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1,2-Dihydroborete: Structure of a
Potential Homoaromatic System**

By Dieter Cremer*, Jiirgen Gauss,
Paul von Ragué Schleyer, and Peter H. M. Budzelaar

Experimental and theoretical studies of cyclobutenyl ca-
tions 1 indicate that, due to relatively strong 1,3-interac-
tions, the nonplanar form 1a is more favorable than the
planar form 1b!=l On the basis of quantum chemical
model calculations, we now show that similar structural
behavior is expected for 1,2-dihydroboretes 2, which are
isoelectronic to 1.
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Complete optimization of the geometry of 2 using the
MINDO/3 method™ leads to the nonplanar form 2a,
which is 6.1 (5.3) kcal/mol more stable than 2b®™!. The cor-
responding value for 1 is 9.8 kcal/mol™ (experimental val-
ue: 8.4 kcal/mol'").

Reinvestigation of the equilibrium structure determined
for 2a using ab initio calculations of the Hartree-Fock
(HF) type with an extended 6-31G* basis set!® led to the
structural data summarized in Figure 1. Hence, the fold
angle ¢ in 2a (152°, cf. Figure 1) is only slightly different
from the calculated value of 148° for 1a (HF/6-31G*"};
exp.: 148.5°). The 1,3-distance of 1.90 A is somewhat
longer than that in la (HF/6-31G*: 1.79 AP exp.:
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1.78 A®). The relatively long B1C4 bond and the relatively
short C3C4 bond indicate that delocalization of the two 7t
electrons in the B1C4C3 region is not fully established!.
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Fig. 1. Calculated structural parameters for the 1,2-dihydroborete 2a (all val-
ues obtained from 6-31G* calculations; bond lengths [A], bond angles [°]).
The fold angle ¢ is the angle between planes B1C2C3 and C3C4B1. Angle 8
measures the deviation of the bond vector C4H from the plane B1C4C3. Fur-
ther parameters: BlH=1.19, C4H=1.07, C3H=1.07, C2H=1.08 A,
< C2C3C4=103°.

The degree of 1,3-interaction can be determined by anal-
ysis of the one electron density distribution p(r)®®.. In pro-
ceeding from 2b to 2a, p(r) between B1 and C3 increases
by 20%; at the same time, the gross electron population at
B1 and C3 grows, while that at C4 decreases. Although ac-
cumulation of p(r) in the X1C3 region (X =B) is substan-
tial, it is less than in 1a (X =C?®). This result, together with
the inversion barrier calculated for 2a, is an index for the
1,3-interaction, which is weaker than in 1. In contrast to
the homotropylium ion®®!, accumulation of p(r) between the
interacting atoms in 1 and 2 does not lead to a saddle
point in the electron density distribution®.

In terms of an exactly defined model for homoconjuga-
tion based on the properties of p(r), neither 1 nor 2 in-
volve completely extended homoaromatic 1,3-bonding®;
however, if the term homoaromaticity is used merely quali-
tatively to signify a change in structural and spectroscopic
properties relative to those of a given reference state, with-
out intending to specify quantitatively the difference be-
tween bonding and nonbonding 1,3-interactions, then both
1 and 2 can be described as homoaromatic'%.

Preliminary calculations with a minimal basis set (HF/
STO-3G!"") on the spirocyclic 1,2-dihydroborete 3, several
derivatives of which have recently been synthesized!?,
also indicate a nonplanar structure for the dihydroborete
ring (Fig. 2).
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Fig. 2. HF/STO-3G parameters for the spirocyclic 1,2-dihydroborete 3 (bond
lengths [A], bond angles [°]). The fold angle « is the angle between the planes
B1C2C3 and C3C4Bl. Further parameters: B1H=1.16, C3H=1.09,
C4H=1.08, BSH=1.15, C6H=1.08 A, 4 C2C3H=128, <« C4C3H=132,
< BIC2B5=134, « C3C2B5=131, < B1C2C6=131, < C3C2C6=129°.
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Since the endocyclic angle at C2 in 3 is strongly com-
pressed, forcing the B1C2C3 angle to widen, the nonpla-
narity of 3 represents further evidence for the presence of
strong 1,3-interactions in compounds of type 2.
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