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1. Introduction

During the last decades, quantum chemistry has become a rapidly ex-
panding field of active research with many applications to pending chemical
problems [1]. The breath-taking progress in quantum chemistry is strongly
coupled to the successful construction of high speed computers, and, in par-
ticular, to the recent development of vector and parallel processors [2]. Their
enormous computational capacity provides the basis to routinely apply quan-
tum chemical methods to interesting chemical problems {3] thus revealing
more and more the importance and relevance of quantum chemistry to all
fields of chemistry. Of course, all the accomplishments in computer tech-
nology could only have such a large impact on quantum chemistry, because
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quantum chemical methods have been improved at the same rapid pace lead-
ing to more efficient and more accurate algorithms almost on a daily basis.
Thus, progress in computer technology and improvement of quantum chem-
ical methods have gone hand in hand pushing quantum chemical research
projects forward. High speed computers have provided for the first time the
possibility of going right away from the pencil-and-paper work of method
development to the reality of computational work.

One field of quantum chemistry, which has strongly contributed to the
current popularity and efficiency of quantum chemical calculations, is the
field of analytical energy derivative methods [4,5]. The importance of these
methods results from the fact that many characteristic features of molecules
depend on the variation of the energy with respect to nuclear coordinates or
some external perturbation parameter such as a static electric or magnetic
field. When specifying the dependence of the energy on these parameters
the corresponding derivatives of the energy play a key role. For example,
derivatives of the energy with respect to nuclear coordinates are used to ex-
plore the potential energy surface of a molecule and to search for equilibrium
geometries and transition states along reaction paths [6]. Both equilibrium
geometries and transition states represent stationary points on the potential
energy surface for which the forces on the nuclei, i.e. the first derivatives of
the energy with respect to the nuclear coordinates, vanish. Stationary points
on an energy surface can be further characterized by the Hesse matrix which
comprises the second derivatives of the energy with respect to nuclear coordi-
nates [6]. Second and higher derivatives are also used to calculate harmonic
and anharmonic frequencies [7,8].

Variation of the energy with respect to an external electric or magnetic
field provides the possibility of calculating molecular properties such as dipole
moment, quadrupole moment, octupole moment, polarizabilities, magnectic
moments, etc. [9]. Differentiating dipole moment and polarizability with
respect to nuclear coordinates leads to IR and Raman intensities [10,11]
which have turned out to be very useful when assigning vibrational modes
to observed IR and Raman bands. Such an assignment just on the basis of
vibrational frequencies is in most cases very difficult or even impossible and,
therefore, additional information such as calculated intensities is needed [7].

In principle, it is possible to calculate all properties just mentioned with
the aid of finite differentiation procedures. However, there are two arguments
that suggest the use of analytical derivatives rather than finite differentia-
tion methods [12,13]. First, the accuracy of the finite differentiation scheme is
not very high and calculating higher derivatives in this way can be very trou-
blesome. Analytical methods avoid these difficulties and provide sufficient
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accuracy for all derivatives. Secondly, if the number of perturbation param-
eters increases (in a polyatomic molecule with K atoms there are 3K forces),
the numerical procedures will become very expensive. The computational
costs of numerical methods directly scale with the number of perturbations,
while the costs of analytical derivative methods are more or less independent
of the number of perturbation parameters [5,14]. Therefore, use of analyti-
cal methods is advantageous, especially when investigating larger molecules.
Compared to numerical differentiation procedures, time savings by analytical
methods are considerable.

The impact of analytical derivative methods in quantum chemistry is
clearly demonstrated by the fact that nowadays most quantum chemical stud-
ies include (at least at all lower levels of theory) optimization of geometries
by utilizing analytically evaluated forces.

Historically, Pulay [12,14] was the first who implemented an analytical
derivative scheme for a quantum chemical ab initio method. As early as 1969,
he presented analytical gradients for the Hartree-Fock (HF) energy and used
them to calculate equilibrium geometries, and, by numerical differentiation
of the analytically evaluated gradients, force constants [14,15]. However,
it should be mentioned that during this time one of the major problems of
analytical derivative methods was the evaluation of the derivatives of the one-
electron and two-electron integrals over AO basis functions. A major step in
direction of a more efficient implementation of analytical derivatives was done
when new techniques for the evaluation of electron integrals were introduced
into quantum chemistry. In this context, the gaussian quadrature based on
the use of Rys polynominals [16] has to be mentioned. This new technique
for evaluating electron integrals was especially designed to calculate integrals
over higher order Cartesian gaussian functions and this feature could be used
with great advantage when computing integral derivatives [17].

In 1979, Pople and co-workers [18] implemented analytical second deriva-
tives for HF energies thus significantly reducing the computational costs for
the calculation of HF force constants. The key to their successful implemen-
tation of analytical second derivatives was the development of an efficient
scheme to solve the Coupled-perturbed HF (CPHF) equations [19-21] in or-
der to get perturbed orbitals. These are not needed for HF energy gradients
but they become necessary for HF second derivatives. Pople and co-workers
also presented for the first time analytical first derivatives for a correlation
method, namely for second order Mgller-Plesset (MP2) perturbation theory.
Again, the solution of the CPHF equations was an important prerequisite
for the calculation of analytical derivatives. This is due to the fact that all
correlation methods, which do not optimize orbitals, require the derivatives
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of the MO coefficients (given in form of perturbed orbitals) or at least some
equivalent information in form of the so-called z-vector [22].

In the following, analytical first derivatives of the energy were coded for
CI methods with single (S) and double (D) excitations (CISD) with respect
to a HF reference function [23,24] and for the MCSCF ansatz {25,26]. Also,
analytical methods for higher derivatives, which are of special interest for the
calculation of vibrational spectra, were developed. For example, analytical
HF third derivatives [27], analytical MCSCF- [28,29] and CI second deriva-
tives [30] as well as analytical dipole [31] and polarizability derivatives [32,33]
were coded and successfully applied in a large number of calculations.

After these developments had taken place, it was clear that the main
thrust of any further developments in analytical gradient techniques would
concentrate on more sophisticated electron correlation methods. Especially
attractive were three groups of single determinant based correlation meth-
ods, namely the many-body perturbation techniques in the form introduced
by Mgller and Plesset (MP) [34], the CI methods [35] and, finally, the cou-
pled cluster (CC) methods [36,37]. MPn methods with n = 3 and 4 were
implemented by the Pople and co-workers in the late seventies [38-40] and
after generally usable MP3 and MP4 programs had been released by Pople
group in the early eighties [41], perturbation methods became soon very pop-
ular. The main advantage of the MP methods in particular and many-body
perturbation theory in general results from the fact that these methods are
size-consistent [38] (or size-extensive [37]) thus allowing a consistent descrip-
tion of molecules independent of size and number of electrons. Contrary to
perturbation methods, CI methods truncated to single and double excitations
are not size-consistent and, therefore, a CI description of chemical reaction
systems has to be corrected in most cases by some empirical correction terms
[42].

Apart from being size-consistent, MP methods are attractive since they
can be used to investigate electron correlation in a systematic way. MP2 is
certainly the simplest method of treating dynamical correlation. Of course,
MP2 often exaggerates effects of D excitations, i.e. electron pair correlation,
but this is largely corrected at third order MP (MP3) perturbation theory,
which introduces coupling between D excitations. Fourth order MP (MP4)
perturbation theory provides a simple way of including effects of higher order
excitations, namely (beside those of S and D excitations) those of triple (T),
and quadruple (Q) excitations [40]. T excitations can be handled at the MP4
level in a routine way even when calculating larger molecules [43]. This,
however, is very difficult at the CI level [44].

Since many-body perturbation theory is not a variational theory, it does
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not lead to an upper bound for the energy and this may be considered as
a disadvantage of MP methods. However, in practise it turns out that lack
of the variational property does not lead to serious problems. A much more
severe restriction of MP methods is the fact that they are based on the
single determinant ansatz of HF theory. In this context, new developments
such as spin projected MP [45,46], MP with GVB [47] or CASSCF reference
function [48] have to be mentioned since they may be considered as promising
generalizations of the MP approach.

The CC approach [37] is related to MP perturbation theory but, al-
though a non-variational method, it is iterative and, therefore, more expen-
sive to carry out. Within CC theory, the wave function is written in exponen-
tial form, namely as exp(T) acting on a reference wave function where T is
the excitation operator covering all possible excitations of a given type. Re-
stricting excitations to, e.g., S and D and projecting the Schrédinger equation
on all S- and D-excited forms of the reference wave function leads to a closed
set of equations which can be solved iteratively [49-51]. The CC approach is
size-consistent and is invariant with regard to unitary transformations among
occupied (virtual) orbitals [37]. Furthermore, it seems to be applicable on a
larger scale than MP theory. At least in some cases, CC methods turned out
to provide reasonable descriptions of molecular systems that actually require
a multi-determinant approach.

Recently, Pople, Head-Gordon, and Raghavachari [52] introduced a mod-
ified method for calculating correlation energics starting from a HF wave
function. Their method corrects CI for its size-consistency error by adding
to the CI equations new terms, which are quadratic in the CI coefficients.
Therefore, the method was coined, perhaps unfortunately [54], quadratic CI
(QCI). Alternatively, the QCI method may be considered as an approximate
CC method [52-54], but since the general strategy of QCI differs from that
of CC, QCI results are not necessarily inferior to those obtained with the CC
methods. Both CC and QCI are correct to the same order of perturbation
theory if the same excitations are considered. Thus, QCISD, i.e. QCI with S
and D excitations, is correct in the SDQ space of MP4 and QCISD(T), which
also considers triple excitations in an approximated way, is fully correct in
fourth order perturbation theory. The more recent QCISD(TQ) method is
even fully correct in fifth order perturbation theory [55]. Work carried out
with the QCI methods clearly shows that these methods will establish them-
selves beside MP and CC methods as promising ways of getting electron
correlation corrections.

During the eighties, work on analytical energy derivatives was aimed
at getting appropriate formulas and efficient computer programs for MP,
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CC, and QCI methods. In 1983, Jgrgensen and Simons worked out the
formulas for the analytical MP3 and CCD energy gradient [56]. A first
attempt to implement analytical MP3 gradients was made in 1985 by Bartlett
and co-workers [57]. The computer program these authors developed was not
very efficient and, certainly, was not intended for routine applications. The
main drawback of their program was that it required a full transformation
of the two-electron integral derivatives from AO to MO basis which is a very
expensive and unnecessary step [58,59]. An implementation of analytical
MP3 energy gradients for routine calculations was presented by Gauss and
Cremer in 1987 [58], followed shortly afterwards by a similar implementation
by Bartlett’s group [60]. Later, Alberts and Handy extended analytical MP3
gradient methods to unrestricted HF (UHF) reference wave functions [61].

In 1986, Fitzgerald, Harrison, and Bartlett formulated the theory for an-
alytical MP4 energy gradients [62]. The first computer implementation of the
analytical MP4 gradient restricted to S, D, and Q excitations was published
by Gauss and Cremer in 1987 [58]. Full MP4 gradient calculations including
T excitations were reported by Gauss and Cremer [63] and, independently,
by Bartlett and co-workers [64,65] in 1988.

In the early eighties, analytical gradients for CC methods seemed to be
more complicated than either MP or CI gradients. Due to the nonvariational
character of the CC method the derivatives of the excitation amplitudes
seemed to be needed for the CC energy gradient. In 1985, Bartlett and co-
workers succeeded in solving the Coupled-perturbed CC (CPCC) equations
for CCD to determine the derivatives of the D excitation amplitudes [66].
This, however, was not the final solution of the CC gradient problem. In
1984, Handy and Schaefer showed that in all gradient expressions perturba-
tion dependent quantities which have to be determined by some additional
set of equations, e.g. by the CPHF or CPCC equations, can be replaced by
a vector z [22]. The z-vector is the solution of only one set of equations that
does not depend on the perturbation. Adamowicz, Laidig, and Bartlett [67]
applied the z-vector method to derive expressions for the analytical CCSD
energy gradient. In 1987, Schaefer and co-workers presented the first com-
puter implementation of analytical CCSD gradients based on these ideas [68].
Later, Scuseria and Schaefer extended this work by including T excitations
via the CCSDT-1 ansatz [69,70]. However, most of these developments were
restricted so far to RHF reference functions. A generalization to UHF and
ROHF reference functions as well as some special classes of non-HF reference
functions in the case of the CCSD method was recently carried out by Gauss,
Stanton, and Bartlett [71].

In 1988, the theory of analytical QCISD energy gradients as well as the
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first computer implementation for routine calculations was reported by Gauss
and Cremer [72]. In this work, the z-vector method was used to determine
the derivatives of the QCI amplitudes. Recently, Gauss and Cremer were
also able to derive the analytical energy gradient for QCISD(T) [73] utilizing
techniques which had previously been developed to handle T excitations at
the MP4 level [63]

2. Comparison of Mgller-Plesset and Quadratic CI Electron Cor-

relation Theories

2.1 Mgller-Plesset Perturbation theory

In Mgller-Plesset (MP) perturbation theory [34] the unperturbed Hamil-
tonian Hy is chosen as a sum of Fock operators F

Ho = Y F(¢). (2.1)
3

and the perturbed Hamiltonian H' is given as the difference between the ex-
act Hamiltonian H and the zeroth order Hamiltonian Hy. The Fock operator
F(¢) of the {th electron in eq.(2.1) is defined as

F(6) = h(€) + Y _(3-(&) - K-(6)), (2.2)

where h(£) denotes the one-electron part of the Hamiltonian and J,(£) and
K, (£) are the Coulomb and exchange operators which describe two-electron
interactions between the 7th and the £th electron. For the perturbation
expansion the Hartree-Fock (HF) wave function is used as zeroth order func-
tion. In the following the HF spin orbitals are denoted by ¢,. It is assumed
that they are eigen functions of the Fock operator F with eigen value ¢,. Fol-
lowing a widespread convention we will use indices ¢, 7, k, ... to label occupied
orbitals and indices a, b, ¢, ... to label unoccupied (virtual) orbitals. In cases
where the formulas hold for both type of orbitals indices p, q,r, ... are used.

The energy corrections are calculated in MP theory using the Rayleigh-
Schrédinger expansion. At second order, this gives the following energy con-
tribution [34,38]

E(MP2) = —Z > a(ij,ab)(ij|ab), (2.3)

6, ab
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where a(ij, ab) denotes the first order correction to the wave function
a(ij, ab) = (ij]lab)/ (i + €5 — €a — &) (2.4)

d {(pg|lrs) is the usual anti-symmetrized two-electron integral

wallrs) = [ erDpaCIlor (D2 = er(Lpr(Dldridrs
(2.5)

At third order the energy correction is given by [38]

E(MP3) = - Z Z a(ij, ab)w(ij, ab) (2.6)

i,7 a,b

with

w(ij, ab) = = Z kl||ij)a(kl, ab) + = Z abl|cd)a(ij, cd)
c,d

- Z ™ ((kallic)a(ks, ob) + (kalljc)a(ik, b
k ¢
+ (kb||icya(kj, ac) + (kb||jc)a(ik,ac)}. (2.7)

While second and third order MP perturbation theory include only double(D)
excitations with respect to the HF reference function, fourth order MP theory
considers in addition single(S), triple(T), and quadruple(Q) excitations [39].
The energy correction at this level of theory is usually given as [39,40]

E(MP4) = Z Z w(t,a)d(i,a) + — Z Z w(tj, ab)d(zg, ab)
4, a,b
+ — Z z w(tjk, abe)d(ij k, abc)
1,7,k a,b,c
+ = Z > " a(ij, ab)v,(ij, ab). (2.8)
1,j a,b

In eq.(2.8), the first term denotes the energy correction due to S, the second
due to D, the third due to T, and the fourth due to Q excitations. The
various arrays in eq.(2.8) are defined as

w(i,a) = = ZZ(Z (ajllcbya(ij, cb) — > (id||ks)a(ks, ab)), (2.9)
k
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d(i,a) = w(i,a)/(ei — €a), (2.10)
d(ij, ab) = w(ij, ab)/(ei + €5 — €4 — €3), (2.11)

w(ijk,abe) = Y {a(ij, ad)(bel|dk) + a(ij, bd)(ca||dk) + a(ij, cd)(ab||dk)
d

+ a(ki, ad) (bel|dj) + a(ki, bd) callds) + a( ki, cd) (ab )
+ a(jk, ad)(bc||di) + a(jk, bd){cal|di) + a(jk, cd){ab||di)}
+ Z{a(il, ab)(cl||jk) + a(il, bc)(al||jk) + a(il, ca)(bl||j k)
1

+ a(jl, ab){cl||kt) + a(jl, bc)(al| ki) + a(jl, ca)(bl| ks)
+ a(kl, ab)(cl||ij) + a(kl, be)(allig) + a(kl, ca)(bl||ij)},
(2.12)

d(ijk,abc) = w(ijk,abc)/(ei + €5+ €k — €a — € — €¢), (2.13)

and

vy(ij,ab) = Z > “(klljed) [a(ij, cd)a(kl, ab)
k! c,d

— 2{a(ij, ac)a(kl, bd) + a(ij, bd)a(kl, ac)}

— 2{a(ik, ab)a(jl, cd) + a(ik,cd)a(jl, ab)}

+ 4{a(ik, ac)a(jl, d) + a(ik, bd)a(jl, ac)}]. (2.14)
Note that in order to reduce computational costs the formula for the en-

ergy contribution due to quadruple excitations has been rearranged [39] and
combined with the renormalization term.

An alternative formula which turns out to be useful when deriving for-
mulas for the energy gradient with respect to some external perturbation
(see chapter 3), is given by eq.(2.15) [58] :

Z Z a(ij, ab){vy(i, ab) + va(ij, ab)

tj a,b

E(MP4) =

+ ve(27, ad) + v, (17, ab)}, (2.15)
where the various v-arrays are defined by [58,63]

vs(17, ab) = Z{(ab“cj)d(i, c) + (ab||ic)d(j, ¢)}
= D _{(kbBlliz)d(k, @) + (kallji)d(k, )}, (2.16)
k
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valiisab) = & S (RlliNd(kL ab) + 5 Y (ablled)d(is, cd)
k,l c,d
=Y {(kallic)d(kj, cb) + (kalljc)d(ik, cb)
k c
+ (kbllic)d(kj, ac) + (kb|ljc)d(ik,ac)}.  (2.17)
ve(ij, ab) = %ZZ {(cd||bk)d(ijk, acd) — (cd||ak)d(ij k, bed))}
k cd

% Z{(cj”kl)d(ikl,abc)—(ci||kl)d(jkl,abc)}. (2.18)

Recently, also formulas for the energy correction at fifth order MP theory
1ave been given and implemented [55,74,75]. Compared to MP4, no ad-
litional excitations are included and only couplings between S, T, and Q
xcitations, respectively, are introduced in MP5. However, since MP5 is
.omputationally very expensive (the evaluation of the T-T coupling terms
equires O(N®) operations compared to the most expensive O(N') step in
VIP4), it is not expected that MP5 will be in the near future a standard
nethod for large scale calculations.

.2 Quadratic Configuration Interaction Theory

The coupled cluster (CC) [36] ansatz for the description of electron cor-
‘elation is based on the following exponential form of the wave function

¥ = exp(T) Ty, (2.19)

vhere ¥y denotes a single determinant reference function, usually the HF
vave function, and T denotes a general excitation operator which consid-
18 all possible types of excitations up to n-tuple excitations when n is the
wmber of electrons. Equations for the energy and for the amplitudes of the
7arious excitations are obtained in CC theory by projecting the Schrédinger
‘quation with ¥ given by eq. (2.19) onto the various determinants, namely
Vo, the singly excited determinants ¥¢, etc. [36,37].

Similar to the CI method [35] CC calculations including all possible types
f excitations are not feasible in most cases and several restrictions have to
‘e imposed. Limitation of T to double excitations yields the CC doubles
CCD) method [49,50], additional inclusion of single excitations leads to the
>C singles and doubles (CCSD) method [51] and so on.
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The QCI approach of Pople and co-workers [52] can be regarded as an
approximate CC method in which only those of the non linear terms are kept
which are needed to guarantee size consistency. QCID including only double
excitations is identical with CCD, while QCISD including single and double
excitations neglects all cubic and quartic terms compared to CCSD [52].

With single and double excitation amplitudes denoted by af and a;

respectively, projection of the Schrodinger equation onto ¥o, ¥, and \Il“b
yields for the QCISD correlation energy [52]

Z > af} (ij||ab)

i,] ab

E(QCISD) = (2.20)

and for the equations, which determine the amplitudes af and aj; 5 [52]

(60 — €s)af +w +vf =0, (2.21)

(€a + b —€i — ej)a,] + w” + v,] + (ij]|ab) = 0. (2.22)

The arrays wf and wi; b depend linearly on the configuration coefficients af

and a,] ,

we = -3 (allibjat - % S S (allbe)als
Jj b J b
LI
ik b

(2.23)

and

wiy = Z{ abllej)ai — (abl|ci)a °}+Z{ (kbllij)ag + (kallij)ay}

+3 Z kl||ij)ald + = Z ab||cd)as ZZ{ kb||jc)als

+ (kallJC)a;k + (kblllc>akj + (kaHZC)akz'}, (2.24)
while v? and v;‘j” are quadratic in the amplitudes :
== Z Z (7 k|jbe) {alajk + a;‘af,': + 2a’1’a;‘,f (2.25)

],k b,c

g
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and

1 d _ab ac bd bd ac
z] = Z E : § : kZHCd [a‘f] A — 2{(1” 7 +az] 97
kd cd

—2{afa${ + affafl} + 4{affa] + alfaff}]. (2.26)
The QCISD equations are solved iteratively via eq.s (2.27) and (2.28)
a2 = 02 ™ 4 f )/ (e, ), (2.27)
+1
at ™ = ijlab) + wft o V(i e —eam ), (229)
using as initial guess for the amplitudes
at® =, (2.29)
(0) ..
afl™ = (ij[lab)/(ei + € — €a — €b). (2:30)

Convergence is usually significantly accelerated by applying extrapolation
schemes of the DIIS type [76-79].

Since an explicit treatment of triple excitations in QCI theory is in most
cases impractical [80] but on the other side often necessary, Pople and cowork-
ers [52] proposed an useful approximation for treating them within the QCI
approach. Their approximation is based on the assumption that triple exci-
tations are small perturbations on the solution obtained at the QCISD level.
Perturbation theory yields then for the energy correction due to triples [52]

AE(T) = = Z ) A (wite + 2085%)

,J,k ab,c

(2.31)
with

abe _

,]k—E {a¥{!(be||dk) + aff(cal|dk) + aff (abl|dk) + aié (be||dj)

bt cal)+ afabla) + a3 (bl + aeal i) + as(ab i)
+ DA ellib) + ol (alliF) + o (1) + a5 el

+ajf (al||ke) + a5f (bml| ki) +agf (clllif) + afi{alllij) +aff (bml|i5)},
(2.32)
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B¢ = al (jkllbe) + ab(Gkllca) + af(jk||ab) + aj(killbe) + aj(kil|ca)
+ a5(kil|ab) + af(ij ||be) + ai{ijllca) + af(1jlab), (2-33)
and
il = wie /(i + €5 + €k — €a — € — €c)- (2.34)

In these equations, af and a?}’ denote the converged QCISD amplitudes of sin-
gle and double excitations, respectively. It has been demonstrated [52,83-86]
that this approximate treatment of triple excitations leads to highly accurate
results, which are in many cases comparable to those of full CI calculations.

Recently, Raghavachari et. al. [55] proposed a new non-iterative cor-
rection to the QCISD approach which considers beside triple excitations
also connected quadruple excitations [87]. This method, which was named
QCISD(TQ) is correct to fifth order of MP theory [55,74,75] and should yield
as long as the single reference ansatz is appropriate, excellent result. How-
ever, since this method contains a O(N 8) step which should be compared
with the most expensive O(N7) of the QCISD(T) method, it is certainly not
a method which can routinely be applied in large scale calculations.

2.3 The Relationship between QCISD Theory and MP Perturba-
tion Theory

As it has been shown by several authors [74,76] there is a close relation
between MP perturbation theory on one side and CC and QCI theory on
the other side. The results of MP perturbation theory can be recovered
by collecting various terms of the first iterations of QCISD (and as well as
CCSD), which in the language of perturbation theory is a method that sums
up several terms to infinite order [74,76)].

When we write the MPn energy contribution in n-th order in the form

E(MPn) = % 373" a8} (MPn)(ifl|ad), (2.35)

i,j ab
we obtain for the amplitudes a?;’ (MPn) in second, third, and fourth order

a??(MP2) = a(ij, ab), (2.36)

af}(MP3) = d(ij, ab), (2.37)
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and

a?}(MP4) = {v,(ij, ab) + va(i7, ab) + v¢(ij, ab)
+vg(ij,ab)}/(ei + €5 — €0 — €3). (2.38)

The ﬁ)rst iteration of QCISD yields (with a? and a?}’ set to zero in the initial
guess

ab . ..
a;; (QCISD, 1.Iteration) = (ij||ab)/(e; + € — €4 — €3) (2.39)
and, therefore, recovers the MP2 result. The second iteration gives

a$}(QCISD, 2.Iteration) = a(ij, ab) + d(ij, ab)
+ vg(2j,ab)/(ei + €5 —eq —€3)  (2.40)

and produces the MP3 amplitudes as well as those due to the quadruple part
of MP4. Note that while d(ij, ab) is linear in the amplitudes a(ij, ab) ( see
eq.s (2.7) and (2.8)) and thus a third order term, v,(ij, ab) is quadratic in

a(i7, ab) and hence a fourth order term. The third iterati
method finally yields ird iteration of the QCISD

ab . ..
ai; (QCISD, 3.Iteration) = a(ig, ab) + d(ij, ab) + {v,(ij, ab) + va(t7, ab)
+ vg(i5,ab)}/(ei + €5 — €a — &)
+ higher order terms. (2.41)

Beside several higher order terms the third iteration gives the remaining sin-
gle and double excitation terms of MP4. However, a thcory which includes
only S{ngle and double excitations cannot account for the triple excitation
terms in MP4 and, therefore, is not exact to fourth order. The triple term in
MP4 on the other side is closely related to the additional terms in QCISD(T)
tbeory which are obtained in the perturbational treatment of triple excita-
tions. The differences are that the fully converged QCISD amplitudes rather
than a(ij, ab) are used to calculate the triple corrections, and, second, that
an additional coupling of single and double excitations whick,l corres;:onds
to a fifth order term in MP theory is introduced. The recently introduced
QCISD(TQ) method [55] is finally correct to fifth order of MP theory.
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3. Energy gradients

Analytical expressions for the energy gradients in MP and QCI the-
ory with respect to an external perturbation X such as the displacements of
nuclear coordinates, or the components of a static electric (magnetic) field
are easily derived by straightforward differentiation of the energy formulas
discussed in the previous paragraph. Since the energy formulas are given
in terms of two-electron integrals and orbital energies, we first discuss (sec-
tion 3.1) the derivatives of these quantities. This requires some discussion of
the theory of energy derivatives in HF theory, in particular of the so called
coupled-perturbed HF theory. After this we will derive formulas for MP2,
MP3, MP4 (section 3.2), QCISD and QCISD(T) (section 3.3) energy gradi-
ents and discuss the relations between the various gradient formulas (section
3.4). Finally, these formulas are condensed into a form which is useful for the
implementation of analytical gradient methods within computer programs

(section 3.5).

3.1 Derivatives of Two-electron Integrals and Orbital Energies

Differentiation of the two-electron integrals (pg||rs) and the orbital en-
ergies €, with respect to an external perturbation A is straightforward. The

HF orbitals are given by
(PP = ZC”PXM, (31)
mn

where the x, are the AO basis functions and the c,, the usual MO coeffi-
cients as determined in the SCF procedure. The derivatives of the orbitals
are usually given in terms of the derivatives dc,p /O of the MO coeflicients.
Within standard Coupled-perturbed HF (CPHF) theory [18,21]), the deriva-

tives Oc,p/OX are expanded in terms of the unperturbed coefficients ¢,p [18]
9cup A
N ; UgpCuas (3.2)

where the U2 are the perturbation dependent expansion coefficients. Or-
thonormality of the perturbed orbitals requires further that

UM+ U +Sp,=0 (3.3)
with
0S5,
S;‘p = EC#P 03‘\ Cuq (3.4)
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and S,, being the overlap matrix of the AQ basis functions. Note that
fche dependence of the AO basis functions on the perturbation A is usuall

included into the derivatives of the one- and two-electron operators of thy
Hamiltonian within the AO representation, e.g. °

Ohy,

L Ox, Jh 0
= (Sl + (xul g5 xe) + (xo BIE) (3.5)

and

Ouvlop) _ 0x Oxs
= (Grxslixexs) + (G lIxaxs)

Ixe 0
+ (a1 Z7X0) + (xuxslixe5,2)- (3.6)

Thf: coefﬁc1ents- U;‘q are determined by solving the CPHF equations [19-21]
which are obtained by differentiating the HF equations with respect to \
However, there exists some ambiguity with respect to the definition of the;
perturbed orbitals in a similar way as it exists for the unperturbed orbitals
Energy gradients and perturbed wave function are invariant to rotations'
among the perturbgd occupied (virtual) orbitals. There is no unique choice
for tht'a corres.pondlng' mixing coeflicients U,?]‘ and U2, [88]. The selection of
canonical orbitals which turns out to be advantageous in the case of the un-
per.turbed orbitals and which would diagonalize the matrix de,,/0) of the
derlvativ‘es. of the Lagrangian multipliers is not the best choice. éqomputation
of t.he mixing coefficients U {} and U2\ within this specific choice of perturbed
orbitals causes numerical difficulties as soon as degenerate or nearly degen-
erate orbitals are encountered [18,88]. It is more advantageous to fix the

coefficients U,-’} and U2 to

1
Ur = —=6X
3 25” (3.7)
and
1
UN — _=gXA
a = ~5 5 (3.8)

respectively [89]. In this way, one avoids all numerical difficulties although
one has to de.al now with the off-diagonal elements of the J¢,,/d) matrix [88].
T};e on?y derivatives U p)‘q that have not been defined so far are the derivatives
Ug; which describe the mixing between occupied and virtual orbitals. They
are determined by the CPHF equations [18,21]

Z Z(A'“'bj + (€0 — €:)6as6i5)Upy = B (3.9)
b
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which are obtained by differentiating the HF equations with respect to A.
The various terms in eq. (3.9) are defined as

Apgrs = (prilgs) + (psllgr) (3.10)

and

1
By = —F(f;\) eSS+ 5 Z Aktai Sy, (3.11)
X

where Fi:\) denotes the following derivative of the Fock matrix F, trans-
formed to the MO basis

FO =3 P,

n,v
Ohy, 9(pallve)
:;c“a{ X +§;;Cak6pk——5\——}cui-

Although one can show that the solution of the CPHF equation is not re-
quired for the evaluation of analytical energy gradients in any of the methods
considered [22,58,59], it is on the other side very convenient to use the deriva-
tives U;‘q in the derivation of the gradient formulas. The elimination of the

coefficient U2, from the gradient formulas is discussed later in chapter 3.5.

Using CPHF theory, we obtain the following expression for the deriva-
tives of the two-electron integrals (pq||rs) :

(3.12)

A(pq||rs) O(pvllop)
= = Z cupcvqcf’rCPST + zt: Ut>,§<t41”"3)

nvop

+ S UL tlirs) + 3 Ud(palits) + D Uiu(pallrt).
i t i
(3.13)

Explicit specification of the orbitals ¢p, ¢4, ¢, and ¢, allows further simpli-
fication of eq. (3.13) using eq.s (3.3), (3.7), and (3.8). E.g., the derivatives
of the integrals (ij||ab) are given by

0(ij ||ab) O(uv|lop)
oy D CuiCuiCaalo— 53—

uvap

£ UAeillob) - 5 3 Si(killab)
c k
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. 1 A
+ Z U icllab) — 5 2:, Sij(ikl|ab)

~ N 1 g
;{Uak + Sak (Z] ”kb) - 5 Zc: S;\a (7'] “Cb>

_ Y Ay 1 ..
;{Ubk + Six }(ij||lak) — 5 Z S (i7llac). (3.14)
For the Lagrangian multipliers which are in HF theory given as
€pg = ZcupFuvcuq (3.15)
(214 .
straightforward differentiation yields
%zp(x)+ZZUA,A _lga 1ox
I\ g : ai‘ipgai — 5 Z SkIAqul - §Spq(5P + 54)‘
a i k,
(3.16)

By this, the derivatives of the orbital energies and two-electron integrals

are given which are needed to derive analytic i
e fven ytic expressions for MP and QCI

3.2 Gradients in MP Perturbation Theory

In MP perturbation theory differentiation of the energy is straightfor-
?vard, because the MP energies at all orders are given as "fixed” expressions
In terms of two-electron integrals (pg|lrs) and orbital energies ¢,. Thus, the
f?rmulas for the energy gradients contain only derivatives of tflese qu;mti-
ties and beside the derivatives of one- and two-electron integrals as well as

the derivatives of the MO coeffici it
. ents no additional perturbati
quantities are required. periurbation dependent

For second [18], third [58], and fourth order [58,63], one obtains

dE(MP2) 1 d(ijllab
DY <2|Al La(ijab

5,7 a,b

1 Oeij
—5 2SS S a(ik, ab)a(ik, ab)
(] k ab

1 Oeq .
+ 5 ; 66; Z Za(zy,ac)a(ij, be),

c i,

(3.17)
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1 0(ij||ab) ii.a
dE(MP3) — 5 Z%b: —b—)\—d( T b)

dX

L3y

a(kl|is)
+3 Za(ij,ab){% > Otkllly) aﬂ 71 o(kl, ab)
b " d(kallic

1 Bablied) o gy Okalio) gy
+§Czd:——5/\——a(]v d) 2};; oA (J
N a(ik, ab)d(j, ab)
PRy

+ TR ali ac)(i, o)

a,b c

(3.18)

and

P4) 1 0Giillad) ¢ i+ by 4+ 2(ij, ab
dE((ll\ﬁ )2522—6—,\_—{(]’ b) + x(1j, ab)}

i,j a,b
O(kll|ij
+ S i ab){Ti T _L(a_!ﬂd(kl, ab)

ij a,b k)l .
! d(kallic)

1 Babled) o OEal) kg, cb)
+Z§;Td(]’ d) Eij 2\

i Nablled) yii oy 5~ QEUE) 4y 3y
+Ziizaba(z],ab){§c =y dlis<) Zk: an

Joa, iillka O(ial|bc) : abe

230 3 A ik a) 4230 30 F G abo)

- i abec
Li,k e

-3 E’;_;i{z > a(ik, ab){e(jk, ab) + %w(ﬂ“’“”)}
i,j k ab

+3 di,a)d(G,0) + 1—]‘2 S S d(ikt, abe)d(jkl, abe)}

k,0 ab,c

1.
> 8;;1, (D alij,ac){e(i, be) + 5a(ij, be)}
ab e i

+ 3 dii,a)d(i,b) + = 3 3 dtijhacd)d(ijk, bed)}
i b (3.19)
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with

e(ij, ab) = {v,(ij, ab) + va(i, ab)

T oi(1),a0) + vg(ij, ab)} /(i + €5 —£a — &), (3.20)

z(ij,ab) = % > D" a(kl, cd){a(ij, cd)a(kl, ab)

kl c,d
~ 2{a(ij, ac)a(kl, bd) + a(1j, bd)a(kl, ac)}
—2{a(ik, ab)a(j1, cd) + a(ik,cd)a(jl, ab)}

+ 4{a(ik, ac)a(j1, bd) + a(ik,bd)a(jl, ac)}}, (3.21)

r(ijk, ) = i > a(kl, be)d(iji, abe), (3.22)
I b,

and

s(i, abe) = i 3" a(ik, ad)d(ijk, bed).
ik d

(3.23)

3.3 Gradients in QCI Theory

The calculation of QCISD energy gradients is somewhat more compli-
cated, because straightforward differentiation of the QCISD energy cxpres-
sion (eq. (2.20)) with respect to A yields a formula (eq. (3.24)) which con-
tains, in addition to the derivatives of the two-clectron integrals (pqllrs),

derivatives of the double excitation amplitudes a?}’ :

1 A(ijllaby ., 1 o Oalb
P DA 15 S on S

4L, a,b 4,j a,b

dE(QCISD)
— = (3.24)

As has been shown in section 3.1, evaluation of the two-electron integral
derivatives causes no serious problems. However, computation of the deriva-
tives of afjb requires the solution of the Coupled-perturbed QCISD (CPQ-
CISD) equations which are obtained by differentiating the QCISD equations

(eq.s (2.27) and (2.28)) with respect to A. The CPQCISD equations can be
written in the following form [72]

da" dal
DI DT R 9 et
J

i<k b<c

(3.25)
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and

ab(A) ab,c 00§ abed 00
Bij = Ek: Z Cij,k —3—)\— + Z Z Cij,kl —0'/\_ (3.26)

k<l c<d

For a definition of the various B and C terms see appendix I. Note that
the C terms are independent of the perturbation A, while the B terms con-
tain derivatives of the two-electron integrals (pg||rs) and of the Lagrangian
multipliers €,, with respect to A.

Explicit solution of the CPQCISD equations is very costly, since it
requires for each perturbation parameter approximately the same time as
needed for the solution of the corresponding QCISD equations. Computa-
tion of QCISD energy gradients by solving the CPQCISD equations (3.23)
and (3.26) obviously presents no real advantage compared to a calculation
via a numerical finite differentiation scheme. However, the explicit determi-
nation of the derivatives of a‘i‘}’ can be avoided by using the z-vector method
of Handy and Schaefer [22,67,68,72]. If we define the z-amplitudes z¢ and
222 by (72

PIDIEHHED DD 2ECt =0, (3.27)
j b

i<k b<c

SS T opn + 3 Y Al = Gillab), (3.28)
k c

k<l c<d

the term in the QCISD energy gradient expression which contains the deriva-

tive of a‘{}’, can be replaced using the following equality

7 S tislat

i,j a,b

ab
6;:\, = > BV i SN BV (329)

i, a,b

The main advantage of the z-vector method is that it requires only the so-
lution of one set of linear equations in order to determine the perturbation
independent quantities z§ and z;‘}’. The corresponding costs are similar to
those for the solution of the QCISD equations.

Using €q.(3.29) and the definition of Bia()‘) and ijb()‘) given in the ap-
pendix the QCISD energy gradient expression can be given in terms of deriva-

tives of two-electron integrals (pg||rs) and the Lagrangian multipliers €54 [72]
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dE(QCISD) 1 oij
T o T3 llab)  ap
dA B 4 Z Z T(aijb - Z,‘jb — ;1;?}’

%, a,b

abgl @
Rl et
S c k1

_ d(kallic) aliali
Y Tn i+ Y Ml
¢ i, ab
1 d(jallbe
T3 '—aA_> aifzf + zj5al

LI ayb,C

1 ask]iby ,
+ZZ;2; S {adk=t + 22hat)

06,"
+ ;‘ 6—;{2«174 + % > astaahy
4 a k ab
_ 66ab a 1
azb ) {Z afz! + By Z > agsaly (3.30)
s T ij ¢

with

5 ZZ

i = cf.ca b cb a ab

i =20 slaffal - affef + ajief — atlas
[+

be a ac b b
+a.ra; — a%ta’? — a’aq® b
7k 7k a,kaj +a?k°aj}

1
+—Z E sz atq?t _ ac bd bd
4 k1l cd ki{aai 2aifari + a;j ai)

_ ab _cd cd a ac
2(ajafi + affall) + 4(als alf + alfalf)}. (3.31)

Differentiation of the i i
] perturbation correction due t i itati
within the QCISD(T) approach yields (73] © fo triple excitation

OAE(T, QCISD(T)) _ 1

da® .
EX _.EZZ%U?JP_*—zZZa(Z]”ka)Ta

5,7 a,b ijk a 7)) ik
Biale) us ’
+2 N gabe i~a, 1 0
Z% Y S; +Zi:za:5/\—vi +§ZZ <%I/l\ab>u"‘jb
1 Oe,
tR2 T 2 LA+

i:jyk cyd

4,7 a,b
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Lo~ Oeij abe (dats + dops). (3.32)
—'1_22 EXY — L dlkl jki ]kl}
2,7 ,¢ a,0,C
The arrays v, ¢, r, s, and u are defined as follows
1 acd Jacd bed d“l?gd
ab — = acd | dacd) _(cdl|ak)[d2Sk + disk)}
V5 = 2;§{<Cd“bk)[dz]k + Uk] ( ” )[ ik 7
k1 : abc Jabc
+ LSS el sty + dsk (el + L)
k!l ¢
(3.33)
1 ¢ jabe Jabe 3.34
Tiik = ZZ;GZI{‘L’;I +di} (3.34)
1 ,C
L ¢ ¢ ¢ 3.35
sthe = Zzzajz‘f{d?jﬁ+3?j? ) (8.35)
jk d
i 3.36
“ﬁ'=:§£:j£:aidé%v ( )
k ¢
and
L ] Sk 3.37
5 =5 2, > (ikllbe)diE. (3.37)
i,k b

Compared to the QCISD gradient expression, eq. (3:30), two additional
terms that involve derivatives of af and a?}’ appear. While the CPQCI equa-
tions are identical for QCISD and QCISD(T), the correspondlng z—vecto-r
equations are not. Triple excitations when treated as a perturbative correc-
tion to the QCISD result do no affect the unperturbed as well as the per—1
turbed amplitudes of single and double excitations. Howe:ver, smace szvefl%
terms in dE(AE(T, QCISD(T)))/8A depend on the derlvatn.fes of af and af;,
the z-vector equations have to be modified in order to get rid of these terms
in the final QCISD(T) energy gradient expression [73]. Thus, the z-vector

equations in QCISD(T) theory are given by

b, be ~bc,a ~a
DD ACh 4 2 Y Gk = o
) b

j<k b<c

(3.38)
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SODFHCH >0 D A = (i ]lab) + 202
k c

k<l c<d

(3.39)

The terms dependent on daf/dX and Ba?}’ /O in the QCISD(T) energy gra-
dient expression, eq. (3.32) are now replaced by

L0 1 w0ad 1, daft
Z;”‘W’LE;;”U o T glilleb)—

=Y YB3 Y By,

i,7 a,b

(3.40)

In the final formula for the QCISD(T) energy gradient [73],

+ 9 Z Z 0(2.(]?Il\ka> T?jk

i,k @

r230 3 At gy s Al

i ab.c i, a,b

1 O€ap acd( hed | Foed
+Ea2b: E3 szijk{dijk+dijk}

1,7,k ¢,d

Ok J
- S SN atteass + ),
iJ

kJd ab,c

dE(QCISD(T)) _ dE(QCISD)
X T

(3.41)

the contribution of the triple excitations appears in two different ways. First,
the QCISD energy gradient terms in eq. (3.41) have to be calculated using
the modified z-amplitudes determined by eq.s (3.38) and (3.39). Second,
eq. (3.41) includes several additional terms containing derivatives of the
two-electron integrals and the Lagrangian multipliers.

Similar to MPn and QCISD energy gradients, the QCISD(T) energy
gradient can be written in a form which contains only derivatives of the two-
electron integrals (pq||rs) and of the Lagrangian multipliers €pq- The z-vector
equations are independent of the perturbation A and have to be solved only
once for all possible types of perturbations.

3.4 The Relationship between MP and QCI Energy Gradients

In the same way as there is a close relationship between the MP and
QCT energy expressions, there also is a close connection between the energy
gradient formulas of both methods. By expanding the QCISD amplitudes al
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and af; b (see section 2.3) as well as the z-vector amplitudes z{# and z{; b up to

fourth order

(second order)

b — a(ij, ab
al] e (third order)

+ d(ij, ab)
+ {’U_,(ij, ab) + Ud(ijaa'b)

+vg(ij, ab)}/(€i + € — €a — €b) (fourth order)

+ (3.42)
ai =0 (second order)
1 +d(z,a) (third order)

. fourth order)
+v(s,a)/(&i —€j) (
. v(i,a)/(ei —¢; o)
zf‘]b = —a(1j, ab) (se(fond order)
— d(ij,ab) (third order)
— {vs(ij, ab)
+ va(i, ab) + vq(ij,ab)}/(ei + €5 — €a — €3) (fourth order)
- (3.44)
28 =0 (second order)
’ —d(3,a) (third order)
—v(t,a)/(ei —€j) (fourth order)
- (3.45)

the relationship between the various gradient formulas becomes obvious: By
substituting eq.s (3.41) - (3.45) in eq. (3.30) for the QCISD energy gradient,
we obtain

dE(QCISD)  dE(MP2) dE(MP3)
di - dX dA
dE(MP4(SDQ)) + higher order terms (3.46)

dX

Considering also triple excitations, a comparison of the QCISD(T) (eq. (3.32))
and the MP4(T) gradient (eq. (3.19)) reveals their similarity. Again, addi-
tional terms (d;‘]b,?, ;‘]b, and ©¢) are due to the fifth order coupling between
single and double excitations.
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3.5 General theory of MPn and QCI Gradients

As has been shown in the previous sections, the energy gradient expres-
sion for all methods considered can be casted in a form which contains only
derivatives of the two-electron integrals and of the Lagrangian multipliers.
Therefore, a general formula for the energy gradient is given by

dE(METHOD) ZZ l]llab XME'THOD( ijab)

)] ab
kl) )
+ Z ’J” X2METHOD( kD)
i,7,k,1
za”]b
+ZZ XMETHOD( ajb)
i,j a,b
+ Z ab”Cd MF‘THOD( abed)
a,b,c,d
ij||ka) .
+ 30 3 Hlle) ypeersongyjiy
1,5,k a
O(ia bc
+ Z Z ” XMETHOD(ZCLI)C)
i a,bc

Og; )
+ Z l] YMETHOD(z])

+ ZaeabYMETHOD( b). (3.47)

Appendix 2 summarizes for all methods discussed the explicit expressions of
the various X and Y terms in eq.(3.47). It should be noted that eq. (3.47)
also holds for gradients in CI [23,24] and CC theory [90] provided a single
determinant reference function is used.

However, eq. (3.47) does not offer a convenient basis for implementation
of computer programs for analytical calculation of energy gradients. In ac-
tual gradient calculations the derivatives O(pq||rs)/OX are never computed,
since it is more advantageous to deal directly with the derivatives of the AQ
integrals and the derivatives of the MO coefficients. The computation of

9(pql|rs)/OX would require for each perturbation a full transformation of the
two-electron integral derivatives from the AO to the MO representation and,
therefore, is too expensive.

An expression for the energy gradient in terms of the AQ integral deriva-
tives and the coefficients U’\ is obtained by substituting eq. (3.13) into
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eq.(3.47) [58]

dE(METHOD) =Y T, /wllap +ZZUAL' +S 3 vALy
uvo at~at ta™ta

nvap

——ZS*LV——ZS

L. Ogij w Ocap
+ ZI\’ +Z;K (3.48)

1y a/\ ab a)‘

with
METHOD,- -
Tuvep = Z Z CuiCujCoaCod X (ijab)
i,j a,b
METHOD: -
+ Z CpiCujCokCpl Xy (Z7 k)
1,7,k,1
METHOD/: -
+ Z Z Cpicuacajcprs (Za-] b)
1] ab

METHOD
+ Z cp,acubcaccdezi (abc)
a,b,c,d

+ Z E cu,‘c,,jc,kcanéwETHOD(ijka)

L5,k a

METHOD/
+ Z E CpiCraCabCpc X (iabc),

i ab.c

(3.49)

Ly =2% > (pjllab) X} FTHOP(ijab)

+4) (pjllkl) X ETHOD (j51)
7.k,

+2> > (palljb) XM ETHOD (45
J a,b

+2> Y (pjllka) X ETHOD (4 ka)

+ D) (kllpa) XMETHOD jkiq)

Ik a
+ Z (pal|bc) XMETHOD (ghc),

a,b,c

(3.50)

s G
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Ly, =2 Z > (iillpb) X METHOD (j54p)
+2 Z D (ipllib) X3 ETHOD (jajb)

+4> " (pbl|ed) XMETHOD (gpcq)
b,c,d

+ ) (i l|kp) XM ETHOD (i kq)
1,7,k

+ Z Z(ip”bc)XéWETHOD(iabc)

i be

+23 3 (ibllpe) XM ETHOP ibac),

i b

(3.51)
Kj; = yMETHOD 5y (3.52)
and

K, = YMETHOD gp), (3.53)

Using further the orthonormality condition (eq. (3.3)) and the explicit ex-

. pression for the derivatives of the Lagrangian multipliers, eq. (3.16), eq.

(3.48) is rewritten as

dE(METHOD) ,uu”o‘p
- N Z Tpuap + Z Z Laz
Hiv,0,p
+ 3 MyySp, + ZN,,,,F;;) (3.54)
P,q Pq
with
Loi = Ly — Ly +2 ) Kji(ajllik) + 2 Ky (abllic) (3.55)
7,k b,c
—3(L + (ei +)KL) + 23 K ikl 1)
+2 3, Koy (iallib) p=1i q=]
Myq = 9 "" Ly + (o +e0)KY, p=aq=hb
_%Lila pP= i’ q=a
_%L:"a P=a, q=1
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and
K P=1q9=]
Npg = § Kl}y p=aq=b (3.57)
0 otherwise

Following Handy and Schaefer [22], the derivatives U_; can be eliminated
from the expression for the energy gradient (eq. (3.54)). By defining the Z-
vector Zp; for the CPHF equations (3.9) :

Z Z(Aaibj + (4 — €i)0ab0ij)Zbj = Lgi (3.58)
b J

the second term in eq. (3.54), which contains the derivative U, is replaced
by
(3.59)

;ZLM ZZB“)Z,,,-.

The main advantage of this approach is that only one set of equations, eq.
(3.58), rather than M sets of linear equations with M as the number of per-
turbations has to be solved. The idea, which is used to eliminate here U
from the gradient expression, is actually the same which has been used to
eliminate the derivatives of the excitation amplitudes from the gradient ex-
pression in QCI theory (see section 3.3). Both elimination procedures are
based on the fact that the gradient expression is necessarily linear with re-
spect to the perturbation A\. Thus, the original set of coupled perturbed QCI
or HF equations can be replaced by one set of equations which is independent
of A. These equations are usually called the z-vector equations [22].

Using eq. (3.59) and transforming all remaining terms to the AO repre-
sentation we get the following final formula for the energy gradient [58,59]

dE(METHOD vl||o
‘L'—) Z T;wap H ” P +ZF,5,),‘)DMV+ZS )
W v,0,p
(3.60)
where D,, and W,, are defined as
1
D,, = Z NpgCupCug — 5 21: Za: Zai(CpaCyi + cuiCua) (3.61)

p’q
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and

#V Z Mpqcupcuq +3 9 Z Z Zazgl(cyacuz + C;ucua)
plq
+ 3 Z Z cpiCujAakii Zak.

45,k a

(3.62)

The various quantities in eq. (3.60) might be interpreted as follows. D,, is
a generalized density matrix which is usually called response density matrix
[91-93]. W,, might be regarded as a generalized energy weighted density

matrix and 7)., represents an effective two-particle density matrix.

Eq. (3.60) is a suitable basis for the implementation of computer pro-
grams for the calculation of analytical energy gradients within MP and

QCISD theory.

4. Implementation of Analytical MPn and QCI Gradients

4.1 The Program System COLOGNE

The MPn and QCI gradient methods discussed in the previous section
have been implemented into the ab initio program package COLOGNE [94].
The present version of COLOGNE has been developed at Cologne University
and at the University of Goteborg during the years 1985 to 1990. While
earlier versions of COLOGNE developed in the time period 1974 - 1984 [95]
exclusively run on a CDC Cyber 176, the present version also runs on a CRAY
XMP/48. COLOGNE is constantly improved and new features are added on
a regular basis. Besides the MPn and QCI gradient methods, COLOGNE

offers some other features not generally available in ab initio programs:

a) the calculation of IR and Raman intensities at the HF level [96] using
analytically evaluated dipole and polarizability derivatives,

b) a direct and semi-direct SCF approach for calculation of large molecules

[07-99)],
¢) a GVB program for calculating nondynamic correlation effects [100],

d) a pseudo-potential ansatz for calculation on transition metal compounds
[101],

e) the use of puckering coordinates for optimizing and analyzing the ge-
ometries of ring compounds [102] ,
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f) the calculation of CI, MPn, QCI, and CC response properties 193],

g) a topological analysis of the electron density [103-105] either for HF or
correlated wave functions [93],

h) the PISA solvent model [122],
i) the IGLO- program for calculating magnetic properties of molecules
[123],
j) determination of correlation energies with the LSD approach [124], and
k) graphics software for plotting molecular geometries, normal modes, IR
and Raman spectra as well as various properties of the one-electron
density.
In the following we will discuss only the implementation of MPn and QCI
methods which are the focus of this review. Other features of COLOGNE
are described in detail elsewhere [96,99].

4.2 MPn Calculations

MP calculations are carried out along the lines described by Pople a‘nd
co-workers [41]. After the SCF part, first a partial integral transforma.tlon
from the AO to the MO basis is performed. Single point energy calcul.z?tlons
require in the case of second order MP theory the integrals of th‘e type (ij||ab),
in third order integrals of the type (ij ||k}, (ij||ab}, (za||7b) and. in fourth order
integrals of the type (ij||ab), (ij||ka), (jljab), (¢a||jb), and (za||‘bc). In MP3
and MP4 calculations a full transformation is avoided by evaluating the term,
which requires in principle integrals of the type (ab|cd),

w3 (57, ab) = % cz;(abncd)a(ij,cd), (4.1)
with the help of the AO integrals [38]. Therefore, the amplitudes a(ij, ab)
are partially transformed from the MO to the AO basis

E(Ua HV) = Z cllac"ba(ija ab)’ (42)

a,b

then multiplied by the AO integrals,

Ts(ij,0p) = 3 > uvlon (i) (4.3
and, finally, transformed back to the MO basis
ws(if,ab) = Z CoaCppWs(ij,0p). (4.4)

U,p
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The evaluation of the contribution (4.1) to the second order amplitude w(ij,ab)
with the AO integrals requires O(n2, .n2; n? . ) operations for the two trans-
formations (eq.s (4.2) and (4.4)) and O(n2_.n},,;,) operations for the mul-
tiplication (4.3). Computation of the term (4.1) using the MO integrals
(abl|cd) requires first O(n},,;,) multiplications for the full transformation in-
stead of O(noccni,,;,) multiplication for the partial transformation and then
O(n?_.n?, ) operations for multiplying the amplitudes a(ij, ab) with the MO
integrals. The AO algorithm as it has been suggested by Pople and cowork-
ers [38] turns out to be very efficient when the number of virtual orbitals is
large compared to the number of occupied orbitals. This condition is ful-
filled in nearly all large scale calculations. In these calculations, the reduced
disk space requirements of the AQO algorithm are also of advantage and ex-
tend the applicability of the MPn methods significantly. All other terms,
which contribute either to the amplitudes w(ij,ab), w(i,a), w(ijk,abe), or
vg(1j,ab), are calculated directly using the MO-integrals (pg||rs) and first
order amplitudes a(ij, ab).

While in MP2 calculations the partial integral transformation is with
O(7pccni;,) operations the most expensive step, in MP3 and MP4(SDQ) cal-
culations the multiplication of the amplitudes a(ij, ab) with the two-electron
integrals requires O(n3..n%;.) and O(n? n%; ) operations, respectively. The
additional inclusion of triple excitations increases the CPU requirements of a
MP calculation further, since the evaluation of the triple amplitudes requires
O(n} . n?;,) multiplications. So far, symmetry is not used in the MP and QCI
programs. It can only be exploited prior to the MPn calculation, namely in
the AO integral evaluation, in the solution of the SCF problem [106], and in
the integral transformation [107], in order to reduce mass storage and CPU
requirements.

4.3 QCI calculations

The QCI method has been implemented in COLOGNE following the
outline given by Pople and coworkers [52]. Contrary to the original imple-
mentation by Pople and coworkers, the simple iterative scheme based on eq.s
(2.27), (2.28) together with a geometric extrapolation has been replaced by
the more efficient DIIS method [76]. While for single point energy calcula-
tions a convergence threshold of 10~5 for the amplitudes is sufficient, higher
accuracy is necessary in gradient calculations in order to get reliable results
for the forces. Qur experience shows that a convergence threshold of 1028 is
usually sufficient. However, due to the more stringent convergence threshold
gradient calculations usually require more iterations to reach convergence in
the QCI step than simple energy calculations. Therefore, methods to improve
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convergence such as the DIIS method [76,77] are important and save a lot
of computer time. The DIIS method is the optimal choice since it is ideally
suited to speed up convergence in the last part of an iterative calculation,
especially when high accuracy is required.

In most cases, the QCISD equations are solved up to the desired accu-
racy of 10~% within 10 to 15 iterations. Only, in notorious cases where the
single reference ansatz yields an insufficient description for the wave function,
more iteration, usually up to 20 or 30, are necessary to reach convergence.
However, this is not due to a failure of the QCI method itself, which has been
proven successful to describe these systems (i.e. ozone [84] and carbonyl ox-
ide [73]). It turns out that the slower convergence is more or less due to the
insufficient MP2 guess for the amplitudes a;‘}’ used in the first iteration. In
these cases MP?2 usually exaggerates the influence of correlation effects by a
large amount and leads to an insufficient description of the molecular wave

function.

Contrary to MPn calculations, it is more advantageous in QCI calcu-
lations to perform a full integral transformation and to calculate the term

(4.5)

(4.5)

N =

ab
wgl‘j =

z(abncd)aff,
od

using the transformed integrals (abllcd). The AO algorithm of Pople and
coworkers, which has been originally designed for MP3 calculations is more
expensive since it would require a large number of two-index transformation
with a total of Riteration O(N2.cnh,4i,) multiplications. The additional costs of
the AO algorithm scale with the number of iterations required for convergence
while the additional amount for the full integral transformation required for
the MO algorithm is independent of the number of iterations. Only, if disk
space is the bottleneck of a QCI calculation, the AO algorithm of Pople
and co-workers will be more advantageous due to its reduced disk space
requirements. Calculation of all other terms is carried out with the same
algorithm as for MP3 and MP4 calculations, except that some additional
terms have to be considered in the QCI approach [52].

As in MP3 and MP4(SDQ) calculations the most expensive steps in
one QCI iteration are several multiplications of the amplitudes a?}’ with the
two-electron integrals with O(n3,n3;.) and O(n2..n};,) operations respec-
tively. However, QCISD calculations are much more expensive than MP3
and MP4(SDQ) calculations since the computational costs scale with the
number of iterations. The non-iterative inclusion of triple excitations re-
quires O(n__n?%; ) multiplications, which is a modest amount of additional

"
&
&
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CPU time and can be routinely included in most cases. A thorough analysis
of the computational costs of the QCISD and CCSD methods has recently
been presented by Scuseria and Schaefer [53]. They showed that QCISD and
CCSD actually require the same amount of computer time. Also, these au-
thors suggested some improvements to the original QCI algorithm of Pople
and coworkers. A similar analysis including also MPn methods and explicitly
considering UHF reference functions has recently been carried out by Stan-
ton and coworkers [108], who presented also a new efficient implementation

of both the QCISD and CCSD method.

4.4 MPn Gradient Calculations

In principle, MP gradient calculations require the following additional
steps compared to a single point energy calculation :

a) calculation of the perturbation independent matrices Lyg,Mpq, and Np,
as well as of the two-particle density matrix Tyvop,

b) solution of the Z-vector equation within CPHF theory and the construc-
tion of the response density D, as well as the energy-weighted response
density matrix W,,,

c) evaluation of the one- and two-electron integral derivatives, which are
multiplied with the corresponding density matrix elements in order to
obtain the desired forces.

We will discuss the various steps now in some more detail.

Integral transformations required for MPn gradient calculations.
MPn gradient calculations require a larger subset of MO integrals than the
corresponding MPn energy calculation. In second order, the formula for
the gradients involves integrals of the type (ij||ka) and (ia||bc) in addition
to the integrals (ij||ab), which are sufficient to calculate the MP2 energy.
Third-order gradient calculations require in addition to the integrals (ij||kl),
(1j||lab), and (ial|jb) also those of the type (ij||ka) and (ial/bc). As in the
MP3 energy calculation all terms in the MP3 gradient expression, which in-
volve the integrals (ab||cd) can be evaluated with the AO procedure of Pople
and co-workers. Fourth-order gradient calculations require the full set of MO
integrals since the term involving triple amplitudes and the two-electron inte-
grals (abl|cd) can only be calculated efficiently in the MO basis. Only, when
the MP4 ansatz is restricted to single, double, and quadruple excitations,
MP4(SDQ), the full integral transformation might be avoided and these crit-
ical tems are evaluated in the same way as in third-order calculations.

- The solution of the Z-vector equation requires integrals of the type
(ijllad) and (ia||jb). In principle, all terms needed for solving the Z-vector
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equations might be computed using AO integrals (compare for example.the
AO-CPHF method [109,110]), but this offers in MPn gradient cz?lculatlons
no advantages. On the one hand, usually the MO integrals are available ar_ld,
on the other hand, the AQ-CPHF algorithm turns out to be more expensive
than the MO-CPHF approach.

Calculation of L,,, M,,, and N,,. The computation of.the L,,.q, M,,, and
N, matrices is straightforward with the formulas given in section 3.5 'a,nd
in appendix 2. In second- and third-order, these formulas are solely given
in terms of the MO integrals and the first (MP2) or first and second order
amplitudes (MP3), respectively. The formulas in fourth-order are more a%d—
vantageously written in a form which contains in addition to these quantlt.les
the third-order amplitudes v,(ij, ab), va(ij, ab), vi(ij, ab), and z(ij, ab), which
are actually required for the first time in MP5 energy evaluations. However,
calculation of these terms is straightforward. The array v4(ij, ab) is com-
puted in the same way as w(ij,ab) using only the second-order am}.).litudés
w(i4, ab) as input rather than the first-order amplitudes a(éj, ab). v,(ij,abd) is
evaluated in a similar way as the contributions of the singles to the array wj;
in QCI theory using only w(4,a) instead of a?. The computation of z(:j, ab)
follows the same line as that of v,(ij,ab), the only difference being that the
two-electron integrals (pg||rs) are substituted by the amplitudes a(ij, ab).

The treatment of the triples in fourth-order theory, i.e. the calculation
of v,(ij, ab), r(ijk, a), s(z, abc), but also the computation of the contributions
of the triples to Y1(7,7) and Y3(a,b),

t1(i,§) = % S Y d(ik, abe)d(jkl, abe), (4.6)

k0 a,bc

ta(a,b) = % >3 d(ijk, acd)d(ijk, bed), (4.7)

ik cd

poses much severe problems. In MP4 energy calculations, the contribution
due to triple excitations is evaluated using a direct algorithm, where the
amplitudes are never stored on disk [40]. This procedure ensures that the
full MP4 method can be applied without any restriction in large-scale calcu-
lations. The storage of the triple amplitudes would require about n3_n3;,
words of disk space and thus be a serious bottleneck in large scale calcula-
tions. For example, a calculation with about 60 basis function (e.g DZ+P
calculation on a molecule with three heavy atoms) would require about 10
to 50 Mwords, while a calculation with up to 100 and more basis functions

(e.g. a TZ+2P calculation on a molecule with three, four and more heavy
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atoms) would require several hundreds of Mwords of disk space and, thus,
§ they would be prohibitive even on the largest available super computer. In
§ addition, storage of the triple amplitudes if possible would increase the 1/0

significantly and, therefore, slow down the performance of a MP4 gradient
calculation by several orders of magnitude.

A direct algorithm for the calculation of the triple amplitudes and their
contribution to the gradients is more or less mandatory [63]. However, the
implementation of such an algorithm is more complicated than in MP4 en-
ergy calculations, since there are five different terms which contain the triples
either in a linear or quadratic way. The terms linear in the triple excita-
tion amplitudes, actually the arrays v(ij, abd), r(ijk,a), and s(1, abc), are
relatively easy to handle, since all corresponding contributions can be im-
mediately formed when the triple amplitudes are evaluated. More difficult
are the quadratic terms, t1(7,7) and t2(a,b), since two different amplitudes
d(2j k, abc) are required simultaneously in order to evaluate the corresponding
contribution. Fortunately, the required amplitudes differ only in one index,
either in one of the labels of the occupied or the virtual orbitals and a direct

- computation of the two t-terms is possible. In the original implementation
. of MP4(T) energy calculation of Pople and co-workers [40], all triple ampli-

tudes for fixed labels a, b, and ¢ are calculated and processed together. Hence,

computation of #;(i,7) causes no problems. To overcome the difficulties in
. calculating the second ¢-matrix, t3(a,b), where amplitudes differing in one
| virtual orbital index are multiplied, one recalculates the triple amplitudes in
i such a way that now all amplitudes with fixed labels ¢, j, and k [63] are ob-
. tained together. This recalculation of the triple amplitudes with a reversed
" loop structure ensures that a direct algorithm can be applied in full MP4
| gradient calculation. However, it increases the computational costs by the
'~ order of nd_ ni, operations. Nevertheless, the analytical procedure remains

to be more efficient than the corresponding finite differentiation scheme.

Calculation of the two-particle density matrix Tyvop. In all MPn
gradient calculations the two’particle density matrix Tyvep is first evaluated
in the MO basis using the MO integrals and the various amplitudes and, then,
transformed to the AO basis. The expensive transformation step requires
O(n},,:,) operations, but is independent of the number of perturbations. The
alternative choice to multiply the two-particle density matrix in the MO basis
with the integral derivatives includes a full transformation of the AQ integral
derivatives to the MO basis. It scales with the number of perturbations, is
more expensive, requires in addition the storage of integral derivatives on
disk, and, therefore, is not recommended.

MP3 and MP4 gradient calculations require for Tyvop afull transforma-
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tion from the MO to the AO basis and O(nj,,;,) multiplications. In MP2
gradient calculations, a partial transformation with O(noccn}f“is) operations
is sufficient, since the indices p,q (1,s) of Tpqr, run only over occupied (virtual)
orbitals.

The transformed two-particle density matrix T,,s, is stored on disk
for latter use in the integral derivative calculation to form the appropriate
contribution to the forces. In order to use a direct algorithm, which avoids
the storage of the integral derivatives on disk, it must be ensured that the
elements of Ty,,, are stored in the same (or at least a similar) order as
the integral derivatives are evaluated. The transformation step produces
an ordered list of T,,,, elements with u > v, ¢ > p and [uv] > [op)],
while the integral derivatives are calculated in batches where all integral with
indices belonging to the same shell combinations are computed together. In
small calculations, the whole T}, ,,-matrix can be kept in core memory and
no problem exists to pick up the required T,,,, elements. In large scale
calculations, the whole T}, ,,-matrix does no longer fit into core memory.
However, it is sufficient that only this part of the T}, ,,-matrix is kept in the
core which contains for the indices u of the first shell I all possible indices
v, g, and p. With at most 6 or 10 basis functions per shell (i.e, 6 d- or 10
f-functions) such a procedure requires approximately 6nj,,;,/2 or 10n},,;,/2
words of core memory, an amount, which on modern super computers is
available even in large scale calculations. In this case, no preprocessing of
the ordered list of Ty,,, clements is necessary. However, if there is not
enough core memory for this procedure, the only solution will be a sort of
the T},,4, elements prior to the integral derivative calculation. By using an
algorithm due to Yoshimine [111] this sort requires two additional reads and
writes of the T,,,, matrix. Since the sort of the T,,,, elements increases
the I/O requirements of a MPn gradient calculation, it should be avoided,
whenever possible.

Solution of the z-vector equations in CPHF theory. The z-vector
equations are solved using a procedure Pople and coworkers [18] originally
developed for the solution of the CPHF equations. The z-vector Z,; is ex-
panded in a set of orthonormal vectors which are obtained by multiplying
L,i/(ei — €4) n times with A,;/(¢i — €,) and then performing a Schmidt-
orthogonalization. The expansion coefficients are determined by solving a
small set of linear equations. The required accuracy of 10~2 for the z-vector
is usually achieved in 10 to 15 iterations. The converged z-vector is used to
construct the response density and energy weighted response density matrices
in the MO representation. Both matrices are transformed in the AO repre-
sentation which is needed for multiplication with the AO integral derivatives
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' to obtain the corresponding contributions to the energy gradients.

§ Evaluation of the integral derivatives. The contribution of integral
i derivatives to the forces are calculated using a direct algorithm. The one-
" electron integral derivatives h;}” and S ")y are multiplied with the total density
- and the total energy weighted matrix, respectively, while the two-electron
integral derivatives are multiplied with the corresponding elements of the

Tyv0p matrix and are used to build the two-electron contribution of the Fock-

matrix derivatives F,E;,\) Note that all contributions to the forces including
the HF contribution must be considered in order to get the total force. When
one-electron properties are evaluated, only the response density matrix D pv
is multiplied with the corresponding property integrals, provided the basis is
chosen to be independent of the corresponding perturbation.

The costs of an analytical evaluation of energy gradients at the various
levels of MP theory are independent of the number of perturbations. They
scale in a similar way with the number of occupied and virtual orbitals as
the energy calculations and usually a gradient calculation requires about 2-3
times the costs of the foregoing energy evaluation.

4.5 QCI Gradient Calculations

QCISD and QCISD(T) gradient calculations are carried out using the
same strategies as in the case of MPn gradient calculations. The only addi-
tional step is the solution of the z-vector equations within CPQCISD theory.

_Detailed formulas for the z-vector equations are given in appendix 2. How-
- ever, evaluation of most arrays needed is straightforward and can be carried
out with the same programs used for the solution of the QCI equations. The
~ arrays w(z]¢ and w[z];-‘}’ are calculated in the same way as w¢ and w,"jb, only
with the z-amplitudes z¢ and z;‘jb as input instead of the QCISD amplitudes
a? and a?jb. v[2]¢ and v[z]?}’ are closely related to the quadratic arrays v?
and v{}. Note that v¢ and vy} are quadratic arrays, while v[z]¢ and v[z]¢?
are actually linear with resf)ect to the z-amplitudes. Therefore, it is possilee
to precalculate and store some intermediate arrays in order to reduce the
computational requirements. The only new tcrm in the z-vector equation is

y[z]?}’ , but computation of this term causes no severe problems.

The z-vector equations within CPQCISD theory are solved in the same
way as the QCISD equations. Again, convergence is acceleratcd using a
DIIS procedure. As initial guess either the negative MP2 amplitudes or the
negative QCISD amplitudes might be used.

z,‘-‘(o) =0 or 220 = —ay (4.8)
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ab(o) ab

ab(®) = —a(ij,ab) or zlj = —aj.

Z”

(4.9)

Our experience shows that the latter choice is more advantageous and saves
usually a few iterations compared to the MP2 guess. When triple exc1tat10ns
are considered, the initial guess must be modified by subtracting ¢f and ¢ #ed i

respectively

220 = g8 _ (4.10)

6?/(61' - Ea)v

zab(o)

5 (4.11)

= —aj; ”“b/(6,+6]—5a—eb)
Since the z-vector equations are linear their solution usually requires less
operations than the solution of the corresponding QCISD equations. The
array a:“b which includes both QCISD and z-amplitudes is evaluated after the
solutlon of the z-vector equation using an algorithm similar to the evaluation
of v,] and y[z ]”

The calculation of the matrices Lyq, Mpq, Npg, and Tyuep, the solution of
the z-vector equation in CPHF theory and the integral derivative calculation
are carried out after the z-amplitudes have been determined, since in this
case both the QCISD amplitudes and the z-amplitudes are required.

As in MPn gradient calculations the costs of a QCISD gradient cal-
culation are very similar to those of the corresponding energy evaluatlon
Actually, since the equations for the z- amphtudes are only linear in 2J; b while
the original QCI equations are quadratic in a??, the ratio of the computa-
tional costs for energy and gradient calculations are for the QCISD method
usually more favorable than for MPn methods. Gradient calculations at the
QCISD level usually require about 1-2 times the expenses of a single QCISD
energy calculation thus proving the efficiency of analytical gradient methods
for this type of quantum chemical methods.

5. Calculation of Molecular Properties at MPn and QCI Using
Analytical Gradients

5.1 Response Densities and other One-Electron Properties

A one-electron property O of a molecule can be defined as the response
of the molecule to an external perturbation A\. The Hamiltonian H under
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‘ the impact of the perturbation has to be corrected by the term AO where O
“is the quantum mechanical operator which corresponds to the property O

(5.1)

The energy in the presence of the perturbation depends on A and, therefore,
it can be expanded for small X in a power series

H()\) = H(0) + 1O.

o d’E
EAN=EMX=0)+ /\d)\ Ia=0 + = /\ d—/\2—|>‘=o +... (5.2)
Applying the Hellmann-Feynman theorem leads to
dE A
— =0 = (¥]0[¥). (5.3)

Eq. (5.3) shows that the definition of an one-electron property O as a
response to an external perturbation requires the evaluation of an energy
derivative, namely the derivative of the energy with respect to the exter-
nal perturbation. The value obtained for O in this way will be identical to
the expectation value (¥|O|¥) of the corresponding operator O as long as
the Hellmann-Feynman theorem is satisfied. In cases where the Hellmann-
Feynman theorem does not hold, the energy derivative approach should be
the preferred way of calculating one-electron properties. In addition, the
energy derivative approach offers the possibility to calculate one-electron
properties even for methods for which a wave function is not defined and
expectation values cannot be evaluated.

The total electron density distribution p(rp) at a point r, is the response
of the molecule to a perturbation A that corresponds to the one-electron
operator é(rp — r), which is the Dirac delta operator.

di(;) nzo = (T[8(rp — £)]T) = p(rp).

(5.4)

When p(r) is expanded in terms of basis functions used to calculate energy
and wave function eq. (5.4) leads to

dE(A)

Ir=o = p(r) = ZDuuxu(rm(r) (5.5)

\

Where D defines the response density matrix according to eq. (3.61) in Sec-
tion 3. For a correlated wave function D can be decomposed into

D= DSCF + peerr (56)
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indicating that D contains a SCF and a correlation part. In the same way
p(rp) is expressed as a sum of the SCF density and a correlation correction

Ar)e* = p(x)*T + plr)oT (5.7)

Using eq. (3.60) it is easily shown that one-electron properties calculated as
energy derivatives are closely related to the response density. Provided that
the basis set chosen is independent of the perturbation A the corresponding
one-electron property is simply given as the product of the response density
matrix D with the corresponding property integrals.

dE(\)

O==0

Ix=o = Y _ Dy {x[Oxs)- (5.8)
nv

In the following p(r) and one-electron properties are investigated at var-
ious levels of theory using basis sets of valence DZ+P and valence TZ+-2P
quality [118]. As suitable test molecule carbon monosulfide, CS, has been
chosen since its electron density distribution is sensitive to correlation effects.
However, similar effects have been found for other molecules investigated re-
cently [93].

For CS, one may expect that C carries a small negative and S a small
positive charge in accordance with the fact that the electronegativity of C
is slightly larger than that of S (2.50 vs. 2.44 on the Allred-Rochow scale).
On the other hand, bonding in CS may be close to a triple bond since one
of the electron lone pairs of S can be shared between the two atoms thus
establishing a semipolar bond beside the two normal bonds.

Ccl = s

If this is true , C will carry a much larger negative charge and S a much
larger positive charge as it can be expected from comparision of the elec-
tronegativities. However, HF theory predicts relatively small partial charges
for C and S suggesting that there is no or only weak semipolar bonding.
As a consequence the calculated dipole moment of CS is just 1.77 Debye
(HF/MC-311G(2d)) while the experimental one is 1.98 Debye [112] (com-
pare with Table 1). Obviously, HF underestimates the extent of semipolar
bonding.

In Figure 1, p(r)®™(MP2) = p(r)"¢*(MP2) — p(r)"**(HF) of carbon
monsulfide, CS, calculated with a VTZ + 2P basis set is given in form of a
contour line diagram. Solid (dashed) contour lines are in regions of positive
(negative) response densities. Obviously, correlation corrections at the MP2

, charges, dipole moments, and quadrupole moments of

-311G(2d) Basis.®

Table 1. Energies, bond lengths

CS calculated with the MC

Charge  Dipole Quadrupole Moment
at S Qxx

Energy R(CS)

Method

QZZ

= Qyy

Moment
-1.773
-2.308
-2.111
-2.106

-20.33
-21.04
-20.75

-20.68

-18.64
-18.38
-18.45
-18.44
-18.44
-18.42
-18.45
-18.46
-18.45

188.3
273.4
253.2
249.5

1.5132
1.5413
1.5269
1.5295
1.5418
1.5646
1.5298
1.5421
1.5506

-435.341729
-435.758863
-435.767744
-435.767665
-435.775175
-435.797700
-435.768000
-435.775721
-435.793730

HF

MP2
MP3

MP4(DQ)

-20.72
-20.92

-2.063
-2.111

238.8
240.3
248.4
235.3

MP4(SDQ)

MP4(SDTQ)
CCD

-20.73

-2.086
-2.010
-2.028

-20.66

QCISD

-20.73

239.5

QCISD(T)

, charge in melectron, dipole moment in Debye,

¢ Energy in Hartree, bond length in A

quadrupole moment in Debye A.
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level lead to a transfer of n electronic charge from the sulfur to the carbon
latom. At the same time, o electronic charge is decreased at the C atom while
it is increased in the valence shell of the S atom, both in the bonding and
the lone pair region. Closer inspection of diagram 1 as well as an analysis
of the corresponding Mulliken population values reveals that the transfer of
iw-charge from S to C depopulates the valence region of S. However in the
1 2p7 core region of S, there is a build up of m-charge which envelopes another
'region of charge decrease. Thus, a complex pattern of alternating charge
decrease and increase from valence to inner core region of S and from left to

right along the CS bond axis results (Figure 1).

From inspection of Figure 1 and analysis of the response density contri-
butions to the orbital populations it becomes clear that left-right correlation
of pr electrons is the most important correction of the HF electron distri-
bution at the MP2 level of theory. They lead to an increase (decrease) of
the negative (positive) charge at C (S). Less important but substantial are
 angular and in-out correlation.

\ The same features of p(r)"** are found at the MP3, MP4(SDQ), MP4(SD
' TQ), CCD, QCISD, and QCISD(T) level. Qualitatively, there are no differ-
ences in the corresponding response densities which means that MP2 already
includes the most important correlation corrections. In order to analyze the
different correlation effects covered by the various methods difference re-
sponse density plots have to be investigated.

In Figure 2, the difference density Ap(MP3) = p"**(MP3)—p"**(MP2) =
L p°""(MP3) — p""(MP2) is shown. It reveals that MP3 correlation correc-
tions reduce MP2 effects, i.e. the MP2 response density is slightly changed
tback in the direction of the HF electron density distribution. Changes com-
iprise a 7 electron transfer from C to S, transfer of o electrons from outer
'valence functions to inner valence functions at C and vice versa at S, a trans-
fer of o electronic charge from S to C and depopulation (population) of the
 lone-pair region at S (C). These changes lead to a decrease of the CS bond

5

\ \\ e /

Y
@D JA

~
\
A

Figure 2. Contour line diagram of the difference elec-
tron density distribution Ap(r)™*(M P3) = p(r)"™**(M
basis. Solid (dashed) contour lines are in regions of

P3)—p(r)"**(M P2) of CS calculated with the 6-311G(2

d)
positive (negative) difference densities. The positions

of the C and the S nucleus are indicated.

,}‘
* polarity and decreased atomic charges relative to MP2. (Table 1)

Clearly, at MP3 the correlation effects of the double excitations are re-

duced relative to those calculated at the MP2 level. As has been outlined
before this is due to the fact that at MP3 couplings between double excita-
tions are introduced and, therefore, correlation between two electrons is no
longer independent of the correlation between other electron pairs. At MP2
~only interactions of the double excitations with the ground state wave func-
.tion are considered and, as a consequence, correlation between two electrons
iis exaggerated.

In Figure 3, the calculated difference response density Ap(MP4(SDQ)) =

p(r)°"" (M P2) of CS calculated with

the 6-311G(2d) basis. Solid (dashed) contour lines are

Figure 1. Contour line diagram of the difference elec-
tron density distribution Ap(r) (M P2) = p(r)"**(M
in regions of positive (negative) difference densities.

The positions of the C and the S nucleus are indicated.

P2) - p(r)HF
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p"*(MP4(SDQ)) — p"**(MP3) of CS is given. Its general features are similar
to those of the MP2 response density, which means that MP4(SDQ) correla-
tion corrections are in the same direction than MP2 correlation corrections.
As a consequence, correlation corrections to charges, dipole moment, and
other molecular properties are larger than those calculated at the MP3 level
of theory. Apart from this, there are significant differences in the charge
distribution at the MP4(SDQ) level. Both bonding and lone pair regions are
depopulated relative to the MP3 charge distribution. Charge concentrates
in the C 2p7 and S 2p7 and 3p~ region in such a way that electron repulsion
is minimized (see Figure 3).

The charge distribution at the MP4(SDQ) level is even better under-
stood when comparing it with the MP2 charge distribution with the help of
the difference response density p"**(MP4(SDQ)) — p"**(MP2) shown in Fig-
ure 4. There, one sees that at MP4(SDQ) the charge transfer to the C 2pw
orbitals is smaller than at MP2. Hence, the pattern of changes is similar to
that obtained at the MP3 level. Obviously, corrections due to single, double,
and quadruple excitations at the MP4 level are between those obtained at

the MP2 and the MP3 level.

Figure 5 gives the changes in the response density distribution that are
due to triple excitations at the MP4 level of theory. They are in the same
direction than those obtained from S, D, and Q excitations, i.e. they increase
the charge transfer from the S to the C atom. A detailed analysis of calculated
charges and dipole moments shows that the changes due to triples are larger
than those of the S, D, and Q excitations at the MP4 level thus proving the
importance of T excitations for multiple bonded systems.

Figure 4. Contour line diagram of the difference elec-
tron density distribution p(r)™**(M P4(SDQ))—p(r)™**

(MP2) of CS calculated with the 6-311G(2d) basis.
(negative) difference densities. The positions of the C

Solid (dashed) contour lines are in regions of positive
and the S nucleus are indicated.

The MP4 level is as far as we can go in MP perturbation theory. The
results obtained clearly indicate that still considerable changes have to be
expected for MP5, possibly correcting the MP4 response density back into
the direction of the MP3 response density. This prediction is partially con-
firmed by the response density obtained at the QCISD and QCISD(T) level
of theory. QCI is correct to fourth order perturbation theory in the space of
the S, D, and Q excitations while QCISD(T) is correct to fourth order in the
complete space of S, D, T, and Q excitations. Apart from that both methods
contain important terms that first appear at MP5 [55]. Hence, they should
indicate whether correlation effects are overestimated at MP4.

Figure 6 gives the difference response density Ap(QCISD) = p"**(QCISD)
~p"**(MP4(SDQ)). It indicates that the MP4(SDQ) response density is pri-
marily corrected by a transfer of 7 electrons from C to S. As a consequence,
the QCISD atomic charge of S is less positive, the bond polarity and, thereby,
the CS dipole moment smaller than that obtained at the MP4(SDQ) level.

tron density distribution Ap(r)™*(MP4(SDQ)) = p(r)

Figure 3. Contour line diagram of the difference elec-
"¢ (MP4(SDQ))—p(r) ¢*(M P3) of CS calculated with
the 6-311G(2d) basis. Solid (dashed) contour lines are
in regions of positive (negative) difference densities.
The positions of the C and the S nucleus are indicated.




Figure 6. Contour line diagram of the difference elec-
tron density distribution Ap(r)™*(QCISD) = p(r)™*

Figure 5. Contour line diagram of the difference elec-
tron density distribution Ap(r) (M P4(SDQT))

p(r)™* (M P4(SDQT)) — p(r)**(MP4(SDQ)) of CS
calculated with the 6-311G(2d) basis. Solid (dashed)
contour lines are in regions of positive (negative) dif-

(QCISD))—p(r)"*(M P4(SDQ)) of CS calculated with

the 6-311G(2d) basis. Solid {dashed) contour lines are

in regions of positive (negative) difference densities.
The positions of the C and the S nucleus are indicated.

The positions of the C and the S

wucleus are indicated.

ference densities.
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| The difference response density shown in Figure 6 is similar to that obtained
t for MP3 (Figure 2) and, therefore, it is reasonable to conclude that the cou-
| pling of S, D, and Q excitations at MP5 as well as the infinite order effects
. contained in QCISD lead to a correction of MP4(SDQ) back in the direction

- of MP3. The same conclusion is also true for the response density calculated

at the QCISD(T) level as can be seen from the difference response density

| Ap(QCISD(T)) = p"**(QCISD(T)) — p"**(MP4(SDTQ)) shown in Figure 7.

As a matter of fact the contour line diagrams in Figures 6 and 7 are very
similar.

Nevertheless, the T corrections both at MP4 and at QCI are in the same
direction which is reflected by the difference response density Ap(QCISD(T))
= p"**(QCISD(T)) — p"**(QCISD) given in Figure 8. They lead to transfer
of m charge from S to C thus increasing gross atomic charges, bond polarity
and dipole moment. Obviously, T effects are exaggerated at the MP4 level
(compare Figure 7). A better account of T effects is given at QCISD(T).

The changes in the response density distribution of CS are parallel to
calculated changes in atomic charges, dipole moment, quadrupole moment,
and other one-electron properties, some of which are listed in Table 1. Figure
9 and 10 depict changes in atomic charge, dipole moment, and components

| of the quadrupole moment in dependence of the method. The multipole
moments of CS oscillate in dependence of the order of perturbation theory

applied where HF and MP2 results often represent upper and lower bound

I of computed values. Oscillations in calculated properties are observed in
many cases [93]. Figure 11 gives as another example computed values of the

CO dipole moment obtained at different levels of theory for a VDZ+P and
a VTZ42P basis set. Figure 11 also indicates that oscillations are largely

+ independent of the basis set used.

Comparison of Figure 9, 10 and 11 leads to the following conclusions:

(1) The largest part of the correlation corrections to response properties is
recovered at the MP2 level, but higher order effects are still considerable
and cannot be neglected if accurate one-electron properties are needed.

(2) Correlation corrections due to D excitations are exaggerated at the MP2
level. They are reduced at the MP3 level where couplings between D
excitations are first introduced.

(3) Single excitations lead only to relatively small changes in calculated re-
sponse properties. This is opposite to the importance of S excitations
when calculating one-electron properties as expectation values at the CI
level [113]. There, S excitations are important to account for orbital re-
laxation effects which are covered within the energy derivative approach
by solving the CPHF equations or the corresponding z-vector equation.
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(4) The influence of T excitations at MP4 is relatively large, at least for
molecules with multiple bonds. However, comparison with QCISD(T)
suggests that T effects are somewhat exaggerated at the MP4 level. This
may also be true for S and Q effects at MP4 since couplings between
these excitations are not considered at this level of theory.

(5) It is most likely that MP5, which introduces couplings between SDTQ
excitations corrects MP4 values back in the direction of the MP3 result.
On the other hand, MP6, which introduces P and H excitations may
lead to response properties closer to MP4 than MP3 values. In other
words, oscillations of response propcrty values may only slowly damp
out at the MPn level.

(6) Calculated response property values from CC and QCI methods that
contain infinite order effects seem to converge to a limiting value rather
than to oscillate in dependence of the excitation effects included. At
least, this is suggested by the calculated CCD, QCISD, and QCISD(T)
results. In any case the changes in the CC and QCI values are much
smaller than those observed for the MPn results.

It is clear that changes in the response property that lead to an increase
or decrease of the atomic charges (bond polarity) will also lead to similar
changes in dipole moment and higher multipole moments. However, similar
oscillations in the calculated values are also obtained for other properties
such as for example nuclear quadrupole moments [114]. Figure 12 gives
calculated values of the 1*N nuclear quadrupole moment @ of HCN. Actually,
Q(**N) is largely independent of the molecular structure. Experimental and
theoretical investigations have led to Q(**N) values of 19.3 £ 0.8 {115] and
20.5+0.5 mbarn [116], respectively. Theoretically, Q(**N) is derived from
the computed electric field gradient ¢ and the experimentally known nuclear
quadrupole coupling constant x according to

Q = 4.256x/q (5.9)

with x given in MHz and q in atomic units both determined for a particular
molecule. Since the component of the nuclear quadrupole coupling constant
of HCN along the molecular axis is accurately known (xso = -4.7091(13)
MHz) [117], calculated values of Q(**N) reflect the accuracy of computed
electric field gradients g,,.

The diagram in Figure 12 indicates that correlation corrections for Q(**N)
calculated with a basis set of TZ+2P quality are substantial increasing the
HF value by 3 to 5 mbarn. Again, the MP2 and (less strongly) the MP4
value are too large while the MP3 value is too small compared to the ac-
cepted Q(1*N) value. Hence, MPn results oscillate between Q(**N) values
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obtained at the HF and MP2 level. CC and QCI values of Q(**N) quickly
converge to the correct value of 20.5 mbarn (see Figure 12). Both at the MP
and at the CC (QCI) level, the inclusion of T excitations has a substantial
effect on the Q(**N) value.

The same trends have been found for electric field gradients and N
nuclear quadrupole moments of other molecules. In all cases investigated,
correlation corrections are almost independent of the basis set used (compare
with Figure 12).

In conclusion we stress the following points:

(1) Calculated MPn, CC, and QCI one-electron properties follow calcu-
lated changes in response densities due to correlation corrections. These
changes are almost independent of the basis set used provided the basis
is sufficiently large (at least DZ+P quality).

(2) At the MPn level of theory correlation corrections to response properties
oscillate where in most cases the maximal values of the oscillation are
given by HF and MP2. Oscillations clearly depend on the fact that at
even orders of perturbation theory new types of correlation effects are
included (D at MP2, STQ at MP4, etc.) while at odd orders these effects
are reduced by introducing couplings between excitations included at the
previous order (coupling between D excitations at MP3, between STQ
excitations at MP5, etc.).

(3) Analysis of calculated response properties suggests that oscillations per-
sist at MP5 and probably also at higher orders of MP theory. Conver-
gence to a limiting MPn value seems to be much slower as one generally
tends to believe. In many cases, MP4 is not sufficient to obtain an
accurate value of the response property in question.

(4) CC and QCI values of response properties seem to converge very fast to a
limiting value which in most cases is already reached when T excitations
are included. This is due to the fact that CC and QCI methods contain
infinite order effects that prevent overestimation (underestimation) of a
particular correlation effect. Hence, CC and QCI methods are clearly
superior to MP methods. If high accuracy is needed, QCISD(T) or CC
methods including triple corrections such as CCSD(T) or even CCSDT
will definitely be the methods of choice.

In the following we will investigate whether similar trends can be observed
for other molecular properties calculated at either MP, CC or QCI.

5.2 Equilibrium Geometries

In Figure 13 calculated and experimental 1, geometries (compare with
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Tables 2 and 3) of FH (Figure 13a), H,O (Figure 13b and c), NH3 (Fig-
ure 13d and e) and CHy4 (Figure 13f) are shown. Theoretical values have
been obtained with three different basis sets, 6-31G(d), 6-311++G(d,p) and
(9s5p2d/5s2p)[5s3p2d/3s2p], which are of VDZ+(P), VIZ+P+diff, and VTZ
+2P quality [118]. The diffuse basis functions added to the second basis are
used to describe the distribution of the lone pair electrons at F, O, and N
more accurately. Calculations have been carried out at the HF, MP2, MP3,
and MP4 level of theory, where in the later case only SDQ excitations have
been considered since T excitations are known to be of minor importance for
molecules with just single bonds [119].

For all AH, molecules investigated, similar trends in calculated equi-
librium geometries are found. Trends in calculated AH bond lengths are
opposite to trends in calculated HAH bond angles, i.e. a large bond length
implies a small HAH bond angle and vice versa. As in the case of the re-
sponse properties discussed in the previous section, correlation corrections to
the calculated geometrical parameters depend only slightly on the basis set

used.

Typical of all calculations is that HF underestimates the AH bond length 4 “
by 0.01 - 0.02 A. Two observations can be made in this connection. (a)
Compared to the experimental value the HF value of r.(AH) is the smaller,
the larger the difference in the electronegativities between A and H and,
hence, the AH bond polarity is. (b) With increasing size of the basis set the
HF value decreases thus increasing the difference between experimental and
theoretical r, value.

MP2 leads to an increase of the AH bond length by 0.01-0.02 A. In
this way VIZ+P+diff or VTZ+42P values come close to the experimental re
value while VDZ+P values become clearly too large. MP3 on the other hand
reduces the value of the AH bond length back in the direction of the HF
value. However, the reduction of r.{AH) is much smaller than the increase
calculated at the MP2 level. Also, the reduction of the AH bond length
becomes the smaller the smaller the AH bond polarity and the smaller the
basis set is. The MP3/6-31G(d) result for NH3 and all the MP3 results for
CH,4 already lead to a slight increase of the AH bond length.

At MP4(SDQ), again an increase of the calculated AH bond length is
obtained. Since this increase is almost as large as the relative changes ob-
tained at the MP3 level, MP4(SDQ) values are close to MP2 ones (excep-
tions: CHg4 and MP4(SDQ)/6-31G(d) result for NH;3). As a consequence,
most MP4(SDQ) bond lengths obtained with the two VTZ basis sets agree

with the experimental r. values.
It would be difficult to distinguish between the quality of MP2 and

Table 2. Calculated equilibrium geometries, dipole moments, harmonic vibrational fre

exp.
0.917¢
1.819°
4139¢
99.8¢
0.958¢
104.5¢
1.8557
3943¢
3832¢
1649¢
44.69
2.29
53.69

MP4(SDQ)
0.916
1.853
4181
93.9
0.956
104.5
1.971
3980
3876
1680
38.1
4.2
74.9

MP3
TZ2P
1.862
4229
100.5
0.954
104.7
1.977
4018
3921
1686
42.8
5.5
77.7

quencies, and infrared in-
0.914

, angles in deg, dipole moments (4) in Debye,

MP2
0.919
1.860
4153
102.9
0.958
104.2
1.984
3980
3861
1657
49.8
5.9
74.7

0.899
1.934
4471
149.5
0.941
106.1
2.020
4228
4128
1760
68.6
14.3
98.7

HF

1971).

MP4(SDQ)

6-3114++G(d,p)
1.954

0.915
4219
1244
0.958
103.7
2.164
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MP4(SDQ) results on the one side and between 6-311++G(d,p) and TZ+2P
results on the other side if just the bond lengths of AH; molecules would
be considered. However, comparison of the calculated HAH angles with
experimental values clearly reveals that the best results are obtained at the
MP4(SDQ) level using the TZ+2P basis set. For a reliable description of
bond angles a second set of polarization function seems to be more important
than diffuse functions. This is also true in the case of the CH bond length
of CH4 where the VI'Z+42P values are slightly better than the VIZ+P+diff
values.

The relative changes of the calculated geometrical parameters can easily
be understood when considering the extent of electron correlation included
at the different levels of theory. For example, at the HF level only exchange
correlation is considered. Accordingly, electrons can concentrate around the
nuclei and in the bonding region thus increasing electron-nucleus attraction
and, thereby, the stability of the molecule. In the case of an AH, molecule
with a strongly electronegative atom A electrons accumulate in the nuclear
region of A. As a consequence, nucleus A is largely shielded by the sur-
rounding negative charge, nuclear repulsion between A and the H atom(s)
1s decreased, and a relatively short internuclear AH distance results. This
effect is the more pronounced the larger the electronegativity of A is and
the more negative charge can be concentrated in the nuclear region. Also,
concentration of electronic charge is limited by the number of basis functions
describing the region around the nuclei. Accordingly, the underestimation of
the re value of polar AH bonds depends on the bond polarity and the basis
set employed.

If electron correlation is considered, negative charge is no longer concen-
trated around the nuclei and in the bonding region. These areas are depleted
relative to the HF electron distribution. As a consequence, the nuclei are par-
tially deshielded, nuclear repulsion is increased, and longer AH bond lengths
result. Of course, the extent of depletion of electronic charge and the increase
of nuclear repulsion depend on how many correlation effects are included in
the calculation. Electron pair correlation dominates these effects and, there-
fore, MP2 leads to the strongest corrections. Coupling of pair correlations at
MP3 reduces MP2 corrections. MP4(SDQ) brings in new correlation effects
due to S, D, and Q excitations thus increasing correlation corrections back
to the MP2 values.

Obviously, trends in geometrical parameters are similar to those ob-
served for multipole moments and other one-electron properties. This is not
astonishing since the equilibrium geometry is defined by vanishing forces on
the nuclei. These, on the other hand, are response properties which depend

(
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' on the changes in the response density. However, since the basis set depends
' on the position of the nuclei, additional terms have to be considered when

calculating forces (compare e.g. eq. (3.60)).

Explanation of the trends in calculated bond lengths can easily be ex-
tended to those obtained for computed bond angles. In Figure 14, theoretical
values of the HOH bond angle are plotted against the corresponding values
of the OH bond length. There is a linear relationship between the two geo-
metrical parameters in the way that the larger bond length implies a smaller

| bond angle. A similar relationship can also be found for NH3 and other AH,

molecules. According to the electrostatic model of charge distribution used
to explain trends in calculated bond lengths, accumulation of charge in the
nuclear region of A is accompanied by a short bond length. It also leads to a

- relatively large positive charges at the H atoms. As a consequence, Coulomb

repulsion between the H atoms becomes large thus forcing the HAH angle
to widen. Accordingly, a short AH bond length implies a large HAH bond
angle and vice versa.

The same explanations can be used to discuss trends in calculated geo-
metrical parameters of two-heavy atoms. Figure 15 gives results for acetylene,
C2H,, Figure 16 for formaldehyde, CH;O, Figure 17 for hydrogen cyanide,
HCN, Figure 18 for hydrogen peroxide, H,O2, and Figure 19 for F;. In all
these cases, bond lengths AH and AB as well as bond angles ABH show the
same dependence on method and basis set as the geometrical parameters of
molecules AH, do. Apart from this, the following additional observations
can be made:

(1) Changes due to the inclusion of correlation effects are now much stronger,
namely up to 0.08 Afor bonds OO and FF, up to 0.03 Afor the OH bond
in H,Q3, and 3 — 4° for the angle OOH. This can be explained by con-
sidering the fact that now two heavy atoms rather than one concentrate
negative charge around their nuclei thus leading to a relative strong
change in nuclear repulsion between them.

(2) Geometrical parameters such as dihedral angles depend strongly on the
basis set but not so much on the method used (Figure 18d). In the case
of Hy0;, a basis set such as 6-31G(d) which leads to more positively
charged H atoms, predicts a larger dihedral angle while a more balanced
charge distribution obtained with the TZ+2P basis predicts a smaller
dihedral angle. On the other hand, changes in the distribution of elec-
tronic charge due to correlation effects seem to be too small to strongly
affect H,H interactions that are more than 2 bonds apart.

(3) Equilibrium geometries depicted in Figures 15 to 17 clearly indicate the
superiority of the MP4(SDQ) method compared to MP3 or MP2. Also,
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Figure 16. Dependence of calculated equilibrium geometries on method and
basis set. Formaldehyde, CH;0: (a) CO bond length. (b) CH bond length.
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results underline the necessity of using a TZ+2P basis set to obtain accu-
rate geometrical parameters. Previous investigations that have stressed
the accuracy of MP3 or MP2 results [120] are misleading since they were
due to a fortuitous cancellation of basis set and correlation errors. Of
course, an even higher accuracy of calculated geometrical parameters is
obtained by applying higher orders of MP perturbation theory or using
CC or QCI methods.

For HCN (Figure 17), results obtained with methods that account for T
effects, namely MP4(SDTQ) and QCISD(T), are also shown. It is well-known
that T effects are important in the case of multiple bonds [119] and, therefore,
one would expect an improvement of calculated geometries when going from
MP4(SDQ) to MP4(SDTQ) or from QCISD to QCISD(T). Surprisingly, this
is not the case. The CN bond length is predicted too long when T excitations
are included. Omne could interpret this result as reflecting deficiencies of
the TZ+2P basis set used. On the other hand, it has been found that T
effects are significantly overestimated at the MP4(SDTQ) level of theory
[93]. Furthermore, a detailed analysis of QCI in terms of perturbation theory
reveals that the same is true to some extent with regard to QCISD(T) results
[121]. The calculated values for the CN bond length reflect this as do the
results shown in Figures 9 (charge and dipole moment of CS) and 11 (dipole
moment of CO). Therefore, precautions have to be taken when accounting
for T effects. A more balanced assessment of T effects is obtained at the

CCSD(T), QCISD(TQ), CCSD(TQ) or CCSDT level of theory [121].

In Figure 20, the computed LiH bond length in dependence of method
and basis set is shown as an example of a geometrical parameter that follows
not the usual trends discussed above. The 6-31G(d) values of r(LiH) increase
from HF to MP4(SDQ) while the 6-311++G(d,p) values decrease in the same
direction. The LiH bond possesses partial ionic character according to the
charge distribution LitTH~. At the HF/6-3114++G(d,p) level of theory the
ionicity of the LiH bond is exaggerated leading to a rather long bond distance
of 1.61 A(see Figure 20). At the MP level covalent biradical structures Li-H-
are mixed into the ground state wave function thus leading to a shorter
bond length close to the experimental value (Figure 20). Clearly, the 6-
31G(d) basis set is not sufficient to describe these changes correctly. This
basis assigns 15 basis functions to Li and just 2 to H even though both atoms
possess the same number of electrons (2) in an ionic structure, and, therefore,
leads to an unbalanced description of the electron density distribution.

In summary all trends in calculated equilibrium geometries can be easily
understood on the basis of changes in the response densities and on the
basis of simple electrostatic models. As with other response properties, at
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Figure 20. Dependence of calculated equilibrium geometries on method and
basis set. LiH bond length.

4600
4500

‘ F-H
4400 6-311++G(d,p)

4300 9

4200

TZ + 2P

4100 - exp. hlarm. frequency:
€6-31G(d) 4138 cm-1

4000 4

3 exp. frequency:
1

3900 4 3962 cm-1

harm. FH frequency [cm-1]

3800 T Y Y - l
HF MP2 MP3 MP4(SDQ)

Method

Figure 21. Dependence of calculated harmonic frequencies on method and
basis set. FH stretching frequency.

Analytical Energy Gradients 279

least MP4(SDQ) and a TZ+P basis set is required to calculate accurate
geometrical parameters.

5.3 Vibrational Spectra

In Figures 21, 22, 23, and 24 calculated harmonic frequencies w of FH,
H,O, NH3, and CH4 are compared with experimental ones. Clearly, the
theoretical w values reflect a strong dependence on the computed equilibrium
geometries.

(1) A short (long) bond length implies a large (small) value for the corre-
sponding stretching frequency(ies) (compare Figures 13a and 21, 13b,
22a, and 22b, 13d and 23a, 13f and 24a).

(2) A large (small) bond angle, which can be considered to be the result
of a short (large) bond length, implies a large (small) value of the cor-
responding bending frequency(ies) (compare Figures 13c and 22c¢, 13e,
23b, and 23c).

The harmonic frequency is proportional to the curvature of the potential
surface at the equilibrium geometry in the direction of the corresponding
internal coordinate. Therefore, on first sight it may be surprising that calcu-
lated frequencies directly depend on the theoretical values of the geometrical
parameters. However, the potential surface in the direction of a bond dis-
tance AB (AH) becomes steeper if the AB (AH) distance is shortened and,
hence, the corresponding bond strengthened. Accordingly, the stretching fre-
quencies increase with a shortening of the bond. Widening of an angle ABC
(HAH), on the other hand, indicates that there is increased electrostatic re-
pulsion between A and C (or the H atoms) which makes the angle stiffer and,
thereby, increases the bending frequency.

Figures 21 - 24 also show that MP4(SDQ)/TZ+2P is not sufficient to
get accurate harmonic frequencies. In most cases calculated values are still
too large. Obviously, higher order correlation effects have to be included to
improve the accuracy of calculated values.

Finally, in Figure 25 theoretical and experimental IR intensities of the
three vibrational modes of H20O are compared. Since, there are not so many
accurately determined IR intensities available from experiment the discussion
is limited here to one example. This example, however, shows that agreement
of calculated data with experimental values is even poorer as in the case of
the harmonic frequencies. HF intensities are too large by up to 50 km/mol
and more. Stepwise inclusion of correlation effects leads to a continuous
decrease of intensities. Similar trends are also observed for other molecules.
However, dependence on method and basis set may change more strongly
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Figure 23. Dependence of calculated harmonic frequencies on method and
basis set. NHj : (b) asymmetric HNH bending frequency. (c) symmetric
HNH bending frequency.

Figure 24. Dependence of calculated harmonic frequencies on method and
basis set. CHy : (a) asymmetric and symmetric CH stretching frequency. (b)
asymmetric and symmetric HCH bending frequency.
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than observed for geometrical parameters and vibrational frequencies. In
any case, it seems that diffuse basis functions are probably more important
than a second set of polarization functions (see Figure 25).

IR intensities are derived from dipole moment derivatives with regard
to Cartesian coordinates. Assuming that dipole moment derivatives change
similarly as dipole moments with method and basis set, HF and MP in-
tensities can be discussed. At the HF level, the OH bond polarity and,
thereby, the molecular dipole moment are exaggerated, obviously causing
also enlarged IR intensities (Figure 25). Correlation effects reduce bond
polarities and molecular dipole moment. The same is reflected by the com-
puted IR intensities. In the case of H20, the best values are obtained at the
MP4(SDQ)/6-311++G(d,p) level of theory. However, this may change from
molecule to molecule as is shown by Figure 26 which compares calculated
and experimental intensities for CHy. Clearly, for harmonic frequencies and
IR intensities it is much more difficult to predict trends in calculated ab initio
data from response densities.

6. Concluding Remarks

Analytical energy gradients have opened a new avenue for the routine
calculation of many molecular properties. They are particularly important
for correlation corrected ab initio methods since they provide the basis for
an understanding of the influence of correlation effects on calculated one-
electron properties, geometries, vibrational spectra, etc.. In this article we
have sketched the development of the theory of analytical gradients where we
have put special emphasis on single-determinant ab initio methods. On first
sight it may look as a demanding and tedious enterprise to develop for each
method analytical derivatives of the molecular energy. However, as we have
shown in this article, there are many similarities and relationships between
the analytical derivatives for the various methods that can be used to reach a
unified theory of analytical derivatives. Further developments in the area of
analytical derivatives can be expected and are needed. One can predict that
an important criterion of ab initio methods to be developed in the future
will be the availability and the economy of analytical gradient calculations
for the method in question.
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Appendix 1
The B and C terms in the CPQCISD equations are given by [72] :

B?(,\)= 6;;1, b 681] a+ZZ ]asz ,,.
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The final z-vector equations within QCISD theory are given by

(ea — €i)z! + w[z]{ +v[z]f =0 (ALT)

and
e5)28 +wl2lff + v[2]3 + yl2ls

(€a +ep—ei - = (17 ||ab),

that means ““by a form which is very similar to the original QCISD equations.
The arrays w{z]¢ and w[z] are very sxmllar to the arrays wf and w{}. The

(AL8)

only dlfference is that Whlle w{ and wj; are calculated using the amphtudes

']
ab

a? and a 4

b the arrays w[2]? and w[z]?? are evaluated using the z-amplitudes

“a,ndz
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+ (kallJC)Zuc + (kbllw)zkj (kallic)z{5}.

The array v[z]? is obtained from v¢ by substltutmg the two-electron integrals
by the double excitation amphtudes a,], the double excitation amplitudes
by the two-electron integrals (¢j]lab) and by replacing the single excitation
amplitudes a? by 2¢
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${22(jk]||ca) + 2 (zkl[cb)—+—2z (tk||ac)}. (Al1.11)
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The array v([2]?] is derived in a similar way from the quadratic array CH
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The only new term in the z-vector equatlons in comparision with the original
QCISD equation is the array y[z ] which is defined as

yl2)? = 3> ai{(ijllca)zt + (ijllbe)zk + (kjllba)zf + (ik|lbe)z;
k c

+ (kjllcb)z! + (kj|lac)z? + (ik||cb)zj + (ik”ac)z?}.
(A1.13)

There is no corresponding term to y[z]‘:}’ in the QCISD equations. This
is because the excitations T1T2 are only included in the equations for the
singles, but not considered in the equations for the doubles.

Appendix 2

Here, formulas for the arrays X, X3, ... ,Xs, Y1, and Y3 are given.

MP2: XMF?(ijab) = %a(ij,ab)

YMP(i5) = —% > a(ik, ab)a(jk, ab)
k

a,b
1
Mp2, o\ _ 1 .. .
Y, "o (ab) = 5 Z,: Ec:a(w,aC)a(lJ»bC)
MP3: XMP3(ij ab) = ld(ij,ab)

XMP3(45kl) = = Za(ij,ab)a(kl ab)
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Yj

YMP3(45) = —% > ") {a(ik, ab)d(jk, ab) + d(ik, ab)a(jk, ab)}

k ab

X317 (iajb) =

Y P3(ab) = % Z Z{a(ij, ac)d(ij, be) + d(ig, ac)a(ij, be)}
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MP4 : XMP4(i5 ab) = l{e(ij,ab) + z(ij,ab)}
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XQCISD kD) = Z{Z:;]bazl; + zklalll]b
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CISD ac a
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i

CcISD(T . 1.
QCISD(T) : X 22T (55 ab) = X215 (j5ab) + Sust
x7IPD (k1) = X2CISP (i k1)
X;QCISD(T)(Z.ajb) = XQCTSD (4
XfCISD(T)(abcd) = X‘?CISD(abcd)
XQCISD(T)(- ka) _ XSQCISD(ijka) + 27'?_,‘];
XQCISD(T)( abe) = X2CT5D(jqhc) 4 2s0be
YIQCISD(T)(Z ) = YQCISD( i7)
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k20 a,b,c

CISD

Y2150 (ab)

Z Y AdiE e+ i)+ disi (s + 5D

1,7,k ¢,d

YQCISD(T)( b) =

All formulas are given here in such a way that symmetries between the four
indices p, ¢, 7, and s of the corresponding integral derivative can be used. For

example, in the case of the integral (ij||ab) the following symmetry relations
hold

(ijllab) = —(jillab) = —(ijllba) = (jil|ba)
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and in the same way

Xi(ijab) = —X1(jiab) = — X1 (ijba) = X1(jiba).
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