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ABSTRACT

The discussion focuses on the systematic exploration and characterization
of molecular potential energy surfaces. The emphasis is two-fold: (i) presen-
tation of the theoretical methodology which has been developed to charac-
terize complex multi-dimensional energy functions and (ii) extraction of
simple, useful, yet theoretically sound chemical concepts from the formal
mathematical analysis. First, location and characterization of critical points
on potential surfaces are discussed: minima correspond to the equilibrium
structures of reactants and products while saddle points correspond to
transition structures connecting the reactants and products. Next, the reaction
path connecting the critical points is discussed. The insrinsic reaction path
(IRC) is the classical path that the molecular system would follow if the
excess kinetic energy were continually dissipated; the IRC forms the basis
for the reaction path Hamiltonian description of the dynamics of chemical
reactions. Specification of the terms in the reaction path Hamiltonian requires
information not only on the IRC but also on the reaction valley surrounding
the IRC. These terms provide a direct connection between the features of the
potential energy surface and the reaction dynamics. The use of reaction path
concepts is illustrated for the OH + Hj reaction, which is one of the few
polyatomic reactions for which extensive experimental and theoretical
studies have been reported. It is shown that even subtle features of the
reaction dynamics can be understood with this approach.

1. INTRODUCTION

Theoretical understanding of the detailed mechanisms of chemical reactions
is one of the ultimate goals in chemistry. Computation of the energetics and
dynamics of chemical reactions requires a detailed knowledge of the inter-
actions between the atomic and/or molecular species involved in the reac-
- tion. The dependence of these interactions on the positions of the nuclei
defines the molecular potential energy surface. Thus the potential energy
surface plays a central role in our understanding of chemical reactivity.
The potential energy surface V(R) for a molecule composed of N atoms
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is a function of (3N-6) internuclear coordinates (R), i.¢., 6 variables for a
four-atom system, 12 variables for a six-atom system, etc. Calculation and
characterization of this multidimensional function present one of the major
challenges in modern theoretical chemistry. During the past few years a
number of potential energy surfaces for three-, four-, and more atom
systems have been explored [1-7] (see also the chapter by L. B. Harding);
this has been made possible by rapid advancement on both theoretical
methodology and computer technology. Even given these advances, how-
ever, three major problems remain: (1) the calculation of reaction energies
to chemical accuracy, i.e., better than 1 kcal/mol, remains an elusive goal
for any save the simplest reactions, (2) a general procedure for obtaining
accurate, analytic representions of potential energy surfaces has not yetbeen
developed, and (3) the complex, multidimensional potential energy function
is not in a form that can be readily analyzed, i.e., the important chemical
information extracted and condensed into simple, useful, yet theoretically
sound, chemical concepts. The first problem was discussed in the chapter
by L. Harding, the second in the chapter by G. Schatz; in this chapter we
will address the third problem.

In this chapter we will focus on the systematic exploration and charac-
terization of molecular potential energy surfaces. We will start by locating
and characterizing the critical points on the potential energy surface; these
points play a dominant role in delimiting the overall reaction energetics and
rates. Next we will determine the reaction path connecting these points; the
reaction path provides information on the detailed motions of the nuclei
during the reactive encounter. Finally we will explore the valley surround-
ing this path. Characterization of the reaction valley provides a direct
connection between the dynamics of the chemical reaction and the features
of the potential energy surface. The OH + H, reaction will be the test case
for these new concepts, because it is one of the few reactions involving more
than three atoms for which extensive experimental and theoretical studies
have been reported.

2. CRITICAL POINTS ON MOLECULAR POTENTIAL
ENERGY SURFACES

Although the molecular potential energy surface is a global function of the
internal coordinates of the molecule, fortunately, notall regions of a surface
are of equal importance. Regions of greatest importance include minima
and saddle points of first order. Minima correspond to the equilibrium
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structures of stable molecules: the global minimum corresponds to the
energetically most stable conformation of the molecule and local minima
to higher energy conformers. A saddle point of first order is the highest
energy configuration on the minimum energy path connecting two minima
[8]. It is the mountain pass separating the reactant valley from the product
valley that must be surmounted before the chemical reaction can take place
(ignoring tunneling, of course). Both minima and saddle points of first order
are stationary or critical points. At these points all of the first derivatives of
the energy V(R), i.e., the gradient, vanish

av 1)
=—=0
8k aRk

Thus, at critical points there are no internal forces on the atoms.
Critical points can be characterized by the matrix of second derivatives
of the energy, the Hessian or force constant matrix, with elements

g o v @)
M~ 3R, 3R,

At a minimum, the eigenvalues of the Hessian matrix, {A;}, are all positive
(the Hessian is positive definite). That is, at these points the energy surface
is everywhere concave upward (as it must be for a minimum!). For saddle
points of first order there is one and only one negative eigenvalue of the
Hessian matrix. In this case, the surface is a minimum in (3¥-7) dimensions;
in the other dimension, it is a maximum. Since the molecular potential
energy surface is a smooth function connecting the minima, i.e., it is
contiguous, there must be at least one saddle point of first order between
two connected minima. There are in fact, at least (m—1) saddle points of first
order on a surface with m minima [9].

Besides minima and saddle points of first order a molecular potential
energy surface may possess maxima (all eigenvalues negative) or saddle
points of higher order n (n negative eigenvalues and 3N—6—n positive
eigenvalues withn >1). However, it is always possible to find a lower energy
path around these points, and consequently they are usually not important
in the description of chemical reactions. Higher order saddle points will not
be considered in this chapter. In the following we will use the term saddle
point synonymously for saddle point of first order.



Molecular Potential Energy Surfaces 133

2.1 Location of Critical Points

Over the past few years a number of methods have been developed to
locate critical points (minima and/or saddle points) on molecular potential
energy surfaces [10,11]. A detailed discussion of these techniques would
be beyond the scope of this chapter. In addition, it is difficult to assess the
usefulness of any specific algorithm quantitatively, since the results strong-
ly depend on the particular application at hand. Thus, we restrict ourselves
to a brief discussion highlighting the general aspects of these techniques.

Methods for locating minima and/or saddle points can be grouped into
three categories depending on the information required [12-15]. The most
accurate and stable methods are Newton methods, which use the energy and
the first (gradient) and second (Hessian) derivatives. Methods have also
been developed that are based on the energy and gradient and on the energy
only. Energy-only methods have the widest range of applicability since they
do not require any derivatives. However, they often exhibit slow conver-
gence. Since gradients and Hessians can be computed analytically for an
ever increasing variety of wavefunctions [16,17], methods that rely solely
on the energy are being used less and less frequently.

One well-known representative of the Newton methods is the Newton—
Raphson method [18] where the function, in our case the potential energy
surface V(R), is approximated at a point R, close to the critical point R, by
a Taylor series expansion about Ry

3N-6 1 3N-6 3N-6 (3)
V(R) = Vo(R) + ¥ gRg)AR, + > Y Y Hi (RYARAR,
k=1 k=1 12=1

with the expansion truncated at the second order (Hessian) terms. In (3) ARy
is defined as

ARy =Ry = Ry,
In matrix-vector notation (3) can be written
V(R) = Vo(Rg) + g' AR + V2AR" HAR )

At a critical point the condition (1) must be satisfied which leads to



134 E. KRAKA and T. H. DUNNING, JR.

AR=-H'g=-Ag ©)

where A s the inverse of the Hessian.

Equation (5) defines the Newton—Raphson (NR) step. This is the step to
take in order to get from the current point to the stationary point, provided,
of course, that V(R) is truly quadratic over the region Ry — R,. Since this
is usually not the case, an iterative procedure is required. To determine if
the new point, Ry, = Ro + AR, predicted by (5), is indeed a stationary point,
g(R,ew) is computed. If [ g(Ryew) | is above a preset threshold, say € where
€ is small, the above procedure is repeated until | g(Rew) | <t.

Because of the nonquadratic nature of molecular potential energy sur-
faces, the vector AR obtained in the NR step usually under- or overshoots
the true critical point. To correct this problem, the length of the correction
vector can be adjusted by determining the point along AR for which the
energy or |g| is a minimum [19}, ie., o is adjusted to minimize E(Rqy +
0AR) or | g(Ro + aAR)|. This procedure ensures that the new point is the
optimum point along the correction vector for the next iteration. It does,
however, require additional evaluations of the energy and/or gradient.

Since analytic first and second derivatives are available for a variety of
wavefunctions, Newton-type methods would appear to be the methods of
choice. However, a caveat is appropriate. At present the cost of computing
second derivatives is substantially more than the cost of computing the
energy and gradient. Therefore, in most cases the Hessian is not computed
directly during the iterative search for the critical point. If the Hessian is
simply taken to be the unit matrix (or a constant times a unit matrix), the
search is along

AR=-g ©)

As we shall see later, the function decreases most rapidly along the negative
of the gradient. The step (6) thus defines the steepest descent method [20],
the simplest representative of gradient methods. More elaborate gradient
methods approximate the Hessian matrix; they are usually referred to as
quasi-Newton methods[21]. An initial Hessian matrix (which may be the
unit matrix) is updated at each iteration in the search, based on the computed
changes in the gradient. Quasi-Newton methods differ by the initial guess
for the Hessian [22] and the manner in which the Hessian or its inverse is
updated [23].

One of the most often used quasi-Newton methods is the Davidson—
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Fletcher-Powell (DFP) algorithm [24]. Since the steepest descent method
shows best convergence at points far away from the stationary point while
the Newton—-Raphson method works best near this point [25], the DFP
method was designed to yield a stepwise transition from a pure steepest
descent step toward a Newton-type step during the course of the search.
Hence, the first step is in the direction of the steepest descent, i.e., the initial
Hessian matrix is the unit matrix. In subsequent iterations the inverse
Hessian matrix is updated by the following scheme:

ARm(ARm)T _ A m—lAgm(Agm)TAm—l (7)
(ARm)TAgm (ARm)T Am—lAgm

Am=Am—1 +

where m denotes the iteration number and

AR™ = R"_ Rm—l
m-1

Ag"l = gﬂl_ g

Another updating scheme for the inverse Hessian was proposed by Murtagh
and Sargent [26]. They also start with a steepest descent step, but A is
updated according to

) [ARm_Am—lAgm] [ARm_Am—lAgm]T (8)

A
[ARm_Am—lAgm]TAgm

Whereas quasi-Newton methods evaluate the approximate Hessian or its
inverse explicitly, conjugate gradient algorithms [27] avoid the direct
evaluation of these matrices. As such they are not quasi-Newton methods
in a strict sense. Conjugate gradient methods are suitable for large
molecules, where the storage of the Hessian matrix is not practicable. A
typical representative of these methods is the Fletcher-Reeves approach
[28]. Here the correction vector AR for the mth iteration step is given by

®)

AR™ = —og™ ARm—l (gm)T gm
=8 (gm—l)T gm—l

Most quasi-Newton and conjugate gradient methods use only the change
in the gradient from the previous step in their updating schemes. A new
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algorithm advanced by Schlegel [29] considers the gradient changes of all
(m-1) previous steps. This promises improved convergence properties.

While the above techniques have revolutionized the calculation of equi-
librium molecular structures, location of saddle points poses special
problems. Unlike a minimum, a first-order saddle point mustbe a maximum
in one (and only one!) direction. And this direction is not known in advance
(exceptin unusual cases) and must be found during the search process. Most
of the quasi-Newton methods, like the ones described so far (with the
exception of Schlegel’s method), can be used only for locating minima
because they require a positive-definite Hessian matrix. Location of a saddle
point can, of course, be changed into a minimization. Since g is zero for
each critical point, saddle points as well as minima may be located by
minimizing the gradient norm. Probably the most common method used in
saddle point calculations is minimization of the square of the gradient norm,
|g] 2, by standard least-squares minimization techniques. This approach
was originally proposed by Mclver and Komornicki [30].

If both first and second derivatives of the energy are available, Newton
methods can be used to locate saddle points. These methods require that the
Hessian at the initial point have one and only one negative eigenvalue for
the search to converge. For example, at any point on the surface the NR step
(5) can be rewritten in terms of the eigenvectors and eigenvalues, {v;} and
{A\«}, of the local Hessian matrix as [31]

3N-6 T (10)
-V \ %
AR=% k8%
)"k
k=1

In this representation it is clear that the NR step is directed opposite to the
gradient for eigenmodes that have positive eigenvalues and along the
gradient for eigenmodes that have negative eigenvalues. That is, if we are
in a region for which the Hessian matrix has one negative eigenvalue and
(n-1) positive eigenvalues, then the NR step minimizes the energy along
the (n—1) bound (positive eigenvalue) modes and maximizes the energy
along the unbound (negative eigenvalue) mode. This is, of course, just what
is desired.

Unfortunately, itis often not possible to obtain initial estimates for saddle
point geometries that satisfy the above condition—while the structures of
stable molecules are reasonably well understood, the same cannot be said
for saddle points. If the local Hessian matrix does not have the correct
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structure, the NR step is no longer appropriate and a step must be chosen in
a direction leading to the appropriate region. To address this problem, a
quasi-Newton-like algorithm has been proposed by Simons and co-workers
[31] and improved by Baker [32]. This algorithm, which incorporates the
Hessian mode-following ideas of Cerjan and Miller [33], can locate transi-
tion states even if the Hessian matrix at the starting geometry has the wrong
structure. In order to leave the region with the wrong Hessian structure,
Cerjanand Miller[33] and Simon and co-workers [31] suggested a modified
NR step in which a shift parameter, A%, is used to force the step in an
appropriate direction

3N-6 T (11)
-V \
AR = k BV

£ AN

LY

Consider the case when all of the eigenvalues of the Hessian matrix are
positive. If ASis chosen such that (A — AS)is negative for the firsteigenvalue
and positive for all of the remaining eigenvalues, the modified NR step will
follow the least bound mode uphill toward a saddle point while simul-
taneously minimizing the energy along the other (#~1) modes. Simons and
co-workers [31b]used arational function optimization to determine the shift
parameter, a procedure that is equivalent to scaling all of the coordinates.
In fact, for a transition state search they showed that two shift parameters,
ASP and AS" could be used: one for the first mode relative to which the
energy is to be maximized and one for the other (n—1) modes for which it
is minimized. These parameters were determined from a set of eigenvalue
equations (see, however, Baker [32}]).

In a transition state search starting from a minimum (or a region in which
all of the eigenvalues of the Hessian are positive), it is assumed that
maximization takes place along the lowest energy hessian mode, A;, and
minimization along all higher modes. This has been generalized in Baker’s
algorithm [32], i.e., one can maximize along modes other than the lowest
and in this way transition states for alternative rearrangements and/or
dissociations from the same initial starting point can be located.

2.2 Characterization of Critical Points

The equilibrium geometries, fundamental frequencies, and other
molecular properties of the reactants and products, corresponding to minima
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on the molecular potential energy surface, may be obtained experimentally
by the use of a variety of spectroscopic methods [34]. However, the
properties of transition structures, corresponding to saddle points on the
potential energy surface, cannot be obtained from experiment, at least not
atpresent[35]. Although qualitative information about transition states may
be inferred from kinetic isotope effects [36] and activation entropies [37],
the only way to characterize saddle points in detail is by calculation!
Saddle points on the potential energy surface play a central role in
governing the reaction mechanism. The height of the barrier to reaction is
just the difference in energy between the reactant minimum and the saddle

point:
AE;nie: = VIR™) - V(R') (12)
The reaction energy defect is
AE_,, = V(RP) - V(R") 13)

In (12) and (13) RP refers to the product equilibrium geometry, R' to the
reactant geometry, and RSP to the saddle point geometry. Since Vis negative,
the products are lower in energy than reactants if AExn is negative.

To calculate the energetics of chemical reactions, we need, in addition
to the structures and potential energies of the minima and saddle points, the
frequencies of the bound vibrational modes at each of these points. The
simplest procedure for determining the vibrational frequencies and as-
sociated normal modes constructs the Hessian matrix in mass-weighted
cartesian coordinates [38]. The Hessian matrix in the 3N cartesian coor-
dinates can be obtained from the Hessian matrix in the (3N-6) internal
coordinates by numerical differentiation, i.e., if the expansion of the energy
in internal coordinates is given by

3N-6 3N-6 (14)

VR) = Vo(Rg) + 425 Y H(R)ARAR;

i=1 j=1

the Hessian matrix elements for the expansion in cartesian coordinates,
H;j'(Xo), can be obtained from (14) by numerically evaluating the second
derivatives, i.e., calculating AZE(R)/AX,'AX]'.

To compute the vibrational frequencies and normal modes, the Hessian
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matrix in cartesian coordinates is transformed to mass-weighted cartesian
coordinates where

x; = VMK, (15)
This justinvolves dividing Hjj' by VMiaMjp where A and B refer to the two
nuclei corresponding to coordinates X; and Xj. The eigenvalues of the

mass-weighted Hessian matrix are the squares of the vibrational frequencies
(w?); the eigenvectors (Lk) give the normal modes

Qc =, Ly(x;~x;o)

i=1

where {xo} is the mass-weighted Cartesian coordinate of the critical point.

For a nonlinear polyatomic molecule diagonalization of the mass-
weighted Cartesian Hessian matrix will yield six zero frequencies (five for
linear polyatomics). These correspond to translation and rotation of the
molecule as a whole. At a minimum all of the remaining (3N-6) nonzero
eigenvalues will be positive and all of the frequencies real. At a saddle point
there will be one negative eigenvalue of the Hessian matrix and, thus, one
imaginary frequency—the reaction frequency (w.,) at the saddle point.
The normal mode associated with the imaginary frequency is the reaction
coordinate (Q.y,) at the saddle point.

In the harmonic approximation the zero point energy for a stable
molecule is simply

3N-6(7) a7
Ezpe= E ; ﬁ(l)k

where the sum runs over (3N-6) frequencies. For saddle points the sum in
(17) runs over only the (3N-7) real frequencies. Using this definition and
the earlier definitions given for the reaction energy defect and the classical
barrier height, we can now compute the energetics of chemical reactions
including vibrational effects. The enthalpy change at 0 K and the vibration-
ally adiabatic threshold for a chemical reaction are given by

AHy = AE, + (R, ~ o0 (18)
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AE, = BEp;rrier + (E%e - E;pe) a9

where Eépe is the zero point energy for conformation i.

The above takes into account only the quadratic (or harmonic) terms in
the potential energy expansion. If higher order terms are included, the
vibrational energy levels are given by [39]

3N-6 . 3N-6 3N-6 . . (20)
G(vyvy.) = 2)} (v, + 5) + z 2 Ay (v + E)(vl + E)
k=1 k=1 1I=1

where v denotes the vibrational eigenstate of mode k and Aiz is the
anharmonicity constant coupling mode k and £. A detailed discussion of the
calculation of vibrational and rotational constants of polyatomic molecules
is given in the chapter by W. C. Ermler and H. C. Hsieh.

While the critical points on the potential energy surface provide valuable
information about the reaction energy and the barrier to reaction, i.e.,
whether a reaction is energetically favorable, little can be said about the
detailed mechanism of the reaction. Thus we next explore the potential
energy along a path connecting reactants, transition state, and products—
this is the reaction path.

3. REACTION PATHS ON
MOLECULAR POTENTIAL ENERGY SURFACES

Although the critical points on a potential energy surface are clearly defined
in a mathematical and chemical sense, this is no longer true for the reaction
path even though this concept is intimately connected with the mechanism
of a chemical reaction [40-43]. To compound the confusion, the term
reaction path is often used interchangeably with terms such as “reaction
coordinate,” “steepest descent path,” “path of least energy,” and “minimum
energy path.” Hence, first of all, it is of paramount importance to determine
which of the available reaction paths is best suited for characterizing
molecular potential energy surfaces. Our guidelines will be the basic
requirements every useful chemical model should fulfill: It should besimple
and easy to understand; it should possess a sound physical basis; it should
provide a consistent description of its objects; and it should be flexible and
applicable over as wide a range as possible.
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3.1 The “Distinguished” Reaction Coordinate

One way of defining a reaction path is based on the assumption that one
of the internal coordinates varies monotonically during the course of the
reaction. This particular coordinate is then defined as the distinguished
reaction coordinate, R¥°. Stepping along this coordinate in the direction
leading from reactants to products, i.e., for various values of R the
remaining internal coordinates, (Ry, k=1, 3N-7), are optimized. The result-
ing coordinate set, RYP = [RI™, {RP'}], defines the distinguished reaction
path. The barrier to reaction is the highest energy point along the energy
profile V(RYP),

Although simple to implement and to use, the above approach suffers
from three major shortcomings. First, it is not always possible to identify
an appropriate reaction coordinate with one of the internal coordinates. A
simple example is the abstraction reaction

AB+C— A +BC

for which one coordinate, Rgc, best describes the path in the entrance
channel, while another, RAB, should be used in the exit channel. Other
examples include the pericyclic reactions [44], like Cope and Claisen
rearrangements, electrocyclic and cycloaddition reactions, where several
bonds are to be broken and formed in a synchronous process. Second, the
above procedure does not guarantee that the reaction path so determined
will pass over the lowest energy barrier separating reactants from products.
Only in favorable cases [45] does the generated path approach the true
transition point. Third, the other internal coordinates may depend discon-
tinuously (or nearly discontinuously) on R4 [46]. Such discontinuities are
not the result of a mysterious reaction mechanism but simply reflect the
strong coupling between the internal coordinates and the arbitrarily chosen
reaction coordinate. A recent discission of the use and abuse of the “distin-
guished” reaction coordinate approach [47] makes it quite clear that this
reaction path model is not appropriate for the present purpose.

3.2 The Steepest Descent Path
A more objective way to define the reaction path is to start at the saddle

point separating reactants from products and follow the steepest descent
path, in one direction to reactants and in the other direction to products.
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Along the steepest descent path we always take a step that leads to the
maximal decrease in the energy. As we noted earlier, the steepest descent
path follows the gradient of the potential energy surface. To see this, let us

expand the energy about a point, Ry, on the steepest descent path retaining
only the linear terms:

AV(R) = V(R) - V(R,) = Eb% &R, =Y gAR, 1)
k
k

We now wish to take a step of fixed length

AR? =3 AR} 22
k

such that the energy decreases by the maximum amount possible. To do
this, we must minimize the energy functional:

IR) = S gAR, + 5 SARE )
k k

where (1/2a) is the Lagrange multiplier associated with the constraint (22).
This yields

ARy = —og, (24)

Thus, along the steepest descent path the length of the step in any given
internal coordinate is proportional to the negative of the gradient of the
energy in that direction. It has been shown that the steepest descent path
passes continuously from reactants to products through the saddle point
[48].

Note that in differential form the set of equations (24) can be rewritten
as

dR, dR, dR, (25)

The significance of this form of the steepest descent equations will become
apparent later.
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At the saddle point the gradient, of course, vanishes. Thus, the above
procedure does not define the direction of the path right at the saddle point.
To do so, we must expand the energy to second order and minimize the
resulting functional. This yields the matrix equation

(H- AI)AR=0 (26)

where 1 is the unit matrix. At a saddle point this matrix has one negative
eigenvalue. The reaction coordinate at the saddle point leads down off the
saddle into the reactant and product wells. Stepping along this coordinate
results in the maximum decrease in the molecular energy. Thus, at the saddle
point the steepest descent path follows the reaction coordinate.

Although the above provides a continuous path leading from reactants
through the saddle point to products, it should be noted that it is still little
more than a mathematical recipe, albeit a very reasonable one. It is not clear
that the steepest descent path is connected in any way to the dynamics of
the reaction. In addition, it depends on the choice of the coordinate system.
This latter point has generated much debate [49-51]. The above choice of
reaction path was first suggested by Fukui [52], although the concept
appears to have a long history.

Instead of following the gradient one could also follow gradient ex-
tremals. These are curves that are locally defined by the requirement that
the gradient is an eigenvector of the Hessian at each point on the curve [53].
Again, such curves are not necessarily related to the reaction dynamics in
any simple way.

3.3 The Intrinsic Reaction Coordinate

Although the steepest descent path as outlined above is not clearly
connected with the dynamics of the reaction, the intrinsic reaction coor-
dinate? (IRC), which is simply the steepest descent path in mass-weighted
cartesian coordinates, is. The first use of this path to describe reaction
dynamics appears to have been by Shavitt [54] although it was mentioned
by Eliason and Hirschfelder [55] at approximately the same time. Use of
the intrinsic reaction coordinate to describe reaction dynamics has been
investigated in great detail by Fukui and co-workers [56]. The IRC is
computed as described above; the only difference is that instead of 3N=6
internal coordinates R we use mass-weighted cartesian coordinates, defined
in (15).
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The intimate connection between the /RC and the reaction dynamics
becomes obvious if the classical equations of motion for the nuclei moving
on the potential energy surface are considered. The classical equations of
motion are simply {57]

dy ooy OV e
Z(Mle) e _azY, = —gl

If, starting from the saddle point, the nuclei move with an infinitesimal
velocity toward either reactants or products, (27) can be integrated to yield

M’X'l = —git (28)

or in mass-weighted coordinates

. 29
— = —dt @
&
Thus, at any given time,
o _dy 4y 9
&1 8 83 '

which is simply a restatement of the steepest descent equations, (25), in
mass-weighted Cartesian coordinates. In other words, the IRC corresponds
to the classical trajectory obtained by starting at the saddle point and moving
with a constantly damped velocity toward either the reactants or the
products (trajectory-in-molasses). In addition, since the classical equations
of motion are independent of the choice of the coordinate system, the IRC
is uniquely defined.

Although the use of 3N Cartesian coordinates to calculate the IRC is
straightforward, Cartesian coordinates are not suitable for representing the
potential energy surface, since the potential energy is only a function of the
(3N-6) internal coordinates. It does not depend on translational or rotational
motions, which are included in the Cartesian coordinates. Thus, to describe
the motion of the nuclei on a potential energy surface we need to back
transform from the 3N mass-weighted cartesian coordinates (X) to the set
of (3N-6) internal coordinates (R), where the three translations and three
rotations are eliminated by the center of mass and Eckart conditions [58].
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However, the space in which the internal motions are separated from
translations and rotations is not Euclidean. Unlike the space spanned by the
3N Cartesian coordinates, the space spanned by the internal coordinates is
Riemanian [59]. With the definition of an appropriate metric in this space,
given by the tensor elements a;

ax; ox; 31)
A= 12(@) (a)

the IRC equation in terms of internal (or generalized) coordinates (R) reads:

dR dR dR (32)
2l 3l 3ol

k k

It should be stressed that for all sets of generalized coordinates (R), derived
from the 3N mass-weighted cartesian coordinates by the use of Eq. (31),
solution of (32) will yield the same IRC path. Hence, the problem of the
coordinate dependence of the steepest descent path is solved in a very
elegant way.

Fukui and co-workers [60] used the techniques of differential geometry
to explore the properties of the IRC. In particular, they derived a variational
principle for chemical reactions and showed that the IRC was the shortest
path from a minimum to the saddle point with the length being equal to the
barrier height [60b,d]. Igawa and Fukutone [61] showed that the IRC
corresponds to the least motion path, i.e., it is the most favorable reaction
path according to the principle of least motion in chemical reactions [62].
In addition to the discussion of the IRC within the framework of variation
principles, a statistical interpretation of the IRC has been proposed [63].

Thus the IRC certainly appears to be an appropriate model for describing
chemical reactions. It is uniquely defined, mathematically rigorous, and
conceptually appealing; in addition, it is expected to be intimately related
to the reaction dynamics. Once the IRC has been determined, the evolution
of the molecular system along the IRC can be displayed. For example, plots
of the internal coordinates along the IRC provide valuable information about
the way the reacting atoms approach each other, interact, and then separate.
In the case of polyatomic systems these two-dimensional pictures display
the complex structural changes taking place in 3N—6 dimensional space in
a very understandable form [64] and can be used to generate three-dimen-
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sional images of the structural changes along the reaction path. Plots of the
molecular orbitals (in localized form) or the molecular electron density
along the IRC provides valuable insight into electronic effects which govern
the reaction [65,66]. GVB orbitals [67] are especially suited for this purpose
since they provide a lucid and cogent orbital description of the electronic
structure changes during the course of the reaction. Possible pathways may
then be discussed within the framework of the “Orbital Phase Continuity
Principle” [68] which is the valence-bond analog of the Woodward—Hoff-
mann Rules.

3.4 Calculation of the Intrinsic Reaction Path

Although the definition of the IRC is simple and straightforward, cal-
culating the IRC presents a mathematical challenge. For any point x,(sg) on

the reaction path, except at the saddle point, the reaction path can be
represented as a Taylor series in s expanded about x(sg) :

1 1 ¢ " 33
x,(5) = x,(50) + cgl)(s-so) +5 cgz)(s—so)2 tet g cg')(s-so) (33)

where the expansion coefficients c depend only on the energy derivatives
evaluated at xs(s0). In (33) the reaction path, xs(so) depends parametrically
on the path length s, which is defined as the mass-weighted cartesian
distance along the path

&= Y dxf (34)

i

The first coefficients in the expansion are ¢f!)(s), the normalized path
tangent:

Ds) = dx(s) _ -z (35)
ds g
and the curvature c£2)(s), of the path:
@ ddP(s)  dx(s) (36)
CS (S) = ds = dgz
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which is obtained by differentiating (35) with respect to s by use of the chain
rule (g depends on s only implicitly through its dependence on x):

I']["cgl)(s)—[cgl)(s)T H"‘cg1 )] 37
B

P(s) =

where H* is the Hessian matrix in mass-weighted cartesian coordinates.
Higher derivatives ¢{’)(s) can be obtained in a similar way; a general
formula has been derived by Page and Mclver [69]. The stability and
effectiveness of the algorithms for calculating reaction paths strongly
depend on the number of terms included in (33), which, in turn, depend on
the availability of energy derivatives.

The most simple and hence commonly used methods are Euler methods,
which use only the first two terms in (33), i.e., they require only the gradient.
They trace out the reaction path by taking a series of small steps m in the
steepest descent direction yielding the following iteration scheme:

X (5, + 85) = xs,) - 85 B (38)

|2(s)]

where 3s is the stepsize. Unfortunately, gradient-following methods tend to
be unstable. Unless very small stepsizes are taken (ds < 0.001 Vu ag [70]),
the resulting oscillations about the true IRC are unacceptably large.
Molecular properties, such as bond lengths or bond angles and especially
derivatives of the energy or bond lengths and angles, evaluated along the
calculated path clearly reveal these oscillations [71].

In order to overcome this problem Ishida et al. [72] added a one-dimen-
sional search step along the bisector of the old and new gradient to damp
out these oscillations. Schmidt et al. [73] further refined this procedure.
Instead of an explicit search along the bisector they compute only one
additional point on the bisector and used a parabolic fit to interpolate to the
minimum. It was found that step sizes of 8s=0.1 Vu a, were usable and that
less than 200 energy and gradient calculations could be used to map out the
IRC for small molecules [72,73]. Miiller and Brown [74] proposed a
method, where a step of fixed length is taken and the direction is chosen to
minimize the energy with respect to the (n-1) remaining degrees of
freedom. Although each step requires an (n-1) dimensional optimization,
large step sizes can be employed. An average of 10 steps is needed for
walking from the saddle point to one of the minima. However, this approach
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is not suitable for strongly curved paths. A refinement of Gonzales and
Schlegel [75] addresses this deficiency. Here the new point is chosen so that
the reaction path between the new and old points is an arc of a circle and
the old and new gradients are tangent to this path. Thus this technique
explicitly accounts for the curvature of the reaction path.

More sophisticated numerical techniques can also be used for solving
(38). Our experience indicates that an integration solver [76] based on a
predictor—corrector algorithm {77] that takes care of the stiffness problem
[78] is very efficient. Using this technique, step sizes can be increased by
more than a factor of 10 over the simple Euler method while maintaining
high accuracy in all computed quantities [79].

If analytical gradients are not available, solution of (38) with numerical
gradients is intractable even for tetraatomic systems if the points are
calculated by a high quality ab initio method. In this case it is best to work
with an analytic representation of the potential energy surface in the vicinity
of the reaction path. In our work [80] this is done by defining the potential
energy in terms of local force fields, evaluated from grids of energy points
centered along an approximate reaction path, connected by switching
functions. Using this technique it is possible to calculate the gradient
numerically at sufficiently small step sizes to accurately and economically
determine the reaction path. However a caveat is appropriate here. First, the
reaction path is not known a priori; hence, the right choice of the grids is a
matter of trial and error. Second, the use of switching functions leads to
small, but significant, fluctuations in the derivatives of the energy and
coordinates at the grid boundaries (see also the closing paragraph below).
Third, depending on the quality of the fit, the reaction path obtained from
the global representation may deviate from the true path.

If analytical second derivatives are also available a new reaction path
following method recently proposed by Page and Mclver [69] appears to
be very promising. Fundamental to this new approach is a Taylor series
expansion of the potential energy in terms of cartesian displacements.
Expanding the energy to second order, i.e., a local quadratic approximation
(LQA), and parameterizing the reaction path as suggested by Pechukas [81],
they were able to sum (33) exactly. This procedure yields a reaction path
that has the correct curvature at the point of expansion.

Pechukas [81] showed that if the reaction path is represented by a curve
x(?) instead by a curve x,(s) with

ax() _ (39)
da
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then (39) can be solved exactly when the energy is a quadratic function of
the coordinates. Following this, Page and Mclver derived the following
equation for the gradient within the LQA:

8(x) = go + Ho(x-xo) (40)

where go and H o are the gradientand Hessian evaluated ata point xg =x(z=0)
lying on the path (it cannot be the saddle point). Then the IRC is obtained
by integrating

'i%' = ~go—H(x-xo) 1)

For computation convenience (41) is transformed to generalized normal
coordinates and solved using iterative techniques [69].

For the first step from the saddle point, x°P, Page and Mclver used a local
cubic approximation (LCA) yielding the following equation:

x,(x°P + 85) = xy + Q,, ;05 + V2 K(8s)? (42)

where Qrxn is the reaction coordinate and K is the reaction path curvature
at the saddle point:

K H(I)ern N [QIXH H(I)ern]ern (43)
) 2 [Q.rrxn ]H{(I)ern]I -H

In (43)H (D is the first derivative of the Hessian ats = 0. While conventional
methods usually take the first step along Qrxn, neglecting the second term
in (42), here one steps along the actual curved path. This is important, if one
is interested in properties sensitive to the reaction path curvature. In the
commonly used approach these properties are not described correctly as the
saddle point is approached.

The algorithm proposed by Page and Mclver was recently applied by
Kosekiand Gordon {82] to successfully map the reaction path for the singlet
SiH; inversion. The potential energy surface for this reaction is very flat
and, as demonstrated by these authors, conventional gradient following
methods do not yield reasonable paths.

Another, very different, approach to calculating the reaction path was
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recently proposed by Jasien and Shepard [83]. This approach involves a
reaction path-surface fitting cycle. Starting from a simple initial reference
curve, e.g., a line connecting reactants, saddle point, and products, energies
and gradients in the vicinity of the initial reference curve are evaluated and
a fit of the surface is obtained. From this initial fit a steepest descent path
is calculated. This path then becomes the new reference curve and additional
energies and gradients in the vicinity of this curve are computed; this yields
a new surface to use in determining the reaction path. As the fit is refined,
the approximate surface approaches the true surface in the vicinity of the
reaction path and the computed steepest descent path approaches the true
reaction path. Using this strategy the new points at which to perform
electronic structure calculations are selected in a systematic way, which
makes this procedure attractive for computationally expensive high quality
ab initio calculations. In most cases this procedure is expected to converge
rapidly.

4. REACTION VALLEYS ON MOLECULAR POTENTIAL
ENERGY SURFACES AND THE REACTION PATH
HAMILTONIAN APPROACH

While valuable insights into the mechanism of a chemical reaction can be
gained by determining the changes in the molecular structure along the
reaction path, additional information is required for a detailed description
of the dynamics of the reaction. To this end we will now explore and
characterize the reaction valley leading from reactants through the saddle
point to products, i.e., the (3N-7)-dimensional valley centered on the
reaction path. In order to do so we have to define an appropriate coordinate
set, a natural reaction coordinate set, where one of the coordinates
describes motion along the path and the other coordinates describe the
remaining degrees of freedom.

The idea of characterizing a reacting system by a natural coordinate set
has frequently arisen in chemistry. In 1963 Hofacker [84] in his quantum
theory of chemical reactions introduced the idea of describing a reacting
system by a coordinate related to the progress of the reaction and the degrees
of freedom perpendicular to this coordinate. Based on these ideas, Fischer
etal. [85] derived a model approach to nonadiabatic reaction processes, and
Hofacker and Levine [86] presented a nonadiabatic model for population
inversion in molecular collisions. Fischer and Ratner [87] used the natural
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coordinate set approach to derive a theory of translational-vibrational
energy transfer for reactive collisions.

In 1966 Marcus [88] presented one of the first quantum mechanical
scattering models for collinear A + BCreactions. In doing so, he introduced
a set of coordinates that described the system point by point on a reaction
path (being defined as a curve where the classical local vibrational and
internal centrifugal forces balance) together with a distance vector from that
point. He later extended this model to the three-dimensional case. The
corresponding coordinates were referred to as natural collision coordinates.
These coordinates played a dominant role in the first adiabatic calculations
of quantum mechanical tunneling through the barrier of a potential energy
surface.

In transition state theories (TST) [89], rate constants are obtained by
calculating the flux through a surface dividing reactants from products. In
conventional transition state theory [90] the location of the dividing surface
is assumed to be perpendicular to the reaction coordinate at the saddle point,
i.e., ats = 0. The system is then described by the reaction coordinate along
with the bound vibrational modes. Together these define a natural coor-
dinate set that we will call the reaction path coordinate set. In variational
TST introduced by Truhlar and co-workers [91] the location of the bot-
tleneck is varied along the reaction path in order find the point at which the
flux is a minimum. Since the rates obtained from classical TST are upper
bounds on the exact classical flux, this (normally) yields more accurate
reaction rates than those obtained from conventional TST. Going beyond
statistical approximations, semiclassical perturbation theories have been
developed, e.g., the semiclassical perturbation-infinite order sudden ap-
proximation (SCP-10S) [92], again based on a reaction path coordinate set.
This model behaves qualitatively correctly both in the adiabatic limit, where
the transverse vibrational motion is assumed to be much faster than motion
along the reaction path, as well as in the sudden limit, where motion along
the reaction path is assumed to be much faster than motion perpendicular
to it.

In addition to its use in scattering theory and dynamics, the idea of a
natural coordinate set has also been applied to problems in organic and
inorganic chemistry. For example, Russegger and Brinkmann [93]
described the pseudorotation of trigonal bipyramidal molecules (Berry
rotation) in terms of a model using an internal reference coordinate cor-
responding to a fixed reference configuration and displacement coordinates
perpendicular to it. A related problem arises in vibrational-rotational
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spectroscopy if one of the internal coordinates undergoes large amplitude
motions and can therefore no longer be described by standard vibrational-
rotational theory. For such problems Hougen et al. [94] developed a model
description that treats the large amplitude mode apart from all the other
internal coordinates.

4.1 The Reaction Path Hamiltonian Approach

In1980Miller etal. [95] derived the Hamiltonian for a reacting molecular
system which combined the early ideas of Hofacker and Marcus, the IRC
of Fukui, and the large amplitude model of Hougen et al. This led in a
straightforward fashion to a reaction valley description of the energetics and
dynamics in polyatomic reactions. Miller et al. described the reacting
system in terms of a reaction path coordinate set being composed of the
reaction coordinate x,(s) and the (3N-7) local normal modes {Qi(s)},
obtained by diagonalizing the Hessian matrix at the point s on the reaction
path. The Hessian matrix is constructed in the usual fashion except that the
reaction coordinate is projected out (as before, there are also six zero
frequency modes corresponding to overall translation and rotation). In terms
of the coordinates (x;, {Qy}) and their conjugated momenta (ps, {P;}) the
molecular Hamiltonian H(x,,ps, {Q},{P+}) is defined by

HXoPo { Qb {Pi}) = TXo P { Qi) {P}) + Ux{Qi}) (44)

In the approach of Miller et al. [95], the potential energy is approximated
at each point s by the potential energy Vj at that point on the path plus the
potential energy for harmonic displacements perpendicular to the path:

. 3N-7 (45)
YxeQ) = Vo [+ 5 3 ays)04(s)?
k=1

The kinetic energy is given by (for zero total angular momentum):

3N-7 3N-7 ) (46)
Ds — E 2 Bkk’(S)Qk(s)Pk‘(s)] 3IN-7
q(xsypv{Qk}’{Pk}) =% kel 31;1-_17 + %E Pk(s)2

k=1

[1- D Bi(&)Qo)T
k=1
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There are two different types of terms in the reaction path Hamiltonian
that explicitly depend on the potential energy surface:

1. Theshape terms: x5(s), Vo(s)and {wi(s)}. The shape of the reaction
valley leading from reactants over the barrier to products is char-
acterized by the reaction path xs(s), which determines the meander-
ing of the floor of the reaction valley, the classical potential energy
Vo(s), which determines the height of the path, and the vibrational
frequencies {wi(s)}, which define the width of the valley (low
frequencies denote a wide valley, high frequencies a narrow val-
ley).

2. The coupling terms, {Bis(s)} and {Bi'(s)}. As we shall see, these
terms play an important role in the description of the reaction
dynamics. They reflect the dynamic coupling between motion
along the path and the transverse vibrations. It is through these
terms that energy flows nonadiabatically from translation to vibra-
tion and vice versa, {Bis(s)}, and among the vibrations, {Br(s)}.

4.2 The Terms in the Reaction Path Hamiltonian

From an analysis of the terms in the reaction path Hamiltonian, it is
possible to provide a rationale fora variety of qualitative features of reaction
dynamics.

The vibrationally adiabatic potentials describe the effect of vibrational
energy on the reaction. They are obtained by adding the change in the
vibrational energy, AEy;,(s) to the classical potential Vi(s):

Viap(s) = Vo(s) + AEY (s) (47)

where the vector v denotes the vibrational state (vi, v, ...) of interest. In
the harmonic approximation AEVib(s) is simply

3N-7 1 IN-7 . (48)
AEy;(s) = E("k + 51 [0(5) - ()] = E(Vk + S)ABw,(s)
k=1 k=1

Forv = (0, 0, ... 0), Wap(s) is the ground state adiabatic potential and
AEQin(s) is the zero point energy of the system at point s relative to that of
the reactants (s = —o0). If the frequency of one (or more) of the modes
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decreases substantially during the course of the reaction, as would be
expected, e.g., if a bond is broken, then Awg will be negative and vibrational
excitation for that mode will lead to a reduction in the vibrationally adiabatic
barrier for the reaction and a corresponding increase in the reaction rate.

Inorder to calculate the vibrationally adiabatic potentials, the vibrational
energy levels of the reactants and the saddle point must be properly
correlated. Of course, one can just use the vibrational energies obtained as
described above. Since the frequencies are obtained from a single Hamil-
tonian, they obey a noncrossing rule, i.e., frequencies corresponding to
modes of the same symmetry do not cross. This is the adiabatic approxima-
tion. However, for many chemical reactions, like the OH + H, reaction
discussed in the next section, a vibrationally nonadiabatic (or diabatic)
model is more appropriate.

To properly correlate the vibrational levels we must consider the By (s)
coupling terms that are simply the dot product between the change of
eigenvector L corresponding to normal mode k and the eigenvector Ly
corresponding to normal mode k' [96]:

AL, (s) (49)
aks Ly (s)

Byls) =

where (L(s); k = 1, 3N-7) are the eigenvectors of the mass-weighted,
projected Hessian matrix along the reaction path. The Bi(s) terms describe
the mixing between modes k and k' induced by motion of the system along
the reaction path. As this motion involves a twisting of the vibrational modes
aboutthe reaction path, the Big/(s) terms are referred to as coriolis couplings.
The adiabatic model is rigorously valid only if all of the By values are zero
and hence there is no interaction between the transverse modes. Their
character is then preserved during the course of the reaction and the
vibrational modes can be trivially connected from reactants through the
transition state to products. If there are nonzero values of Bir(s), especially
in the case of avoided crossings where the Bry(s) values are large and
localized, energy can readily flow from mode k to mode k'
Translational-vibrational energy transfer during the course of the reac-
tion is also a topic of considerable interest. The By (s) term is the dot product
between the change in the eigenvector L and the reaction path x

Ay (s) (50)
os X(s)

B, (s) =
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Itdescribes the dynamic coupling between the reaction path and vibrational
mode k. It is a measure of the mixing between translational motion, i.e.,
motion along the reaction path, and vibrational motion in mode k induced
by the curvature of the reaction path in the (3N—6)-dimensional space. As
Bjs(s) becomes larger, the mixing between the reaction path and vibration
mode k increases and energy transfer from translation to vibration and vice
versa becomes more and more facile. The total curvature of the reaction
path is defined as

3N-7 v (51)

k(s)=| 3 Bi(s)
k

The Bis(s) terms are referred to as curvature couplings.

If a reaction is vibrationally adiabatic, the reaction path must have zero
Curvature, i.e., there must be no coupling between motion along the path
and motion in the vibrational modes, {Q.}, either from reactants to the
transition state or from the transition state to products. In this case an
exothermic reaction would convert all of the reaction energy into kinetic
energy. This, however, does notapply to most chemical reactions. For these
reactions nonadiabatic effects, i.e., the dynamic coupling between the
motion along s and the motion along the {Q,} caused by the curvature of
the reaction path, must be explicitly taken into account. Translational to
vibrational energy transfer during the course of a reaction occurs in regions
where K(s) is large. In the entrance channel, modes which have large By(s)
values are donating modes, i.e., vibrationally excitation of these modes will
cause energy to flow into the reaction path and, hence, the rate of reaction
will be enhanced by having energy in this mode. In the exit channel, modes
with large By (s) values are accepting modes. The reaction exoergicity can
flow from the reaction path into these modes and lead to vibrational
excitation of the products.

The curvature terms are intimately related to the well known propensity
rules for abstraction reactions, in particular the rules put forward in the late
1960s by Polanyi and co-workers [97]. Polanyi and co-workers found that,
forsaddle points located in the exit channel, vibrational energy was far more
effective than translational energy in overcoming the barrier to reaction. In
this case the curvature is expected to be large before the saddle point is
reached. Translational energy will then be efficiently drained into the
transverse vibrational modes and, thus, not usable for surmounting the
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Table 1. Relationship between Reaction Path Properties and
Chemical Reaction Dynamics

Reaction path property Feature of reaction dynamics

Classical potential Vo(s)

Moment of inertia tensor Is(s)

Vibrational frequencies {os)} Reaction rates in VTST [91]

Normal modes {Q«s)}

Curvature couplings {Bis(s)} Propensity rules for chemical reactions [97]

Tunneling effects [99]

Vibrational mode specificity in state
selected decompositions”

Vibrational mode specific enhancement of
reaction rates

Prediction of product vibrational state
distributions”

Coriolis couplings {Bax(s)} Correlation of reactant and product
vibrational modes”
Prediction of vibrationally enhanced
product state distributions®

“Waite, B. A.; Miller, W. H.J. Chem. Phys. 1982, 76, 2412.
bSee Section 4.

barrier. Vibrational energy in the modes strongly coupled to the reaction
path, on the other hand, will be transformed into translational motion along
the reaction path and hence provide the energy needed to overcome the
barrier. When large curvatures are found on the product side, just the
opposite is true. Translational energy can be directly used to overcome the
barrier while vibrational energy will be ineffective. The details, of course,
depend on the magnitudes and variations of the curvature coupling terms,
Bks(s).

Within the framework of variational TST is it has been shown that the
curvature of the reaction path, and hence the coupling terms, strongly
influence quantum mechanical tunneling through the barrier [98]. The
larger the coupling terms, the more facile tunneling is. There is a growing
number of dynamic studies of polyatomic systems based on the RPH
approach that has been reviewed recently [99].
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In Table 1, the relationship between reaction path properties and
dynamics is summarized. In the following section we will apply these ideas
to the OH + H; reaction.

5. APPLICATION OF THE REACTION VALLEY
APPROACH: THE OH + H2 REACTION

There are few cases for which extensive dynamical studies have been
carried out for a polyatomic system—one such series has been reported for
the OH + H reaction [100]. These studies include trajectory calculations
by Schatz [101] as well as variational transition state theory calculations by
Truhlar and Isaacson [102]. These studies rather thoroughly characterized
the dynamics of the OH + Hz reaction: determining the temperature depend-
ence of the rate constant and the kinetic isotope effect, investigating the
effect of translational, rotational, and vibrational excitation of the reactants
on the reaction rate, and predicting the product state translational, rotational,
and vibrational distributions. Both of these studies were based on an analytic
potential energy surface developed by Schatz and Elgersma from the ab
initio calculations of Walch and Dunning [103].3 Dunning et al [80]
calculated the terms in the reaction path Hamiltonian for this potential
surface, characterizing the reaction valley from reactants through the saddle
point to products. Here we will discuss the results of Schatz and co-workers
and Isaacson and Truhlar in light of the analysis given in the previous section
[105].

The classical potential along the reaction path for the OH + H; reaction
obtained from the Schatz—Elgersma—Walch—Dunning potential energy sur-
face is plotted in Figure 1. The height of the classical barrier is 6.1 kcal/mol
while the reaction energy defect is predicted to be —15.2 kcal/mol. The
barrier height for a chemical reaction is determined by a number of factors,
including (1) ease with which the bond pair is transferred from the reactants
to the products [83], (2) energy defect of the reaction [106], and (3)
spin-exchange losses or gains [107]. The OH + H; reaction is a simple
hydrogen transfer reaction in which formation of the new bond occurs
simultaneously with the breakage of the old bond and, thus, the barrier is
expected to be only a small fraction of the H, bond energy (the bond being
broken). The OH + Hj reaction is also very exoergic; barriers to reaction
tend to decrease with increasing exoergicity.

To illustrate the spin-exchange effect, let us compare the barrier heights
for the O + H, and OH + H; reactions. The barrier for the O + H, reaction
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Figure 1. Classical potential for the OH + H2 reaction along the reaction
path. The black square denotes the calculated energy defect for the reaction.

is 12-13 kcal/mol. This barrier is significantly higher than that for OH + H,
because the formation of the OH bond in the O—H, complex resuits in the
partial loss of the exchange energy between the triplet coupled p-orbitals in
the oxygen atom; there is no such loss in the HO—H, complex. The loss of
exchange energy will continue to increase until the products have been
formed. Using this model, Harding and Goddard [107] showed that the bond
energies in the O—H and H—OH species are simply related by

AD = D(H-OH) - D(O-H) ~ 15K

where K is the exchange integral between the singly occupied p-orbitals in
the oxygen atom. Averaging over the J manifolds for the lowest two LS
states in the oxygen atom [108], one obtains K = 22.6 kcal/mol. Thus, the
difference between the O—H and H—OH bond energies is predicted to be
11.3 kcal/mol; experimentally, the difference is 16.0 kcal/mol. Since the
barrier heights for the O + H2 and OH + Hz reactions differ by 67 kcal/mol,
this suggests that approximately one-half of the exchange energy contribu-
tion to AD is lost by the time the saddle point is reached (ignoring, of course,
the differences in the relative positions of the saddle points).
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The structure of the HOH; complex at selected points along the path are
plotted in Figure 2. The hydroxyl radical can be considered a pseudo-
halogen atom with the singly occupied x-orbital behaving much like the
singly occupied p-orbital in the halogen atoms. The geometry of the saddle
point is consistent with this, i.e., the oxygen atom and the two hydrogen
atoms in the H, moiety are nearly collinear.* In addition, the saddle point
is early, i.e., the length of the OH bond at the saddle point relative to its
length in the product (H,0),

ARgyy = Ry - RO = 0264

is substantially larger than the change in the Hz bond length from the
reactants to the saddle point

ARHH = R;_?H - Rgﬁ = 0.11A

While the above provides welcome insights into the mechanism of the
OH + H; reaction, we must determine the changes in the vibrational
frequencies, {w(s)}, along the reaction path before we can predict the rate
of the reaction. The calculated frequencies for the OH + H, reaction are
plotted in Figure 3 and the normal modes at the saddle point are plotted in
Figure 4 (the vibrational modes in the reactants and products are the familiar
stretching and bending modes of OH, H; and H,0). As is evident in both
Figures 3 and 4, the OH stretching mode is little affected by reaction, the
harmonic frequency decreasing by less than 100 cm™! from reactants to the
saddle point and increasing again by only slightly over 400 cm™ from the
saddle point to products. This mode correlates with the asymmetric stretch-
ing mode in H,O (OH,;). The H; frequency, on the other hand, drops by
over 2300 cm™! from reactants to the saddle point, reaching a minimum of
1390cm™ ats =9 au. The frequency of this mode then rises as the OH bond
in HO is formed; this mode evolves into the symmetric stretching mode in
H,0 (OHgy). The remaining vibrational modes of the HOH, complex, ws,
04, and ws, correlate with rotations in the reactants. The mode correspond-
ing to w3 correlates with the HOH bending mode in H,O (HOHS,), while w,
and ws correlate with rotations in the products.

Using the above data and variational transition state theory, Truhlar and
Isaacson [102] calculated a rate constant for the OH + H, reaction of 10.5
x 10715 cm*/molec-sec at 298 K and 1.36 x 10712 cm3/molecsec at 1000 K.
The calculated rate constants are in good agreement with the measured
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Figure 2.  Structure of the OHH> complex at selected points along the
reaction path. The oxygen atom is presented by the dark sphere and the
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Figure3. Vibrational frequencies along the reaction path for the OH + Hp
reaction. The dashed curves correspond to the in-plane and out-of-plane
wagging modes. The black squares denote the calculated vibrational fre-
quencies for the reactants and products.

values: 6.08 x 107" cm®/molec-sec at 298 K and 1.9 x 1072 cm®/molec-sec
at 992 K [109].

The vibrationally adiabatic potentials for the ground state, (vou=0,
vH,=0), and the two vibrationally excited states, (vou=1, vi,=0) and
(vou=0, vi,=1), are plotted in Figure 5. The ground state vibrationally
adiabatic potential at s = 0, 5.9 kcal/mol is only slightly lower than the
classical barrier height, 6.1 kcal/mol. The 6.7 kcal/mol drop in the H
stretching frequency from reactants to the saddle point is largely offset by
the growth in the frequencies of modes which bunld -in as the reaction
proceeds: the HOH bending mode (wHoH, = 857 cm™), the in-plane wag-
gmg mode (w4 = 572 cm™?), and the out- -of-plane wagging mode (ws = 829
cm” ) Note, however, that the maximum in the adiabatic potential, 6.2
kcal/mol, is at s = -5, not at the saddle point. Vibrational excitation of the
OH molecule decreases the vibrationally adiabatic threshold by only 0.3
kcal/mol while excitation of the Hz molecule decreases the threshold by 3.0
kcal/mol. Thus, vibrational excitation of the OH species would be expected
to have a negligible effect on the rate of the reaction, whereas the effect of
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0y, = 3545 cm1 ®,, =1921 cm?

Figure4. Vibrational modes of the OH+H> complex at the saddle point.
The reaction coordinate is associated with wrxn. The oxygen atom is
represented by a dark sphere and the hydrogen atoms by white spheres. The
lengths of the displacement vectors have been multiplied by 1.5 for display.

vibrationally exciting the H, would be substantial. Even in the latter case,
however, vibrational excitation is relatively inefficient in accelerating the
rate of the reaction—the barrier is decreased by only a quarter of the
vibrational quanta in H,.

Both Schatz [101] and Truhlarand Isaacson [102] have reported dynamic
calculations of the effect of vibrational excitation on the rate of the OH +
H; reaction. The variational transition state theory calculations of Truhlar
and Isaacson [102] predicted an enhancement of a factor of 108 in the
reaction rate for vibrationally excited H, and of 1.58 for reaction with
vibrationally excited OH. At 300 K they found that vibrational excitation
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Figure 5. Vibrationally adiabatic potentials, V(*O""H2) for the OH(voy)
+ H2(vH,) reaction. The black squares denote the calculated exoergicities
of the reactions.

of H; decreased the activation energy by 2.5 kcal/mol and increased the
preexponential term by a factor of 1.6. Schatz [101] reported a reduction of
3.4 kcal/mol in the threshold for reaction with vibrationally excited H. He
predicted a rate constant at 300 K for Ha(v, = 1), which was a factor of 390
larger than that for Hx(vh, = 0). Vibrational excitation of the OH radical, on
the other hand, led to a negligible enhancement in the rate (only a factor of
1.28).

These results agree well with the experimental data available for the
vibrationally enhanced reactions. Zellner and Steinert [110] report a rate
enhancement for Hz (vig, = 1) of a factor of 120 + 40 at 300 K, while Glass
and Chaturvedi [111] report a factor of 155 + 38. Further, based on
preliminary measurements of the temperature dependence of the rate of OH
+ H2, Zellner and Steinert estimated a decrease of 3.4 kcal/mol in the
activation energy for reaction with vibrationally excited Hz; this compares
well with the calculated reductions in the thresholds. In contrast, Spencer
et al. [112] found that vibrational excitation of OH increased the OH + Ha
reaction rate by less than a factor of two, in line with the theoretical
predictions. (See also [113].)
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Figure 6. Curvature coupling terms for the Hp (OHgs) and OH (OHas)
modes along the reaction path for the OH + Hj reaction.

As seen in Section 3, the reaction path Hamiltonian contains, in addition
to the vibrational frequencies and normal modes, the terms coupling motion
along the path with the vibrational motions transverse to the path, {B(s)},
and the terms coupling the vibrational motions induced by motion along the
path, {By(s)}. These terms govern the nonadiabatic flow of energy between
the bound modes and the reaction coordinate. Although the detailed in-
fluence of the coupling terms on the reaction can be determined only from
dynamics calculations, important insights into vibrational effects in chemi-
cal reactions can be obtained from an examination of these terms alone
[114]. As can be seen in Figure 6, there is almost no coupling between the
OH stretch and the reaction path in the entrance channel; the value Boyys is
nearly zero there. Thus, there is no way for the vibrational energy to flow
into the reaction path. This is, of course, expected given the minor changes
in woy(s) noted in Figure 3. The OH bond is simply a spectator bond. The
H, stretching mode, on the other hand, strongly couples with the reaction
path in the entrance channel with By ¢ attaining a maximum value just
before the saddle point in the entrance channel. Energy can flow non-
adiabatically from the Hj stretch into the reaction path via the By s coupling
term, and, hence, excitation of this bond has a substantial effect on the
reaction rate.
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Figure 7. Coriolis coupling terms for the (OHgs) and OH (OHas) modes
along the reaction path for the OH + H> reaction.

Within the framework of the reaction path Hamiltonian approach, fre-
quencies of the same symmetry do not cross. In the present case, the mode
thatcorrelates with the H, stretching mode (at 4260 cm™!) drops in frequen-
cy as the saddle point is approached, while the mode which correlates with
the OH stretching mode (at 3620 cm™) is largely unaffected. There is an
avoided crossing of these two curves just before the saddle point, at s ~—18
au. In Figure 7 we plot the coriolis terms coupling the H; and OH stretching
and HOH bending modes. As outlined in Section 3, coriolis coupling terms
are expected to be large in the vicinity of a sharply avoided crossing. In fact,
in the entrance channel, there is essentially no coupling between the OH
and the H; stretch except in the vicinity of the avoided crossing. At that
point there is a sharp peak in the Bow i term, which will induce a localized
(diabatic) transition between the two adiabatic states. Hence, we conclude
thatit is physically more reasonable to assume that the OH and H, stretches
preserve their character during the course of the reaction. Knowing this, we
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plotted the vibrational frequencies in Figure 3 as if the curves for won(s)
and WH,(s) do in fact cross. The same assumption was also used to compute
the vibrationally adiabatic potentials plotted in Figure 5.

The influence of vibrational excitation on the product state distribution
yields further insights into the dynamic of chemical reactions [115]. In his
quasiclassical trajectory study, Schatz [101] found that for both vibration-
ally excited OH and H; the excess energy is deposited preferentially in the
H20 vibrational degrees of freedom. Virtually no energy is transferred to
product translational motion and very little to the rotational degrees of
freedom. The distribution of the energy among the H20 vibrational degrees
of freedom is even more intriguing. For vibrationally excited H2 Schatz
observed a nonspecific distribution of the excess energy among the H20
modes: 42% went into the symmetric stretch mode, 35% into the asym-
metric stretch mode, and 22% into the bending mode. On the other hand,
when the OH is initially excited, all of the excess energy goes into the OH
stretching modes: 75% to the asymmetric stretch and 25% to the symmetric
stretch. None of the excess energy flows into the bending mode.

While both trajectory calculations as well as experimental studies can
determine the effect of vibrational excitation on a chemical reaction, they
do not provide a rationale for it. However, the reaction valley approach
presented here does! It provides a framework within which to understand
why given state distributions are obtained. In Figure 3 we see that the H
mode evolves into the OH symmetric stretching mode (OHss) in H20. If the
reaction were adiabatic, excitation energy in the H2 mode would all be
deposited in the OHss mode. However, as is seen in the upper panel in Figure
7, there are significant couplings between the HY/OHss mode and the OH,s
and HOH, modes in the exit channel (as well as between this mode and the
path). Thus, excitation energy in the H2 mode can flow into all of the
vibrational modes in the water product. The net result is a broad distribution
of the vibrational excitation energy among the product stretching and
bending modes. In contrast, there is little coupling between the OH stretch
and the HOH bending mode (see lower panel in Fig. 7). The only important
coupling is between the OHss and OHas modes in the exit channel. In this
case the vibrational excitation energy is confined to the OH stretching
modes in the products, with little of the energy being deposited in the
bending mode.

Finally, the reaction path analysis outlined here sheds lighton the detailed
dynamics of the reverse of reaction the OH + Hz reaction, H + H20.In a
classical trajectory study of this reaction, Elgersma and Schatz [116] and



Molecular Potential Energy Surfaces 167

Schatz and co-workers [117] found that the symmetric stretch mode of H,0O
was far more efficient in enhancing the rate of the reaction than either the
bending or asymmetric stretching modes. They found that the threshold for
reaction was lowered by ~90% of the symmetric stretch vibrational quantum
but only by ~70% and ~60% of the bending or asymmetric stretch quanta,
respectively.

These observations seem to contradict chemical intuition. It mi ght have
been thoughtthat the asymmetric stretch mode would most closely resemble
the reaction coordinate and hence this mode should be strongly coupled with
the reaction coordinate in the H + H,O reaction. Again, the reaction path
analysis resolves this puzzle. As is clearly evident in Figure 3, it is the
symmetric stretch mode that is most strongly affected by reaction—its
frequency drops from 3860 cm™ in H,O to 1920 cm™! at the saddle point.
The frequencies of the asymmetric stretch and bending modes change far
less over this same region and, hence, are far less effective in accelerating
the rate of reaction.

6. CONCLUSIONS

Chemists traditionally describe chemical reactions in terms of activation
energies (barriers to reaction), preexponential factors (activation entropies),
transition states (critical intermediate molecular configurations), and reac-
tion paths (continuous evolution of reactants into products). Although much
information on chemical reactions can be obtained from measurements of
the rates, cross sections, angular distributions, etc., the transitory molecular
species involved in chemical reactions are not directly amenable to ex-
perimental characterization—the time scales of chemical transformations
are far too short to be observed by traditional chemical techniques (see[35]
however). Thus characterization of the details of chemical reactions must
rely on theory.

Within the past decade there have been a number of advances in the
theoretical calculation and characterization of molecular potential energy
surfaces, including the development of direct configuration interaction
[118], many body perturbation theory, and coupled-cluster[119)] techniques
for computing accurate interaction energies and analytical techniques for
computing the derivatives of the interaction energy [16,17]. With these new
techniques, it is possible to locate and characterize stable and metastable
molecular species (minima) and transition states (saddle points) for chemi-
cal reactions and to compute the paths connecting reactants with products
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(IRC). These calculations provide quantitative information on reaction
energetics and yield valuable insights into the mechanisms of chemical
reactions (see, e.g., the chapter by L. Harding and references therein).

By characterizing the reaction valley, leading from reactants through the
transition state to products, the features of the potential energy surface can
be directly connected with the reaction dynamics. The reaction valley is
characterized by the shape terms, x,(s), V(s), and {w(s)}, whichdefine the
location and features (slope and width) of the valley, and by the dynamic
terms, {Bs(s)} and {By(s)}, which describe the nonadiabatic flow of
energy among the translational and vibrational degrees of freedom. Con-
sideration of these terms provides a simple model for understanding much
of the detailed dynamics of chemical reactions, including the effects of
vibrational excitation of the reactants and vibrational distributions in the
products, in terms familiar to chemists.
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NOTES

1. Present address: Institute fiir Organische Chemie, Universitit Koln, Kéln, Federal
Republic of Germany.

2. We prefer to call the IRC the “Intrinsic Reaction Path” since the definition yields a
curve in (3N-6) space. The intrinsic reaction coordinate would then refer to the path tangent
at any given point on the path; the reaction coordinate, of course, changes as one moves
along the path. Unfortunately, the terminology in common use does not make this distinction.

3. Rasheed and Brown [104] also reported trajectory calculations on this reaction;
however, they used a slightly modified version of the Schatz-Elgersma-Walch-Dunning
potential surface.

4. The conformation of the saddle point predicted by Walch and Dunning [103] was
cis; that predicted by the fitted surface is trans.
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