EIGHTH AUSTIN SYMPOSIUM ON MOLECULAR STRUCTURE The University of Texas at Austin Austin, Texas, U.S.A. Sponsored by NATIONAL SCIENCE FOUNDATION THE CENTER FOR STRUCTURAL STUDIES **OF** THE UNIVERSITY OF TEXAS ## STRUCTURE AND PUCKERING POTENTIAL OF AZETIDINE, (CH₂)₃NH STUDIED BY ELECTRON DIFFRACTION AND AB INITIO CALCULATIONS Dieter Cremer, a Olga V. Dorofeeva, b and <u>Vladimir S. Mastryukov</u>b (a) Lehrstuhl für Theoretische Chemie, Universität Köln, D 5000 Köln 41, Federal Republic of Germany. (b) Laboratory of Electron Diffraction, Department of Chemistry, Moscow State University, Moscow 117234, U.S.S.R. Azetidine has been investigated by the restricted Hartree-Fock (RHF) method and Rayleigh-Schrödinger-Møller-Plesset (RSMP) perturbation theory in order to gain additional information from a previous electron diffraction study. 1 A simultaneous optimization of all structural parameters showed that the degree of ring puckering, q, depends on the size of the basis set in a way similar to that observed for cyclobutane; that is, with small basis sets q is severely underestimated. Only with polarization functions in the basis can a reliable r_e structure be obtained. Our best RHF structure is as follows: q = 0.23 Å; C-N 1.467 Å; C-C 1.541 Å; N-H 1.001 Å; C_2H_{ax} 1.089 Å; C_2H_{eq} 1.084 Å; C_3H_{ax} 1.083 Å; C_3H_{eq} 1.082 Å; ϕ (ring dihedral angle) 24.9°; \angle HC2H 108.7°; \angle HC3H 109.3°; \angle C2,4NH 50.7°; τ_1 (HC2H rock) 2.4°; τ_2 (HC3H) 3.6°; ω (HC2H torsion) 2.0°; ε (HC2H bending) 0.7°. Inclusion of electron correlation at the RSMP level increases q and the HCH rocking angles (q = 0.27 Å; ϕ = 28.0°; τ_1 = 2.5°; τ_2 = 4.1°), while $C_{2,4}$ NH is decreased to 47.5°. Obviously, azetidine is slightly more puckered than cyclobutane. The re-interpretation of the electron diffraction data without shrinkage corrections and using the assumption $\tau_1 = \tau_2$ leads to $\tau_{av} = 2.0(3.0)^\circ$ and $\phi = 31.5(2.5)^\circ$; the latter result is not virtually different from that reported earlier $(33.1(2.4)^\circ)$. Thus, the coupling between τ and ϕ is less strong than claimed by Catalán et al. On the other hand, recent experimental results obtained for cyclobutane are in qualitative accord with our findings.