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Puckered Structures of 1,3-Dihydro-1,3-diboretes
and Bicyclobutane-2,4-dione:

Nonplanar Hiickel 2n-Electron Aromatic
Molecules**

By Paul von Ragué Schleyer*, Peter H. M. Budzelaar,
Dieter Cremer, and Elfi Kraka

Krogh-Jespersen’s!'¥ calculational discovery that the cy-
clobutadiene dication prefers a puckered 1 rather than a
planar structure initiated interest in the isoelectronic 1,3-
dihydro-1,3-diborete 2. Ab initio molecular orbital theory
predicted a nonclassical folded geometry for this molecule
as welll™®]
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Structure 2, calculated (4-31G basis set) to have an unu-
sual C—C distance of 1.86 A was favored over classical 3
and planar Hiickel 2nt aromatic 4 alternatives. The repul-
sive 1,3-interactions in 4 are reduced or eliminated in 2.
Due to orbital mixing, other electronic features of 2 are
also more favorable than those in 4!1°
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Quite recently the first syntheses of 1,3-dihydro-1,3-di-
borete derivatives were achieved in three different labora-
tories®™, and the first X-ray determination carried out.
Siebert’s puckered structure of 5 is in remarkably close
agreement with our 1981 predlctlons of 2 (Table 1). Thus
the experimental distance, 1.81 A, is much longer than the
normal C—C bond length found in bicyclobutane
(1.50 A)®. The short exocyclic BN bonds in 5 (1.41 A) in-

dicate considerable B=N double bond character. Nev-
ertheless, the very good n-donor N(CHj), substituents in 5
evidently alter the geometry of 2 only to a small extent. To
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examine this matter further, we have now calculated the
structure of 6, a simple analog of 5, with the 3-21G basis
set®. The geometry of 2 was redetermined at that level.
The work has been further extended to the isoelectronic
“‘organic” counterpart of 6, bicyclobutane-2,4-dione 7.
As can be seen from the data collected in Table 1, the
calculated structure of 6 agrees even more closely than
that of 2 with the experimental structure of 5. The long
C---C and the B=N distances are essentially identical,
and the calculated puckering angle, a, is only 4° smaller
than the experimental value. In view of the bulky substit-
uents in 5, better agreement could hardly be expected.
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Table 1. Comparison of calculated and experimentally determined struc-
tures.

Compound Data Distances [A] Angles [°]

source [a] ¢liicc e X " HCEa 1 &
1 (D2a) 4-31G opt. [1a] 1.973 1.431 160.6 35.8 1.5
6-31G* opt. [1a] 1.928 1.414 157.1 42.6 1.6

2 (Cyy) STO-3G opt. [Ib] 1754  1.477
4-31G part. opt. [1b] 1.858  1.510

140.6 549 6.2 7.4
141.0 482 52114

3-21G opt. [b] 1.883 1521 141.4 476 5.1 11.5
& exp. [4] 1.814 1.504 [c] 52 2-3 12
6 (Cy,) 3-21G opt. 1.794 1.528 [d] 133.9 484 6.4 16.7
7 (Ca) 3-21G opt. 1.762 1.464 [e] 139.4 45.8 6.9 13.3
Bicyclo- exp. [5] 1.497 1.498 128.3 58.3 —0.7 11.5
butane 3-21G opt. 1.484 1.513 134.7 61.8 1.4 3.0
6-31G* opt. [f] 1.466 1.489 132.5:39.9. 14460

[a] The basis sets used for geometry optimizations are indicated. STO-3G is a
minimal basis, 3-21G and 4-31G split valence bases, and 6-31G* a polariza-
tion basis. The accuracy of the results obtained at these levels are generally
expected to mcrease in the order given. [b] T. Clark, unpublished. [c] BN dis-
tance 1.410 A av. [d] BN distance 1.403 A CH 1.075, NH 1.000 A; angles
BNH 122.6°; CBNH 171.8°. [¢] CO distance 1.196 A (in 9 1.208 A), CH
1.066 A. [f] For 4-31G and 6-31G* geometries see K. B. Wiberg, J. Am. Chem.
Soc. 105 (1983) 1227.

The donation of ca. 0.2n electron from nitrogen to
boron in 6 only results in a decrease of ca. 0.04¢ in the
C—B donation. The inversion barrier though the planar
structure increases by 4 kcal/mol (2 vs 6) as a conse-
quence, but the other effects are small. Because of the elec-
tropositive character of boron, other electronegative sub-
stituents (like OR or F) also are not expected to alter the
geometry appreciably.

We now predict that bicyclobutane-2,4-dione 7', like 1,
2, 5, and 6, will also prefer a nonclassical folded structure
(Table 1). The 3-21G optimized central C1- - -C3 distance
in 7 (1.76 A) excludes the classical formulatlon 8. This dis-
tance is halfway between that in bicyclobutane (1.50 A
and that calculated for planar 9 (2.01 A). Analysis of the
electron distribution p(r) reveals a considerable build-up of
negative charge between C1 and C3 in going from 9 to 7.
The properties of p(r) in 7 are typical for a situation pre-
ceding the formation of a C—C bond®. The C—O electro-
negativity difference is nearly the same as that between B
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and N: the bonding situations in 6 and 7 are rather simi-
lar.

As suggested by the formal structure 9, a planar form
would be expected to benefit from the Hiickel 27 character
of the four-membered ring. Nevertheless, 9 is 14.6 kcal/
mol less stable than 7 with the larger 6-31G* basis set (13.2
kcal/mol; 3-21G). The inversion barrer for 6 is indicated
to be even larger, 20.6 kcal/mol (6-31G*//3-21G; 18.4
kcal/mol, 3-21G). According to the properties of p(r), elec-
tron delocalization in puckered 6 and 7 is still large and is
supported by the now favorable 1,3-interaction. Both 7
and o effects contribute to the stability of the puckered
forms'. Once again, our calculational observations em-
phasize that an aromatic 27 electron ensemble does not
necessarily imply planarity of a four-membered ring like 1,
2,5, o0r6.

Our results on 7 are pertinent to a large number of
squaric acid derivatives, e.g., the “squaraines” (‘‘qua-
drains”)". While examples with good n donor substituents
are planar®, we are attempting to find cases with non-pla-
nar structures. Groups with C=N or C=C double bonds""!
when substituted at C2 and C4 of bicyclobutane may also
lead to partially opened structures like 7 with elongated
C1-—C3 bonds!!.
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