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Shuhao Zhang1,2, Małgorzata Z. Makoś3,4, Ryan B. Jadrich2,5, Elfi Kraka3, Kipton M.
Barros2, Benjamin T. Nebgen2, Sergei Tretiak2, Olexandr Isayev1, Nicholas Lubbers4*,
Richard A. Messerly2*, and Justin S. Smith2,6*

1Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist
University, 3215 Daniel Avenue, Dallas, Texas 75275, USA
4Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM
87545, USA
5Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
6NVIDIA Corp., San Tomas Expy, Santa Clara, CA 95051, USA
*nlubbers@lanl.gov, richard.messerly@lanl.gov, jusmith@nvidia.com

ABSTRACT

Reactive chemistry atomistic simulation has a broad range of applications from drug design to energy to materials discovery.
Machine learning interatomic potentials (MLIP) have become an efficient alternative to computationally expensive quantum
chemistry simulations. In practice, reactive MLIPs require refitting to extensive datasets for each new application, and prior
knowledge of reaction networks is required to generate fitting data. In this work, we develop a general reactive MLIP through
unbiased active learning with a nanoreactor molecular dynamics inspired sampler. The resulting potential (ANI-nr) is then
applied to study five distinct condensed phase reactive chemistry problems: carbon solid-phase nucleation, graphene ring
formation from acetylene, biofuel additives, combustion of methane and the spontaneous formation of glycine from early-
earth small molecules. In all studies, ANI-nr closely matches experiment and/or previous studies using traditional model
chemistry methods, without needing to be refit for each application, which enables high-throughput in silico reactive chemistry
experimentation.

Introduction
Atomic-scale reactive simulation is a valuable tool for chemists to plan reaction synthesis or measure material properties in
silico. Traditionally, physics-based computational methods such as classical force fields (FF) or quantum mechanics (QM)
provide the forces acting on atoms. These forces are used to simulate the motion of atoms with Newtonian physics, i.e.,
molecular dynamics (MD) simulation. Researchers have historically aimed to improve QM and FF algorithms to minimize
computational costs and better model the underlying physics for improved accuracy. In the last few decades, low-cost reactive
FF methods have contributed significantly to computational reactive chemistry research. Approaches such as empirical valence
bond,1 modified embedded atom method (MEAM),2 reactive force field (ReaxFF),3 and reactive empirical bond order (REBO)4

are often applied to describe the making and breaking of chemical bonds during reactive atomistic simulations. These reactive
FF methods use pre-determined physically-inspired functional forms with a small number of model parameters to approximate
the potential energy surface (PES). While these methods prove very powerful, they require application-specific parameterization,
since their physically-inspired functional forms lack the flexibility to simultaneously describe a broad range of chemical
systems.5 Fitting reactive FFs also requires prior knowledge of the reaction networks to be simulated, which contributes to the
expertise and labor required to perform this research, and potentially results in human bias concerning which reactions proceed.
QM methods, such as density-functional theory (DFT), are transferable, that is, they are applicable for estimating energies and
forces for a wide range of systems without reparameterization, since these calculations are based on the underlying physics
of electronic structure theory, rather than a pre-defined bonding pattern. However, the computational cost of QM methods is
prohibitive for many MD studies, which often require MD simulations with long time-scales (& 1 ns) and/or large systems
(& 1000 atoms).

Recently, machine learning (ML) interatomic potentials (MLIP) have been proposed as an alternative to QM and FF methods
for the prediction of potential energies and forces.6–17 MLIPs aim to bridge the speed vs. accuracy vs. generality gap that has

1



existed in chemistry for many decades. In 2007, Behler and Parrinello proposed a neural network (NN)-based ML method to
represent high-dimensional PES6 of atomic systems. In their method, atomic symmetry functions represent the local chemical
environment of each atom. These symmetry functions are input into elemental NNs to predict an atomic contribution to the
potential energy. The potential energy is then calculated as the sum of atomic energy predictions. These concepts have been
applied in building a range of MLIPs for different applications, such as SSW-NN,18 TensorMol,19 N2P2,20 and AMP.21 The
ANAKIN-ME (ANI) method combined modifications to the Behler and Parrinello symmetry functions with massive datasets
to construct transferable MLIPs for organic molecules containing the elements C, H, N, O, S, F, and Cl.22–25 While the ANI
MLIPs proved to be extremely general and accurate for near-equilibrium conformations of gas phase organic molecules, these
potentials do not address the challenges of condensed phase (i.e., periodic systems of liquids or solids) reactive chemistry.

MLIPs have been successfully applied to model chemical reactions in specific contexts,26, 27 for example, unimolecu-
lar/bimolecular gas-phase reaction pathways28–34 and specific condensed-phase reactive chemistry simulations.35 However,
each application necessitates a new data set and retraining of the MLIP.36 This bespoke development of reactive MLIPs requires
expert MLIP developers and significant compute resources to build MLIPs for each new target system, limiting the accessibility
and impact of MLIPs on reactive simulations. For this reason, a highly general MLIP targeting large classes of condensed phase
reactive chemistry would be transformational. However, a remaining major roadblock to developing a general reactive MLIP is
that it requires humans to know a priori which reactions should be included to produce the ideal training data set. As such, these
reactive MLIPs mirror many of the limitations of reactive FFs. Recent endeavors to build large data sets including reactions
have yielded groundbreaking results for developing a general-purpose MLIP.37 However, random sampling can produce models
with poorer performance than targeted, model-aware sampling strategies.22

Active learning (AL)38 is a class of algorithms designed to automatically sample, select, and label new data with the goal of
efficiently generating a diverse and relevant data set for producing a more robust ML model. AL aims to ameliorate human bias
through automating the decision-making process for adding new data to a training data set by defining an algorithm for data
collection. Starting from a small initial bootstrapping data set, the algorithm is applied iteratively, yielding generations of data
sets designed to improve upon their ancestors. It has been applied to develop numerous MLIPs in recent years.22, 26, 39–44 A
sampling scheme (often MD-based, and often using an MLIP trained to the current AL data set) is used to generate a very large
pool of molecular configurations. The selection of new data from this pool is often based on an uncertainty quantification (UQ)
approach (such as query-by-committee45), aiming to include only high-uncertainty structures in the ever-growing data set. The
labeling of selected configurations with energies and forces is accomplished by performing QM calculations, then these new
data are added to the training data set. Iterations of training, sampling, selecting, and labeling are performed until the resulting
ML potential performs as desired or is no longer improving.

For reactive chemistry, existing methodologies for training, selecting, and labeling are relatively straightforward to apply.
However, in the sampling step, adequately exploring reactive chemical space in an automated fashion is extremely challenging,46

because it requires the exploration of chemical variance of molecular species in tandem with structural variance associated
with non-equilibrium thermodynamic processes. While recent work (performed simultaneous and independent to this study)
developed an automated approach to sample transition states and minimum-energy-path structures for gas-phase reactions,47 an
alternative sampling procedure designed to enable reliable condensed-phase reactive MD simulations is essential.

Wang and co-workers developed an elegant but expensive approach for the MD-based exploration of reaction pathways in
the condensed phase, known as the ab initio nanoreactor (NR).48, 49 The NR was designed to model high-velocity molecular
collisions of small molecules by using a fictitious biasing force to promote chemical reactions and the formation of new
molecules, thus automatically exploring reaction pathways between arbitrary reactants and products. The NR took an
intermediate stance between physically-realistic simulation and rule-based enumeration approaches. The pathways that
result from energy refinement are applicable to any thermodynamic setting by providing reaction parameters (for example,
concentration and temperature) as input variables to a kinetic mechanistic model. Wang et al. applied the NR to observe
graphene ring formation from pure acetylene. Wang et al. also showed that this approach was able to discover a reaction pathway
from small early-earth molecules to glycine, one of the building blocks of life today. Although Wang et al. clearly demonstrated
the promise of the NR to discover reactive chemistry, the current ab initio NR approach is extremely computationally expensive.
Specifically, a 1-ns ab initio NR simulation required 132,400 graphics processing units (GPU) hours, despite using the relatively
low-level Hartree Fock (HF) method and a minimal basis set (3-21G).

Inspired by the work of Wang et al., we design an AL sampling procedure based on the NR that targets arbitrary reactive
chemical processes and compositions of H, C, N, and O elements, including near pure elemental systems and mixtures.
Combined with the ANI model architecture and applying AL at scale, we aim to produce a robust and transferable MLIP.
Figure 1 presents a summary of the nanoreactor active learning workflow and the specific applications investigated in this
work. To evaluate the final model, which we call ANI-nr, in practical research scenarios, we conduct several condensed-phase
reactive chemistry simulations with the ANI-nr potential, namely, carbon solid-phase nucleation, graphene ring formation
from acetylene with varying O2 concentrations, biodiesel ignition with different fuel additives, methane combustion, and the
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Ĥ |Ψ⟩ = E0 |Ψ⟩

Figure 1. Summary of the nanoreactor active learning workflow and specific applications.

spontaneous formation of glycine from early-earth molecules. Across this wide range of applications, we show ANI-nr provides
results that are consistent with chemical intuition, experimental data, QM calculations (HF, DFT, and density functional based
tight binding, DFTB), and classical reactive MD simulations (ReaxFF and a non-transferable MLIP). This study demonstrates
the capability of automated chemical exploration workflows to build a general-purpose reactive potential, resulting in ANI-nr,
an accurate and transferable potential capable of simulating a wide range of real-world reactive systems.

Results
We begin by evaluating the resulting training data set produced by our active learning nanoreactor scheme. Then, to show
the state-of-the-art transferability of the ANI-nr potential, we apply ANI-nr in five distinct case studies. The five case studies
were chosen to allow for a diverse comparison with common reactive chemistry methods. The five case studies are: pure
carbon simulated under varying pressures produces the expected structures, simulations of carbon ring formation in varying
concentrations of O2 are compared with DFTB simulations, biodiesel fuel additive simulations are compared with ReaxFF,
methane combustion simulations are compared with an application-specific MLIP, and the spontaneous formation of glycine
from early earth compounds is compared with ab initio MD nanoreactor and DFT-MD simulations.

Nanoreactor active learning
One of the most challenging tasks in developing a data set for training neural network potentials is knowing what data to
include in the training data set. This problem is compounded when developing reactive models. Given the flexibility of neural
networks, it is not good enough to include only the reactants, products, or transition state optimized structures, or even the
minimum energy path between states, in training data sets. Rather, if the potential is to accurately model reaction dynamics,
the potential energy surface up to some relative energy that corresponds with structures sampled at the temperature of interest
must be included. For a more general model, the temperature of interest is not known in advance. Therefore, we employ active
learning combined with a nanoreactor molecular dynamics sampler to generate the ANI-nr training data set. The nanoreactor
sampler randomly initializes condensed phase systems of small molecules, then applies oscillatory temperatures and density
during molecular dynamics to promote reactions and the formation of new products. Over more than 50 iterations of active
learning, more than 26,000 condensed systems with random C, H, N, and O compositions were selected and labeled with
density functional theory energies and forces. Figure 1 shows a diagram of the active learning process used in this work. For a
detailed description of our active learning process and sampler see the methods section.

Figure 2 a) through d) shows T-distributed Stochastic Neighbor Embeddings (TSNE) of atomic environment descriptors for
each element calculated for a random subset of atoms in the training data set. The blue points represent atomic environments in
the ANI-nr data set, while the red points represent atomic environments from the ANI-1x data set. As expected, since ANI-1x is

3/18



ANI-1x ANI-nr

Reduced dimension 1

R
e

d
u

c
e

d
 d

im
e

n
s
io

n
 2

Decane

Levulinic acid

Glycine

1-(Methylamino)

prop-1-en-1-ol

3-methyl-3,5-

cyclohexadienone

a) b)

c) d)

e)H C

N O

Figure 2. Inspection of the nanoreactor data set. Panels a), b) c), and d) show 2D visualizations of the T-distributed Stochastic
Neighbor Embeddings (TSNE) of the atomic descriptors from a random subset of the ANI-1x data set (red) and ANI-nr data set
(blue). Panel e) shows five examples of the 1212 unique known PubChem molecules that formed during active learning and are
present in the ANI-nr data set.

a non-reactive near equilibrium molecule data set, the ANI-nr data set covers effectively all the space covered by ANI-1x, plus
the pathway between many of the clusters in the ANI-1x data set. The pathways that merge ANI-1x clusters represent reactions
in a low dimensional representation. Further analyzing the ANI-nr data by searching all data points for molecules that also
exist in the PubChem database yields 1212 unique known PubChem molecules (only molecules with < 10 CNO atoms) in the
training data set. Figure 2 e) shows examples of the known PubChem molecules that exist in the active learning generated data
set. Since all initial systems started from random placement of small, 1 to 2 non-H atoms, the reaction pathways to produce
these 1212 unique molecules must have been visited during the active learning process. In this way, the active learning process
has automatically discovered these reaction pathways.

Carbon solid-phase nucleation
Simulations of amorphous carbon have long been one of the top interests among chemists and materials scientists, as some
distinctive materials like graphene, diamond and carbon nanotubes form from amorphous carbon systems under different
conditions. Understanding the behavior of amorphous carbon under different conditions would help us to develop functional
materials by controlling the growth process. Many reactive FFs like REBO50 and ReaxFF51 have been employed to simulate
amorphous carbon in MD. With the widespread use of ML methods, researchers are now also trying to investigate the amorphous
carbon system with trainable MLIPs.

At present, most of the existing literature is relying on selective sampling when building the training set for the MLIP,
resulting in a bespoke potential for a specific application. Wang. et. al52 trained an NN-based MLIP on a dataset obtained by
randomly modifying low-dimensional carbon structures and taking snapshots from AIMD simulations of liquid carbon. The
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MLIP trained on this dataset proved to be able to predict pure carbon fragments with the desired accuracy. Deringer et al.53

trained a Gaussian approximation potential (GAP) on structures sampled from DFT-based MD on liquid carbon systems. The
GAP model was validated on atomic energy and forces. Furthermore, the GAP model was used to predict some mechanical
properties of the bulk system, e.g., Young’s modulus.

Despite these achievements, MLIPs trained on application-specific datasets would have very poor transferability to new
chemistry, as the model has only been fit to a limited number of structures and reactions. On the other hand, the AL approach
presented in this work does not sample any specific form of carbon explicitly. We rely on the NR sampler and AL algorithm
to automatically select physically-relevant and unbiased configurations of carbon. To validate ANI-nr in carbon solid-phase
nucleation simulations under different conditions, we perform simulations at high (3.52 g/cc), medium (2.25 g/cc), and low
(0.50 g/cc) densities.

Figure 3 summarizes the product of each simulation. For the system with the highest density (3.52 g/cc), diamond, graphene
and hexagonal diamond phase coexist after 246 ps, where 70% of carbon atoms in the simulation box forms diamond cubic
crystal structure, and after another 2.3 ns the system contains 86% of carbon atoms in the diamond cubic crystal structure,
with very few graphene and hexagonal diamond sites. In the medium-density (2.25 g/cc) system, 31% of atoms rapidly form
graphene after 8.2 ps, and after another 2.3 ns the system contains 83% graphene. Graphene sheets tend to form a stacked
and more ordered graphite-like structure. The low-density (0.5 g/cc) system forms carbon atom chains after 250 ps, with 11%
of atoms forming graphene sheets. After 3 ns, the system contains 88% of atoms formed in graphene sheets. However, the
graphene sheets in this low-density case are more disordered and appear to form fullerene like closed/partial closed meshes. We
note that, for each of the high-, medium- and low-density carbon simulations, ANI-nr produces the expected structure of carbon
for the respective density.
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Figure 3. Results of ANI-nr carbon simulations starting from random carbon positions at three densities: 0.5g/cc, 2.25g/cc,
and 3.52g/cc.

In Table 1, we present lattice constants for 3 ANI-based MLIPs and experimental lattice constants. ANI-nr reproduces
the diamond cubic lattice constants with an error of only 0.01 Å. For graphite, ANI-nr predicts a and b lattice constants also
with an error of 0.01 Å, however, the c lattice constant (along the direction of π-π stacking in graphite) is predicted with an
error of 0.47 Å. This error is likely due to ANI-nr being a short-range model while long-range dispersion interactions are
important for π-π stacking. We also trained an MLIP with a longer-range local cutoff (5.5/4.5 Å) than the original ANI-nr
potential (5.2/3.5 Å), called ANI-nr(lr). The longer-range model performed significantly better than the original ANI-nr on the
c lattice parameter with an error of 0.15 Å while also reducing the 0.01 Å error for the a and b lattice parameters. However,
the longer-range model performs worse on diamond cubic with an error for a, b, and c lattice constants of 0.09 Å. A possible
explanation for this reduction in accuracy is that larger cutoffs reduce the resolution of the local atomic descriptors which can
affect accuracy in dense chemical environments. This shortcoming could be resolved by increasing the number of symmetry
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Crystal Model a (Å) b (Å) c (Å)

Diamond ANI-nr 3.58 3.58 3.58
ANI-nr(lr) 3.66 3.66 3.66
ANI-2x 3.75 3.75 3.64
Exp. 3.57 3.57 3.57

Graphite ANI-nr 2.47 2.47 6.24
ANI-nr(lr) 2.46 2.46 6.56
ANI-2x 2.44 2.44 10.0
Exp. 2.46 2.46 6.71

Table 1. Optimized crystal lattice constants (a,b,c) for diamond and graphite phases. Comparison between ANI-nr,
ANI-nr(lr), ANI-2x and experiment (Exp.).

functions on the longer-range MLIP, but this would greatly impact the computational speed of the model. A more optimal
solution would be to add an explicit dispersion correction to ANI-nr that captures long-range interactions while maintaining an
accurate description of the local environment.54 We also compare with ANI-2x,55 a model explicitly trained to small organic
molecules as a baseline. ANI-2x performs poorly at predicting the lattice constants for both diamond cubic and graphite. This
result is expected since the data set used to train ANI-2x does not contain any structures similar to either of these systems.
Furthermore, in contrast to the ANI-2x data set reference calculations, the reference calculations used for building the ANI-nr
data set includes dispersion corrections (see methods for details), which are essential to reproduce the c lattice parameter in
graphite. Finally, all models accurately predict the non-orthogonal experimental cell angles for diamond and graphite (see
Table S.I in Supporting Information).

Effect of oxygen on graphene ring formation
Wang et al.48 applied the original ab initio NR method to observe ring formation (i.e., the early stages of graphene formation)
from a pure acetylene (C2H2) system. Subsequently, Lei et. al.56 presented DFTB NR simulations of acetylene in the presence
of different amounts of oxygen, where O2/C2H2 = 0, 0.1, ..., 1 is the ratio of added O2 while the number of C2H2 molecules is
fixed to 40. Graphene formation is the dominant process for pure C2H2, as the generation of free radicals enables the rapid
growth of hydrocarbon rings. By contrast, the addition of O2 to the system deters or, at high enough O2/C2H2 ratios, completely
eliminates ring formation.56

Similar to the work of Lei et al.,56 we perform reactive simulations with varying ratios of C2H2 and O2. In comparison with
the DFTB simulations of Lei et al., ANI-nr enables significantly longer simulation times and larger systems. Specifically, while
Lei et al. performed simulations of 0.5 ns with between 160 and 270 atoms (depending on the O2/C2H2 ratio), we simulate
1000 atoms for 10 ns.

Figure 4 presents the amount of 3-, 4-, 5-, 6- , and 7-membered rings formed with respect to simulation time for 8 different
O2/C2H2 ratios. Increasing the oxygen ratio decreases the number of rings formed, which is in good agreement with the
simulation from Lei et al. and experimental literature.57 However, in contrast with Lei et al., a significant number of six-member
rings form even for a O2/C2H2 ratio of 0.5. In comparison, the simulations of Lei et al. predict significant ring formation
for O2/C2H2 ratio up to 0.2, but negligible ring formation for an O2/C2H2 ratio of 0.4. The ANI-nr results are in much
closer agreement with experimental data, which report graphene formation for O2/C2H2 ratios between 0.5 and 0.86. A clear
explanation for this discrepancy is the difference in simulation timescales and system sizes achievable for ANI-nr compared
with DFTB. For example, 6-membered rings begin to form in the O2/C2H2=0.5 system after 1 ns with ANI-nr. Considering
that the DFTB simulations of Lei et al. ran for only 0.5 ns, our results suggest that 6-membered rings could form under higher
oxygen ratio conditions using DFTB at longer time-scales. This case study demonstrate the value in the significantly lower
computational costs of ANI-nr compared to traditional methods, such as DFTB, to discover interesting phenomena that can
only be observed during long time-scale simulations.

To verify that the ANI-nr predictions of ring formation are reliable, we compute the NN ensemble disagreement throughout
the course of each simulation (see Figure S.1 in Supporting Information). The ensemble standard deviation in energy normalized
by the square-root of number atoms (ε) is lower than the AL energy threshold (0.03 kcal ·mol−1· N− 1

2 ) through nearly the
entire simulation (with only a few snapshots as exceptions), which confirms that each system is well-modeled by our MLIP. It
is also interesting that ε decreases with increasing O2/C2H2 ratio, suggesting that ANI-nr is most confident under a higher
O2/C2H2 ratio. The reason for such a tendency is that more oxidation reactions happen in the system with a larger O2/C2H2
ratio, which is a common reaction in our training set, although typically included for species other than acetylene. By contrast,
the system with a smaller O2/C2H2 ratio has more ring formation, large carbon sheet formation and even phase change process,
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Figure 4. Comparison of 3-, 4-, 5-, 6-, and 7-member ring formation for different ratios of C2H2 and O2.

which are less common in the training set.

Comparison of biofuel additives
To promote combustion processes of liquid fuel, fuel additives are utilized as detergents, oxygenates, emission depressors,
corrosion inhibitors, dyes, and to increase the octane number. Chen et al.58 performed high-temperature high-pressure MD
simulations with ReaxFF to predict the mechanisms and kinetics of several fuel additives, including ethanol, 2-butanol, and
methyl tert-butyl ether (MTBE). According to their results, 2-butanol was the best fuel additive at enhancing ignition, MTBE
demonstrated similar ignition enhancement to 2-butanol, but ethanol was the worst fuel additive, having a negligible effect on
the O2 consumption rate and ignition delay time (IDT) compared to the clean biofuel.

In order to validate the reliability of ANI-nr for simulating biodiesel and to investigate the reported ignition enhancement
of fuel additives, we reproduced four systems simulated by Chen et al.,58 namely, clean biodiesel, biodiesel with ethanol as
additive, biodiesel with 2-butanol as additive, and biodiesel with MTBE as additive. Figure 5 shows that the main products
(CO, CO2, and H2O) are produced in very similar quantities to the ReaxFF simulations of Chen et al. However, the overall rate
of fuel and O2 consumption is considerably faster for ANI-nr compared with ReaxFF. Specifically, for all four cases, nearly all
of the O2 was consumed in the first 0.3 ns with ANI-nr, while there was still 20%-50% unconsumed O2 after 2 ns with ReaxFF
(for tracking plots including the entire 2 ns simulation, see Figure S.2 in Supporting Information).

Table 2 quantifies the similarities and differences between ANI-nr and ReaxFF results. For example, despite the quantitative
difference in ignition delay times, the additive effect on ignition delay for ANI-nr agrees qualitatively with ReaxFF, namely,
all three additives cause product formation to occur at earlier times compared to clean biodiesel (recall Figure 5). While
the reduction in IDT is not as significant for ANI-nr compared to ReaxFF, IDTs are highly sensitive as to how the system
is initialized and to how ignition is defined (see Figure S.3 in Supporting Information). Furthermore, ANI-nr predicts that
2-butanol and MTBE both result in significant enhancement of O2 consumption, similar to ReaxFF. The primary qualitative
discrepancy with ReaxFF is that ANI-nr predicts that ethanol also enhances O2 consumption. Specifically, after the first 0.07 ns
of ANI-nr simulation, 50% of O2 was consumed in the pure biofuel system, while systems with additives consumed around
60% of O2 (for O2 consumption plots, see Figure S.4 in Supporting Information). By contrast, in the ReaxFF simulations both
the clean biofuel and ethanol additive systems consumed around 50% of O2 after 2 ns, while the 2-butanol additive and MTBE
additive systems consumed about 70% of O2.

While the ANI-nr results for ethanol are in conflict with ReaxFF, experimental work demonstrates that ethanol can actually
accelerate fuel ignition at relatively high pressures, in agreement with our high-pressure simulation results.59 Closer inspection
of our results provides understanding as to how ethanol accelerates the ignition process, similar to 2-butanol and MTBE. In
comparison to the pure biofuel, all three systems with additives have a higher and earlier peak in OH radical, when normalized
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Figure 5. Tracking plot of major products (CO, CO2, and H2O) and O2 for the biofuel simulations. (a) biofuel+O2 (b)
biofuel+O2 with ethanol additive (c) biofuel+O2 with 2-butanol additive (d) biofuel+O2 with MTBE additive. Ignition delay
time (IDT) is defined as the average time that at least five molecules of CO, CO2, and H2O are produced (see Figure S.3 in
Supporting Information).

System Ignition delay time (ps) O2 consumption (%)

ANI-nr ReaxFF ANI-nr ReaxFF
(t = 0.07 ns) (t = 2 ns)

Clean biofuel 55 239 49.0% 48.5%
Ethanol additive 45 126 58.6% 49.21%
2-butanol additive 46 110 57.5% 73.33%
MTBE additive 45 92 57.4% 70.3%

Table 2. Comparison between ANI-nr and ReaxFF ignition delay time (IDT) and O2 consumption for clean biofuel and
biofuel with each of the three additives. Ignition delay time is defined as when main products (CO, CO2, and H2O) are first
observed. O2 consumption is compared at 0.07 ns for ANI-nr and at 2 ns for ReaxFF, i.e., the time that the O2 consumption for
the clean biofuel is approximately equal for both models.

by the initial amount of O2 (see Figure S.5 in Supporting Information). The enhancement in OH production for ethanol is
intuitive since ethanol contains a hydroxyl group with a similar bond dissociation energy (BDE) to 2-butanol. Considering
the important role that the OH radical plays in ignition and combustion chemistry, the accelerated rate of OH production is
consistent with a lower ignition delay time for all three additive systems.

The discrepancy in overall reaction rates between ANI-nr and ReaxFF may be due to a difference in the underlying QM
approach used to build each model. ReaxFF was primarily developed based on B3LYP calculations (supplemented with
high-accuracy BDE data), while ANI-nr was trained to BLYP reference calculations. Since reaction rates are extremely sensitive
to energy barriers, this difference in the DFT functional can lead to a significant difference in overall reaction rates.

Methane combustion
Another advantage of MLIPs is that one can easily improve the performance of the potential on a given type of reaction by
training to an application-specific training set. Emerging research has shown the success of application-specific MLIPs on
systems like radical reactions in hydrocarbon combustions and gas-phase SN2, etc.60, 61

Though our ANI-nr potential was trained for a more general purpose, we compare the performance of our MLIP to
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an application-specific MLIP for methane combustion under high temperatures and pressures. Simulating methane in the
presence of O2 will help determine if the ANI-nr dataset adequately samples methane combustion reactions, or if direct
application-specific sampling is necessary.

Zeng et al.35 trained an NN potential to a data set of QM recalculated fragment clusters sampled from a ReaxFF simulation
of the combustion process of a mixture of CH4 and O2. They showed that the NN potential could then simulate the combustion
process of pure methane with a reasonable mechanism. Here, we reproduced their MD simulation of methane combustion
under the same conditions with our ANI-nr potential. Figure 6a shows that the ANI-nr potential produces very similar major
products and species profiles to those of Zeng et al. However, by comparison with their CH4 and O2 consumption rates, ANI-nr
predicts an overall reaction rate that is approximately a factor of four faster. Specifically, while their system required 0.5 ns of
simulation time to consume half of the initial CH4, our system required only 0.12 ns. Similar to the biofuel case, the difference
in the overall reaction rate is likely due to the difference in the reference DFT reaction energy barriers.

1

A)

C)

0ps 50ps 2.5ns
Time

B)

Figure 6. (a) Product molecule tracking plot of methane combustion simulation with ANI-nr. The tracking plot for the full
simulation can be found in Figure S.6 of Supporting Information. (b) Bond dissociation diagram for C-H bond in methane.
Comparison between ANI-nr and ANI-1x with the DFT and experimental bond dissociation energies (BDE). (c) Snapshots of
initial reactants, intermediate species, and final products.

To investigate the cause for the increased rate of CH4 consumption, Figure 6b compares the bond dissociation curve for
ANI-nr with ANI-1x and the BDE values from DFT and experiment. ANI-nr is clearly a significant improvement from ANI-1x
and agrees quite closely with the DFT BDE. As the ANI-nr and DFT BDEs are slightly larger than experiment, there is no
evidence that a poor DFT BDE is the cause for the accelerated reactivity of ANI-nr.

Due to the extreme simulation conditions, no experimental reference data are available for comparison. However, the
similar trend on species vs. time compared to the work of Zeng et al. indicates that our general-purpose MLIP was able to learn
the relevant physics and mechanisms as the application-specific MLIP of Zeng et al. Also, the CH4 and O2 consumption curves
for the ANI-nr model are much closer to exponential decay, which is more physically reasonable than the near-linear decay
plots of Zeng et al.

To further demonstrate the power of our general purpose AL procedure to generate a general-use reactive dataset, we
analyzed the application-specific dataset of Zeng et al. with our general MLIP, ANI-nr. Specifically, we computed the
normalized ensemble standard deviation (ε) of ANI-nr for every structure in the Zeng et al. training dataset (see Figure S.7 in

9/18



Supporting Information). The ε value is smaller than the AL energy cutoff criterion of 0.03 kcal/mol/N− 1
2 for 99.9% of the

structures in their application-specific dataset. This means that our AL approach would only consider ≈0.1% (or 72) of their
567,312 structures to be of high enough uncertainty to merit inclusion in our ANI-nr training data set. Based on these results,
we conclude that the application-specific dataset does not contain a significant amount of unique information for the combustion
of methane that is not already contained in our ANI-nr training dataset. Thus, poor sampling of methane combustion is not the
cause for the discrepancy in overall reaction rate.

Miller experiment
In 1959, Stanley Miller designed a famous experiment to elucidate the origins of life on earth.62 Miller applied an electric
field to a gaseous system consisting of simple small-molecule species (e.g., NH3, CO, H2O, H2, and CH4) and reported the
formation of amino acids, such as glycine (C2H5NO2). This revolutionary experiment led to the formation of the field of
prebiotic chemistry, which aims to discover the reaction networks that produce molecules which are essential for the formation
of life. In this spirit, computational studies have attempted to imitate the reaction conditions of the Miller experiment to predict
the key reaction pathways that lead to the formation of glycine. Recently, Saitta and Saija63 performed relatively short (≈40 ps)
near-ambient-temperature (400 K) condensed-phase (≈1 g/cc) DFT-MD simulations wherein an electric field is applied directly
to "spark" chemical reactions. As our MLIP does not contain the necessary electronic information to apply an electric field, we
instead encourage reactions to occur on picosecond time scales by performing high-temperature high-density MD simulations,
similar to the NR study of Wang et al.64 However, due to the low computational cost of our MLIP, we are able to run our
simulations considerably longer (≈4 ns) than the AIMD simulations of Wang et al. (≈1 ns) with the same system size of 228
atoms and with periodic boundary conditions. For this reason, we use a constant condensed-phase density (with corresponding
pressures around 1 GPa) rather than applying an artificial "piston" to periodically compress the non-periodic gas-phase system
to around 10 GPa, as was the case for Wang et al.
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+Ḣ

+H
" O

N CH
HN ĊH
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−Ḣ

+C
O

+CO
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Figure 7. Formation of glycine. Note that +H does not necessarily signify a free hydrogen atom, +H is short-hand for a proton
donor, e.g., NH4, NH3, CHO, CHNO, H3O, H2O. Likewise, -H does not necessarily signify dissociation of a hydrogen atom.
-H is short-hand for a proton acceptor, e.g., NH2, CO, CNO, H2O, OH. Green arrows denote reactions previously identified by
Wang et al. or Saitta and Saija. Orange arrows denote reactions that have a similar reaction in Wang et al. or Saitta and Saija.
Boxes encapsulate key intermediates, whose formation mechanisms are reported in Figure S.8 of Supporting Information. The
depiction of bond orders and radical species is based simply on chemical intuition, since ANI-nr does not provide explicit
orbital or electronic information (see Figure S.9 in Supporting Information for an alternative interpretation of this mechanism
involving ionic species).

Figure 7 presents the ANI-nr reaction mechanism to form glycine starting from the initial reactants. During our Miller
simulation, glycine is formed three times and persists for approximately 225 fs, 375 fs, and 913 fs. Dissociation of glycine
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in less than 1 ps is expected, considering the relatively high temperature of this simulation. The final step to form glycine is
hydrogen addition to C2H4NO2, similar to the mechanism of Saitta and Saija. However, hydrogen addition occurs at an oxygen
atom in our mechanism, rather than at the α-carbon as in the Saitta and Saija mechanism. In one instance, our Miller simulation
produced the same C2H4NO2 isomer as reported by Saitta and Saija. By contrast to the Saitta and Saija mechanism, this
C2H4NO2 isomer dissociated in our simulation rather than forming glycine. The key precursor to C2H4NO2 is CH4N, which is
formed through several pathways. The pathway to form CH4N that proceeds through the CH2O intermediate is very similar
to the mechanism reported by Wang et al. The mechanisms to form the intermediates formaldehyde (CH2O) and hydrogen
cyanide (CHN) from the initial reactants CO, NH3, and H2O were nearly identical to those reported by Wang et al. and Saitta
and Saija. The pathways to form the key intermediates carbon dioxide (CO2) and methylene (CH2) are reported in Figure S.8
in Supporting Information.

Overall, there are several similarities between our mechanism and those of Wang et al. and Saitta and Saija. Although
some differences exist between our mechanism and those reported in these previous simulation studies, this is not surprising
considering not only the difference in levels of theory (i.e., HF vs DFT vs MLIP), but also the difference in the simulation
methodologies (i.e., our simulation did not utilize a “piston” nor induce an electric field). To verify the fidelity of ANI-nr for
this system, we compared the DFT energies and forces with ANI-nr over the first 800 ps of the Miller experiment simulation
(see Figure S.10 in Supporting Information).

Conclusions
In this article, we introduce a general machine learning interatomic potential (ANI-nr) for organic condensed-phase reactive
molecular dynamics. ANI-nr is trained to a large data set obtained using an active learning (AL) workflow employing a new
MD-based sampling algorithm to discover diverse and relevant condensed phase reactive atomistic configurations. Our novel
sampler, inspired by the ab initio nanoreactor work of Wang et al., is the main innovation that drives these successes by building
a reactive data set spanning elemental compositions of C, H, N, and O under a wide range of conditions. Our AL process
provided data of unprecedented diversity and relevance while also uncovering more than one thousand unique molecules
from nine small-molecule initial species. Each unique molecular species formed by molecular dynamics simulation in our
nanoreactor sampler was the result of one or more reaction pathways which did not need to be known, specified, or analyzed
ahead of time. Our new active learning approach represents a break through in the automated development of next generation
reactive potentials for molecular dynamics simulation.

We validate the accuracy and applicability of the ANI-nr potential on five distinct condensed-phase reactive studies, namely,
carbon solid-phase nucleation at different densities, high temperature graphene ring formation from acetylene with varying O2
concentrations, ignition of biodiesel with three different fuel additives, combustion of methane, and the spontaneous formation
of glycine in early-earth conditions. In carbon solid-phase nucleation and graphene ring formation studies, we show that ANI-nr
reproduces experiment well. In other cases, where experiment is not available for comparison, ANI-nr produces results that are
by and large consistent with DFT, DFTB, ReaxFF, and an application-specific MLIP, all without the need to retrain.

We are providing the resulting ANI-nr potential and data set to the community for further application and analysis.
The DFT method used to calculate energies and forces for the data set was selected as an accurate approach that has been
successfully employed to study a diverse range of organic reactions65, 66 while remaining affordable enough for high-throughput
computations of large condensed-phase systems. For reactive chemistry, double hybrid DFT provides better accuracy, but at at
much greater computational cost. A highly valuable avenue for future research is to improve upon the potential through more
accurate quantum chemistry calculations, perhaps using transfer learning.23 In machine learning for language modeling, the
concept of foundational models–large, general models that can be specialized to specific tasks quickly with very small amounts
of data–has recently gained traction.67 Because ANI-nr is trained to a large, general data set, it would also be interesting to
consider whether it can act as a foundational model for more system-specific MLIPs when greater accuracy is required, for
example, when predicting reaction rates.

Methods

ANI-nr model descriptions, training details
The ANI-nr model was trained similarly to ANI models within other contexts,25 including materials science40 and chemistry.24

We use the ANI descriptors,10 which is a modified form of the Behler and Parinello neural network descriptors.6 ANI-nr uses a
local cutoff of 5.2 Å for the radial descriptors and 3.5 Å for the angular descriptors. The model is trained for the elements
C, H, N, and O, each of which has its own specialized NN potential. The neural network architecture for each element and
symmetry functions are reported in Tables S.II and S.III of Supporting Information, respectively. The model was trained using
both energy and force terms in the loss function as described in previous work.68 During training, we employ early stopping to
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prevent overfitting with learning rate annealing to ensure a high-fidelity fit. The model training is considered converged when
the learning rate drops below 1.0E-5.

Computational nanoreactor active learning for training set generation
The ANI-nr training data set was generated through an iterative active learning process, where sampling of new atomic
configurations is obtained with a nanoreactor-inspired MD simulation. To bootstrap the active learning process, periodic cells
containing randomly placed and oriented small molecules with less than three non-H atoms and with a randomly selected
composition of H, C, N, and O are generated. All training energies and forces are computed with the open-source CP2K
software69 using Kohn–Sham DFT,70 BLYP functional,71, 72 TZV2P basis set,73 GTH pseudopotentials,74 D3 dispersion
correction,75 and energy cutoffs of 600 and 60 Ry, respectively, for the plain-wave and Gaussian contributions to the basis set,
as recommended in previous work.65 The overall spin multiplicity is constrained to a singlet state, consistent with previous
studies that perform CP2K simulations of bulk systems containing radical species.66 The current AL generation MLIP is
then used to drive MD sampling with random oscillations of temperature and density to promote reactions during the allotted
simulation time. All MD simulations in this study are performed with the Atomic Simulation Environment (ASE)76 and the
NeuroChem package. We use an uncertainty quantification (UQ) metric, i.e., the normalized ensemble standard deviation in
energy and the forces,23, 40 to gauge when the model is under performing. Snapshots of the MD that are deemed to be poorly
described by the MLIP, based on the UQ metric, are included in the data set with their corresponding QM energy and forces.
Below is a detailed step-by-step description of the active learning workflow:

1. Generate a bootstrap data set (labeled with energies and forces) of 100 randomly generated periodic cells containing
randomly placed and oriented small molecules including C2, H2, N2, O2, NH3, CH4, CO2, H2O, C2H2 with random
composition.

2. Train ensemble of ANI potentials to the current training data set using 8-fold (16 blocks) cross validation (14/1/1 -
train/validation/test split) scheme.

3. Prepare for nanoreactor active learning sampling:

Build a new random box of small molecules with random size, density, placements, orientations. Define a random
schedule function for oscillating temperature (T ) and density (ρ). Oscillating functional form is the same for temperature
and density (see equations below), where t is time, tmax is a hyperparameter for the max time the simulation will run, and
Tstart, Tend, Tamp, ρstart, ρend, ρamp and tper are randomly selected values within a predetermined range (see Table S.IV in
Supporting Information):

T (t) = Tstart +
t

tmax
(Tend −Tstart)+Tamp sin2

(
t

tper

)
ρ(t) = ρstart +

t
tmax

(ρend −ρstart)+ρamp sin2
(

t
tper

)
4. Run nanoreactor MD simulation using forces from current AL generation MLIP

5. Monitor energy and force UQ metrics every 5-50 MD steps, if the UQ values go over a pre-selected value end the
simulation and add frame to a batch of new structures.

6. Run QM single-point calculations on the batch of new structures for energy and force labels.

7. Add new data to the training data set.

8. Go back to step 2 and repeat until the potential converges. We define convergence as when MLIP-driven MD sampling
simulations run for O(50 ps) on average. In other words, convergence is achieved when the MLIP is confident in all new
MD simulations.

Details of the resulting training data set
The resulting training set from the AL procedure includes 26,442 simulation cells with an average system size of 139 atoms.
Distributions of the system sizes, compositions, and densities can be found in Figures S.11, S.12, and S.13 of Supporting
Information, respectively. To automate the extraction of common molecular entities that formed during the AL process, we
developed a NetworkX-based package called MolFind. This python software tool employs user prescribed cutoff distances
for defining when two atoms are bonded or not and discovers clusters of atoms connected via bonds. The 3D molecular
architecture is partially captured through a graphical representation (i.e., nodes and edges) of the bonding topology where
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atoms are nodes and bonds are edges. Graphs are encoded according to the open source python package called NetworkX. The
graphical representation and the NetworkX package enables (1) the counting of the number of topologically distinct molecular
species in a simulation via a graph isomorphism check and (2) a comparison to known molecular entities with a specified
topology. Previously, we tabulated a large database of known molecules and associated topologies by scraping the entirety of
the PubChem database up to 10 non-hydrogen atoms. The existence of a species in the database is not required for MolFind to
extract a bonded atomic cluster, but if found, it can affix a chemical/species name with the entity.

Figure S.14 in Supporting Information shows a histogram of the sizes of all molecules that are found in the ANI-nr dataset,
which includes one system up to 145 atoms. The majority are small molecules, of similar size, or slightly large, to those from
which the systems were initialized. There are many occurrences of molecules in the range of 10 to 90 atoms. The largest
structures, ascertained by visual inspection, are graphene sheets. Furthermore, the 1212 unique PubChem molecules (less
than 10 CNO atoms) discussed in the Results section only represent the simulation frames that were selected by the UQ
estimate. Therefore, 1212 should be considered a lower-bound of molecules discovered during active learning. There are likely
many more molecules formed over all AL MD sampling, which is estimated to be 100s of nanoseconds of simulation time in
aggregate.

Carbon solid-phase nucleation
To investigate the formation process of diamond and graphene, we performed molecular dynamics simulations of amorphous
carbon under different densities. The initial structure was built with in-house code. We fixed the total number of carbon atoms
to 5000, and made three initial structures with three different densities (0.5 g/cc, 2.25 g/cc and 3.52 g/cc), by varying the
simulation box length. First, we randomly select an initial position in the simulation box as the coordinate of the first carbon
atom. Then, for each additional carbon atom, we generate random positions and keep the position if the distance to all previous
positions is larger than twice the van der waals radius for carbon atoma (1.7 Å). We iterate this process until all 5000 carbon
atoms are inserted. We run Langevin dynamics at a temperature of 2500 K for 5 ns with step length of 0.5 fs. Coordinates
and properties are recorded every 50 fs. We run 8 independent trajectories for each density to verify that the correct phase is
identified from different starting structures. We use the Open Visualization Tool (OVITO)77 to distinguish phases (diamond
cubic, hexagonal diamond, or graphene) in the snapshots.

Effect of oxygen on graphene ring formation
To investigate ring formation from acetylene, we performed MD simulations of eight different systems with varying O2/C2H2
ratios: (0.00, 0.08, 0.17, 0.22, 0.38, 0.50, 0.86, 1.33). The initial structures were generated with PackMol.78 Next, we use the
LBFGS optimizer to obtain the energy minima structure. Then, we run Langevin dynamics simulation at 2000 K for 10 ns
with a 0.5 fs time-step, and friction constant of 0.01. Snapshots and properties are recorded every 0.5 ps. We use our in-house
code MolFind to identify and count ring structures of varying sizes. Considering that the distance between bonded atoms can
fluctuate, we define a 0.02 Å buffer when scanning C-C bonds so that any pair of carbon atoms that has distance smaller than
1.72 Å (two times the covalent radius of carbon atom plus the buffer) were considered bonded. The buffers are also added when
analyzing other simulations.

Comparison of biofuel additives
To investigate the effect of different fuel additives on ignition performance, we performed simulations for biofuel and three
different additives: ethanol, 2-butanol and methyl tert-butyl ether. The biofuel composition, the number of additive molecules,
and the number of O2 molecules are the same as shown in Table 2 of the ReaxFF reference paper.58 We use Packmol to generate
the initial structure such that the initial separation of all molecules is at least 2 Å. The initial density is 0.25 g/cc in all four
cases. We run Langevin dynamics at a temperature of 100 K for 1 ps with steplength 0.1 fs for relaxation, then, we gradually
heat up the system with a 50 K/ps rate to 3000 K. After reaching the desired temperature of 3000 K, the simulation is ran for
an additional 10 ns. During the whole process (including relaxation and temperature ramping) snapshots and properties are
recorded every 1 ps. We run 5 independent trajectories for each system to reduce uncertainty in species profiles.

Methane combustion
The methane combustion system is initialized with 100 methane molecules and 200 O2 molecules. All molecules are inserted
using Packmol and ensuring that all molecules are separated by at least 2.0 Å. The cubic simulation box length is 37.60 Å,
resulting in a density of 0.25 g/cc. The temperature was initialized to 3000 K by Maxwell-Boltzmann distribution. Langevin
dynamics were run for 1ns with a time-step of 0.1 fs and with a friction constant of 0.01. Snapshots and properties are recorded
every 0.1 ps.
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Miller experiment
To investigate the ability to simulate complex organic system that involve biologically relevant molecules, we performed a
simulation under a similar settings of the Miller experiment. We used Packmol to randomly place 16 H2, 14 H2O, 14 CO,
14 NH3 and 14 CH4 in a cubic simulation box with edge length 12.1 Å. The density is then 1.067 g/cc. The simulation was
performed by Langevin dynamics with steplength 0.25 fs. We gradually increased the temperature from 0 K to 300 K in the
first 100 ps, then gradually increased the temperature from 300 K to 2500 K in the next 100 ps. We held the temperature at
2500 K for 4000 ps and then gradually cooled the system from 2500 K to 300 K over the final 200 ps. Snapshots and properties
are recorded every 12.5 fs (50 time steps).
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Crystal Model α (o) β (o) γ (o)

Diamond ANI-nr 90.0 90.0 90.0
ANI-nr(lr) 90.0 90.0 90.0
ANI-2x 90.0 90.0 90.0
Exp. 90.0 90.0 90.0

Graphite ANI-nr 90.0 90.0 120.
ANI-nr(lr) 90.0 90.0 120.
ANI-2x 90.4 89.7 120.
Exp. 90.0 90.0 120.

Table S.I. Optimized crystal angles (α,β ,γ) for diamond and graphite phases. Comparison between ANI-nr, ANI-nr(lr),
ANI-2x and experiment (Exp.).
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Figure S.1. Normalized ensemble standard deviation (ε) for all eight O2/C2H2 ratios.
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Figure S.2. Tracking plot of major products of the biofuel simulations. (a) biofuel+O2 system (b) biofuel with ethanol+O2 (c)
biofuel with 2-butanol+O2 (d) biofuel with MTBE+O2.
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Figure S.3. Ignition delay time (IDT) for biofuel simulations based on each of the major products CO, CO2, and H2O. To
remove anomalies when only a single molecule is produced significantly prior to "true" ignition, we define IDT as the earliest
time that at least five molecules of a given product are produced. The manuscript uses the average IDT value between CO, CO2,
and H2O. (a) biofuel+O2 system (b) biofuel with ethanol+O2 (c) biofuel with 2-butanol+O2 (d) biofuel with MTBE+O2.
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Figure S.4. O2 consumption (%) during combustion for clean biofuel compared with three different fuel additives, namely,
ethanol, 2-butanol, and MTBE. Insert compares O2 consumption for ANI-nr (at 0.07 ns) with ReaxFF (at 2 ns). Curves are
smoothed by averaging over 5 independent trajectories.
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Figure S.5. Ratio of OH to initial O2. (a) biofuel+O2 system (b) biofuel with ethanol+O2 (c) biofuel with 2-butanol+O2 (d)
biofuel with MTBE+O2
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Figure S.6. Tracking plot of major products of the methane combustion simulations.
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Figure S.7. Distribution of normalized ensemble standard deviation in energy for the ANI-nr model. Among 567312 available
structures in their training set, only 72 structures have normalized energy uncertainty larger than 0.03 kcal ·mol−1 ·N− 1

2
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Figure S.8. Formation of intermediates CH2 and CO2 from initial reactants (NH3, CO, CH4, H2O). Mechanism to form
CH2O is found in Figure 7 in the main text. Green arrows denote reactions previously identified by Wang et al. or Saitta and
Saija. Orange arrows denote reactions that have closely-related reactions in Wang et al. or Saitta and Saija.
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Figure S.9. An alternative mechanism for the formation of glycine in the ANI-nr Miller simulation. In this pathway, the final
step to form glycine involves H-abstraction from H3O, which is likely a cationic species (H3O+). The penultimate species
(C2H4NO2

– ) formed prior to glycine, therefore, cannot be unambiguously labeled as an anion or a radical. The uncertainty
regarding the ionic nature of this mechanism illustrates an issue with electron-agnostic ML potentials. The depiction of bond
orders, charges on ions, and radical species is based simply on chemical intuition, since ANI-nr does not provide explicit
orbital or electronic information.
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Figure S.10. Validation of Miller Experiment simulation. Comparison between DFT energies and forces with ANI-nr for the
first 800 ps.
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The ANI neural networks used in this work were implemented in the NeuroChem C++/CUDA software package. A batch
size of 32 was used while training the ANI-nr model. A weight of 1.0 was used on both the energy and force loss term. Learning
rate annealing was used during training, starting at a learning rate of 0.001 and converging at a learning rate of 0.00001. The
ADAM update algorithm is used during training. The network architecture is provided in Table S.II. The symmetry function
parameters are provided in Table S.III.

H C N O

Layer ID Nodes Activation Nodes Activation Nodes Activation Nodes Activation

1 256 CELU 224 CELU 192 CELU 192 CELU
2 192 CELU 190 CELU 160 CELU 160 CELU
3 160 CELU 160 CELU 128 CELU 128 CELU
4 1 Linear 1 Linear 1 Linear 1 Linear

Table S.II. ANI-nr neural network architecture

Radial Cutoff (Radial) (Å) 5.2
Radial Cutoff (Angular) (Å) 3.5
Radial Eta (Å−2) 65.7
Radial Shift (Å) 0.500000,0.646875,0.793750,0.940625,

1.087500,1.234375,1.381250,1.528125,
1.675000,1.821875,1.968750,2.115625,
2.262500,2.409375,2.556250,2.703125,
2.850000,2.996875,3.143750,3.290625,
3.437500,3.584375,3.731250,3.878125,
4.025000,4.171875,4.318750,4.465625,
4.612500,4.759375,4.906250,5.053125

Angular Zeta (-) 14.1
Angular Angular Shift (rad.) 0.39269908,1.1780972,

1.9634954,2.7488936
Angular Eta (Å−2) 10.1
Angular Radial Shift (rad.) 0.500,0.875,1.250,1.625,

2.000,2.375,2.750,3.125

Table S.III. ANI-nr symmetery function parameters
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Parameter Range

Tstart 1000 - 3000 K
Tend 100 - 2000 K
Tamp 0 - 2000 K
ρstart 0.1 - 2 g/cc
ρend 0.5 - 2 g/cc
ρamp 0 - 0.75 g/cc
tper T : 2 - 50 ps; ρ: 0.5 - 50 ps

Table S.IV. Parameters for nanoreactor oscillations in temperature and density.
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Figure S.11. Histogram of the system size (i.e., number of atoms) per system in the ANI-nr training data set.
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Figure S.12. Histogram of the system composition of all systems in the training data set, colored by element.
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Figure S.13. Histogram of the mass density (g/cc) of all systems in the training data set.
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Figure S.14. Distribution of the molecule size (i.e., number of heavy atoms) in the ANI-nr training set.
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