

EIGHTH AUSTIN SYMPOSIUM ON MOLECULAR STRUCTURE

The University of Texas at Austin

Austin, Texas, U.S.A.

Sponsored by
NATIONAL SCIENCE FOUNDATION

THE CENTER FOR STRUCTURAL STUDIES

OF

THE UNIVERSITY OF TEXAS

STRUCTURE AND PUCKERING POTENTIAL OF AZETIDINE, (CH₂)₃NH STUDIED BY ELECTRON DIFFRACTION AND AB INITIO CALCULATIONS

Dieter Cremer, a Olga V. Dorofeeva, b and <u>Vladimir S. Mastryukov</u>b

(a) Lehrstuhl für Theoretische Chemie, Universität Köln,
D 5000 Köln 41, Federal Republic of Germany.

(b) Laboratory of Electron Diffraction, Department of Chemistry, Moscow State University, Moscow 117234, U.S.S.R.

Azetidine has been investigated by the restricted Hartree-Fock (RHF) method and Rayleigh-Schrödinger-Møller-Plesset (RSMP) perturbation theory in order to gain additional information from a previous electron diffraction study. 1

A simultaneous optimization of all structural parameters showed that the degree of ring puckering, q, depends on the size of the basis set in a way similar to that observed for cyclobutane; that is, with small basis sets q is severely underestimated. Only with polarization functions in the basis can a reliable r_e structure be obtained. Our best RHF structure is as follows: q = 0.23 Å; C-N 1.467 Å; C-C 1.541 Å; N-H 1.001 Å; C_2H_{ax} 1.089 Å; C_2H_{eq} 1.084 Å; C_3H_{ax} 1.083 Å; C_3H_{eq} 1.082 Å; ϕ (ring dihedral angle) 24.9°; \angle HC2H 108.7°; \angle HC3H 109.3°; \angle C2,4NH 50.7°; τ_1 (HC2H rock) 2.4°; τ_2 (HC3H) 3.6°; ω (HC2H torsion) 2.0°; ε (HC2H bending) 0.7°.

Inclusion of electron correlation at the RSMP level increases q and the HCH rocking angles (q = 0.27 Å; ϕ = 28.0°; τ_1 = 2.5°; τ_2 = 4.1°), while $C_{2,4}$ NH is decreased to 47.5°.

Obviously, azetidine is slightly more puckered than cyclobutane. The re-interpretation of the electron diffraction data without shrinkage corrections and using the assumption $\tau_1 = \tau_2$ leads to $\tau_{av} = 2.0(3.0)^\circ$ and $\phi = 31.5(2.5)^\circ$; the latter result is not virtually different from that reported earlier $(33.1(2.4)^\circ)$. Thus, the coupling between τ and ϕ is less strong than claimed by Catalán et al. On the other hand, recent experimental results obtained for cyclobutane are in qualitative accord with our findings.