766 
2.199 2.199 2.188 2.179 

4189 3919 3930 3893 
4071 3778 3809 3765 
1827 1734 1750 1745 

58.1 39.2 31.1 26.2 
18.2 5.6 4.9 3.3 

107.3 88.9 89.8 86.3 

0.957 
104.5 

1.85 
3756(3942) 
3657(3832) 
1595(1648) 

44.6 
2.2 

53.6 

a) Energies in hartree, distances in A, angles in deg, dipole moment p in D, vibrational frequencies u in cm -I, intensities Zin km/mol. 
b, See ref. [ 20). 
‘) Geometry from ref. [ 2 I ] and vibrational frequencies from ref. [ 221. 
d) r,-geometry from ref. [23], dipole moment from ref. [24], vibrational frequencies from ref. [ 251, and intensities from ref. [26]. 

Experimentally derived harmonic frequencies are given in parentheses [ 271. 

Table 2 
Theoretical geometries and energies of hydrogen peroxide, H202 ‘) 

HF/6-3 1 G* b, MP2/6-3 lG* b’ MP3/6-3 lG* MP4(SDQ)I MP4(SDQ)/ Exp. b, 
6-31G’ 6-311++G** 

b0 1.3965 1.4681 1.4524 I .4640 1.4433 1.452 
r0ti 0.9492 0.9756 0.9714 0.9744 0.9620 0.965 
%KKl 102.08 98.66 99.69 99.29 100.23 100.1 
rHOOH 116.00 121.19 121.11 120.86 119.31 119.1 
E - 150.76479 -151.13492 - 151.14032 -151.14689 - 151.29124 

‘) Energies in hartree, distances in A, and angles in deg. b, See ref. [28] 

correction. The MP2/6-3 1 G* geometry is in reasonable accord with the experimental geometry. Deviations are 
mainly due to the basis set. The use of a larger [ 4s3pld/2slp] basis improves the agreement considerably [ 281. 
Inclusion of third-order corrections shortens the 00 bond length which means that an improvement of the 
basis at the MP3 level will lead to a 00 bond length about 0.01-0.02 A too short. The MP4(SDQ) geometry 
on the other hand is very similar to the MP2 geometry. As expected from the MP2 results, optimization at the 
MP4( SDQ) level with a larger basis leads to a geometry very close to the r, geometry (table 2). 

Compared to numerical gradients, analytical gradients are more accurate and faster to evaluate. For example, 
the calculation of the MP4 (SDQ)/6-3 1 1 + + G** gradient for H202 took on a Cray X-MP/24 about 2.1 times 
as long as a single MP4( SDQ) energy calculation. 
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Appendix 

Following Handy and Schaefer i 13 ] the derivatives U”,, can be eliminated from the MPn gradient expression 
(27). The CPHF equations take the form 19,141 

~~(A~~*r+~ajjah-r*6,)u~,=B~~ f fAl) 

where B& is completely defined by the derivatives of the one- and two-electron integrals 

B&-h&-- ~~~ta(yullap)lan)~c,,c,,e,,c,+f~Awt~~~~-tqS~~ (A21 

and ApQFs is independent of the ~e~urbati~~ A 

A pqm = ~P+ll@~~ + 04w ’ IA31 

De~n~ng XL;’ by the equation 

C~(A61sI+~,B,b-~,iilt)Z6;f =L;in, -L$” (A41 

the second term in eq. ( 27) which contains Vi, can be replaced: 

;T”W’ -L:h’“‘)U&=TTB$Zb:’ e 645) 

Instead of solving M sets of linear equations (eqs. {Al )f , where M is the number of perturbation parameters, 
only one set of equations (eqs. (A4)), has to be solved. The final expression for the MPn gradient is then 
re~tten in the form 
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