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ABSTRACT

This work introduces a novel application of generative adversarial networks (GANs) for the prediction of starting geometries in transition state
(TS) searches based on the geometries of reactants and products. The multi-dimensional potential energy space of a chemical reaction often
complicates the location of a starting TS geometry, leading to the correct TS combining reactants and products in question. The proposed
TS-GAN efficiently maps the space between reactants and products and generates reliable TS guess geometries, and it can be easily combined
with any quantum chemical software package performing geometry optimizations. The TS-GAN was trained and applied to generate TS
guess structures for typical chemical reactions, such as hydrogen migration, isomerization, and transition metal-catalyzed reactions. The
performance of the TS-GAN was directly compared to that of classical approaches, proving its high accuracy and efficiency. The current
TS-GAN can be extended to any dataset that contains sufficient chemical reactions for training. The software is freely available for training,

experimentation, and prediction at https://github.com/ekraka/TS-GAN.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055094

I. INTRODUCTION

Generative models have been historically applied in statistical
machine learning (ML) and have shown great potential in image
processing, computer vision, natural language processing, and the
medical field."* Generative models are required to know as much
as possible about the data, as generating one is in itself a complex
process. A remarkable generative model first introduced by Goodfel-
low et al.* and termed Generative Adversarial Network (GAN) has
gained significant attention. In this approach, neural networks auto-
matically learn and discover patterns and regularities in the input
data that are necessary to generate new examples that plausibly could
have been drawn from the original dataset.*

Originally, GANs were designed to generate realistic synthetic
images from a random distribution vector. Isola et al.’ realized that
a slight modification of the GAN by including a condition to have a
one-to-one mapping between a pair of input and output resulted in
the generation of realistic outputs from a given input. Conditional
GANSs have been demonstrated as a general-purpose solution for
image-to-image translation tasks, e.g., converting black and white

photographs to color, maps to satellite photographs, and sketches of
products to product photographs.’

In this work, we explored the possibility of utilizing a con-
ditional GAN to predict a transition state (TS) guess geometry
of a chemical reaction by mapping the space between reactants
and products to that of the TS. TS searches are common oper-
ations for kinetic modeling (e.g., variational transition state the-
ory®) and studying the mechanism of chemical reactions. How-
ever, finding TSs is a challenge in itself, especially if the reaction
is complex, and different reaction paths may occur.”* Often, the
calculation of TS structures strongly depends on the topology of
the underlying potential energy surface (PES),”!’ the sophistica-
tion of the search algorithm, as well as additional inputs such as
information about the stoichiometry of the TS from kinetic data or
details about the atoms involved in the bond-forming/breaking pro-
cesses.''!? A necessary prerequisite for finding the TS is a good TS
guess geometry to start from, which is typically constructed manu-
ally and adjusted accordingly in a trial-and-error fashion based on
chemical intuitions, such as Hammond’s postulate.'” As a result,
chemical knowledge and manual intervention are essential, yet this
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does not necessarily lead to the optimal mathematical solution.
Popular TS search methods incorporated in most common quan-
tum chemistry packages are the Berny algorithm,'* synchronous
transit-guided quasi-Newton (STQN) method,'” minimum energy
path procedures,'® Newton-Raphson type method procedures using
approximate Hessians,'” and Hessian update schemes,'*** just to
name a few. Although Hessian involved methods should be most
effective,” depending on the TS guess, the Hessian matrix may
not have the appropriate number of negative eigenvalues (i.e., just
one for a chemically meaningful TS of first order) requiring fur-
ther correction, e.g., a rational function technique;** they are also
computationally expensive, in particular, for larger reaction systems.

Over the years, several methods to generate approximate TS
structures were proposed. For instance, the growing string method
uses driving coordinates from reactants to find products from which
the TS can be generated,”” TS prediction within the Reaction Mech-
anism Generator (RMG) framework,”®”” the AARON code’®”’ that
automatically generates initial TS structures based on a library of TS
templates, and AutoTST**’! that automates TS searches for high-
throughput computational kinetics; in addition, approaches that
explore the PES have been reported.’”

Recently, ML-based models have made remarkable progress in
chemistry,””~* including TS search approaches.***° For instance,
approaches based on Gaussian process regression were reported
to improve classical Hessian update methods,”** find minimum
energy paths,” and predict activation energies.”” Kernel ridge
regression methods were also applied to construct ML potentials,
from which the TS was found.” Pattanaik et al°' presented a
method for predicting TS for isomerization reactions using a graph
neural network, showing a 71% accuracy, mainly failing for large
structures and reactions with symmetric TSs. Overall, these meth-
ods have been proven to be attractive new tools in TS searches sig-
nificantly reducing the computational expenses; however, current
methods are mostly subject to limitations caused by the complex-
ity of the code or the amount of required input, and they tend to
favor one type of reaction.”®?%15!

This work presents a novel approach to generate TS guess
geometries based on a conditional GAN using the Cartesian coordi-
nates of the reactant and product as only input, avoiding expensive
mapping of reaction paths or PES regions. The underlying goal was
to design a method that is simple to use, does not favor any reaction
type or size of the reaction complex, and can be easily expanded. The
applicability of our new TS-GAN was assessed for various chemical
reactions, including hydrogen transfer/migration reactions, isomer-
ization reactions, and multi-step reactions involving transition metal
catalysts.

Il. METHODS

In the following, we first describe the datasets utilized in this
work to train the TS-GAN model. The data consist of Cartesian
coordinates of each atom of reactant, product, and TS pairs, which
were converted to features, discussed in Sec. I B. The features are
directly utilized by the TS-GAN model, the architecture of which is
discussed in detail below. The TS-GAN model converts the features
back to predict the coordinates of each atom for the TS guess geome-
try. The performance of the TS-GAN model was compared with that
of other classical approaches based on geometrical similarity and the
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ability to predict starting coordinates for the TS close to the final TS
geometry.

A. Datasets

We trained our model on three separate datasets; each con-
tains optimized Cartesian coordinates of reactants, TS, and prod-
ucts. Dataset A contains over 500 reactions, including hydrogen
abstractions, intramolecular hydrogen migration, hydrogen transfer,
and a hydrogen addition to multiple bond reaction families (here,
referred to as H-migration reaction). The structures in A involve
anywhere from 3 to 55 atoms, including H, C, N, and O. Many of the
reactions are similar to those in RMG,?”” GMTKN55,°* and Baker’s””
datasets, from where only the H-migration reactions were chosen to
cover a wide range of the typical and less common chemical reac-
tions. The coordinates of reactants, TS, and products of all set A
reactions are included in the supplementary material.

We note that various density functional theory (DFT) methods
including B3LYP, M06, and wB97X levels of theory’**’ in connec-
tion to def2-TZVP and 6-31G(d,p) basis sets”*° were utilized to
optimize the TS geometry for dataset A. Each of the transition states
was validated using an intrinsic reaction coordinate (IRC) calcula-
tion>® by the authors, and the reactant and product structures were
calculated at the same level of theory as TS.

A recently published dataset by Grambow, Pattanaik, and
Green™ contains a total of 12 000 reactions generated with the
single-ended growing string method involving anywhere from 4 to
21 atoms including H, C, N, and O. From this dataset, we choose
~9500 reactions that were optimized with wB97X-D3/def2-TZVP
level of theory, similarly to the recently published ML-based method
for generating the TSs of isomerization reactions by Pattanaik et al.”!
as dataset B.

Dataset C contains only reactions including transition metals,
where many of them are multi-step catalyzed reactions. The appli-
cability of this dataset is not specific to any problem, but instead is
designed to investigate the feasibility of our approach. Dataset C is
based on Unified Reaction Valley Approach (URVA) studies of the
CATCO group® at the Southern Methodist University, Dallas TX,
USA. URVA is a popular tool to analyze the reaction mechanism
of a chemical reaction via the analysis of the reaction path and the
surrounding reaction valley on the potential energy surface.”” For
the purpose of our work, we selected geometries of reactants, TSs,
and products of about 400 chemical reactions from previous URVA
studies focusing on transition metals. Catalytic reactions in dataset
C contain the following transition metals: Ti, Fe, Ni, Cu, Ru, Rh, Pd,
Re, Ir, Pt, Au, and Hq. Table S1 of the supplementary material shows
the original citations for selected reactions.

The TS-GAN method was trained separately for each dataset.
Across all reaction complexes, datasets A and B were divided ran-
domly into an 80:20 manner. In other words, geometries of reac-
tants, TSs, and products of 80% of the reactions were used for train-
ing and 20% of the reactions for testing. For dataset C, 15 reactions
based on Ru, Au, and Ni were kept as a test set.

B. Data representation

The molecular three-dimensional Cartesian coordinates were
converted into the Coulomb matrix (CM). It is found to be an
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excellent descriptor because of its complete analogy to the elec-
tronic Hamiltonian used in ab initio methods.”! CM is frequently
used, especially in the ML approaches for predicting atomization
energies,’"%’ excitation energies,*’ electronic and charge transfer
couplings,*** and to study molecular materials.”**°"% CM was
formulated as mentioned by Rupp et al,’

63

0.52:* Voi=j,
M; = ZiZ; 1
U P . Voi%j W
Ri — Ryl

where Z; is the nuclear charge and R; contains the nuclear coor-
dinates of atom i as a vector. The coefficients in the diagonal ele-
ments are based on the polynomial fit of atomic energies to nuclear
charge.®!

Since CM is defined in terms of relative atomic coordinates, it
is invariant under rotations and translations of the molecule. This
gives the distance between atoms regardless of the choice of ori-
gin and makes it a unique descriptor as no two molecules will have
the same CM unless they are identical. We find that the CM rep-
resentation is sufficient for our purposes, efficiently calculated and
easily interpretable, making it a natural choice. However, a number
of other representations may also achieve good performance such
as weighted graph neural networks.”” We leave this investigation for
future work.

The size of the CM depends on the number of atoms in the
molecule. Because our dataset contains reaction complexes of differ-
ent sizes, a constant dimensionality for the input is desired. There-
fore, the fixed length of Mjj is set to 100. For molecules with the
number of atoms less than 100, the Mj; is padded with zeros. Note
that each of the dataset does not contain complexes with more than
100 atoms. CMs of all datasets are available on the GitHub page.”

C. Architecture of TS-GAN

A major problem faced by single architecture of neural net-
works such as Convolutional Neural Networks (CNNs) is the loss
function. For example, a neural architecture that minimizes the
Euclidean distance between two sets of images will result in the gen-
eration of blurry images due to the averaging of all distances.”’?
In this work, we utilize GANs that add an adversarial network as
a decoder to the generated image so that the loss is minimized in
such a way that the “output is indistinguishable from reality.”” The
remarkable idea of adding an adversarial network was first shown by
Goodfellow et al.,* where a generator G maps random noise vector
z to the desired output y (G: x — y). In our case, the condition is
applied to consider input vector x with z to map y (G: {x,z} — ).
The objective of the conditional GAN is expressed by the loss
function L,

L(G,D) = Ex,[log D(x,y)] + Ex,[log(1 - D(x,G(x,2)))], (2)

where G minimizes the objective against discriminator D that tries
to maximize it and [, refers to the expected value,

G* = arg minmaxpL(G, D). (3)
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The G network predicts the required output (CM of TS in our
case), which is pitted against an adversary D network. The objec-
tive of the D network is to determine whether the output pre-
dicted from the G network is from model distribution (fake) or
data distribution (real). As stated by Goodfellow et al., the G net-
work can be thought of as counterfeiters that produce fake currency
and use it without detection, while the D network acts as police
and detects counterfeit currency. The competition between G and
D networks allows both to improve until the data distribution of
fake and real is undistinguishable. In a similar fashion, Eq. (3) is
applied where G must minimize the objective against discrimina-
tor D that tries to maximize the objective. We note that, techni-
cally, the GAN model can be trained without z; however, this would
result in deterministic outputs and will fail to find patterns out-
side the delta function. The generator and discriminator architec-
tures were adopted from Isola et al.,” such as convolutional network
architecture, convolution-BatchNorm-ReLU, LeakyRELU for each
convolution network output, and dropouts for several layers in the
generator.

The CNNs can be thought of as filters that learn to multiply
weights to extract crucial information from the data such as facial
parts from a hypothetical CNN model that recognizes face. In this
way, such models can learn local features from the data. Providing
multiple CNNs enhances the learning of further intricate patterns
from the data as shown through visualizing CNNs by Fu et al.””
Thus, we utilize such an architecture for G motivated from Isola
et al., as shown in Fig. 1. In a similar fashion, D was composed of
three CNNss. Since the prediction task of D is to predict a single value
between 0 and 1, increasing the number of CNNs did not signifi-
cantly improve the performance. The CMs of reactants and products
(Rand P) are provided as input x to the generator. As the output, the
generator predicts synthetic TS z. In the next step, the fake pair (x, z)
is created by concatenating the R and P input and the output of the
generated model, while the R and P and the real TS form the real pair
(x,y). The created pairs are concatenated into a tensor that is fed as
the input to the discriminator network.

The generated CMs of the TS geometries are converted back
into three-dimensional Cartesian coordinates. In order to do so, we
developed an optimization process based on the distance matrix. The
initial structure for a TS geometry was taken as the mean of reac-
tant and product coordinates. We note that no significant difference
in the final geometry was observed when initial coordinates were
random set of numbers. Having the initial guess of TS coordinates,

Cinit = [C1,C3,...,Coy], 4)

where N is the number of atoms, the transition state coordinates can
be determined by iterating over Cinir,

Cts = Cim’t + f(C); (5)

where f(C) is a function of C determined by following the loss I to a
minimum. Given a CM, the distance matrix D is calculated by

0 v oi=j,

Dy = (Mij )_1 Voizj (6)
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FIG. 1. Architecture of TS-GAN. The CMs extracted from the coordinates of reactants (R) and products (P) are provided as the input vector x to the generator G. The
filter sizes of each convolution are provided below the convolutional layers. G contains eight convolutions, while D contains three. Real pair (X, y) and fake pair (x, z) are
concatenated into a tensor @ (in green) that is provided to the discriminator, which predicts the probability of z being fake or real. Once the model is trained, synthetic TS
(CM of TS) can directly be predicted from CMs of the reactant and product. The guess geometry of the TS is calculated from the corresponding CM.

and the loss ! is defined by

I= SN init _ yts\2
—ZZ(D,-] Dj)". (7)

Following the gradient of the loss [ with respect to C, Eq. (5) is
iterated until minimum [ is reached. We utilized the default param-
eters from SciPy’* optimize.minimize that uses the BFGS method
for optimization. The number of steps depends on its default set-
ting of convergence criteria of 1 x 107, The TS guess coordinates
for each atom are determined by reshaping the (1 x 3N)Cy vector
to (N x 3)Crs vector, where each column is the coordinate for each
atom,

G G G
Crs=4y. . . (8)
Gin
In order to validate the performance of the TS-GAN model,

the root-mean-square deviation (RMSD) is used to measure the
differences between real and predicted structures according to the

following equation:
N
RMSD = (i — yi)?/N, 9)
i=1

where y; and y, are the predicted and actual values of the geom-
etry of each atom i, respectively. y; is determined by minimiz-
ing the RMSD by translating and rotating Crs based on the Kab-
sch algorithm,”” widely used in cheminformatics for aligning two
chemical structures.

I1l. RESULTS AND DISCUSSION
A. TS-GAN model

The TS-GAN model is based on a deep generative framework
as detailed by Isola et al.,” which takes input as the coordinates of
the reactant and product to output the TS guess geometry. In the
process, the reactant and product coordinates are first converted
into constant size CMs and provided to the model to predict the
CM of the TS guess geometry. The CM of TS guess is converted to
coordinates of each atoms as detailed in Sec. II.

A GAN loss does not reach a minimum as it involves a zero sum
game. The two neural networks generator and discriminator maxi-
mize one’s action to minimize the other. The context of maximizing
and minimizing implies the competition between the generator and
discriminator as mentioned in Sec. I1. The competition is articulated
in such a manner that the generator has to minimize its objective
while the discriminator has to maximize it. In this manner, both the
generator and discriminator improve their respective performance
of predicting the CM for the guess TS geometry that should have
indistinguishable data distribution from the actual CM of the TS
geometry. However, the GAN loss cannot be investigated on the
progress of training TS-GAN due to no minimum. To analyze the
training progress in a holistic way, we use the “real vs fake” tactic.’
During the training process, a batch of random (real) samples of CM
are selected from the dataset, and after each iteration, the model gen-
erates (fake) samples. Figure 2 shows the CMs for a random reactant
and product pair at the end of the training progress. The CM:s of the
real and predicted TS guess geometry are visually similar. We mon-
itored the RMSD deviation between the real and predicted CM for
a random reactant and product pair over the progress of training to
analyze the training progress. We observed that the RMSD deviation
decreases over the number of iterations and reaches convergence,
signifying that the model has been trained. The RMSD deviation
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FIG. 2. An example of the real and generated Coulomb matrices randomly chosen
from datasets A, B, and C, and shown as a heatmap.

over the number of iterations for the three datasets is shown in
Fig. S1 of the supplementary material. The heatmaps and the RMSD
deviations both show that the TS-GAN model was efficient in the
training process predicting TS guess CMs very similar to real TS
CMs.

B. TS guess geometry prediction

The predicted TS guesses from the TS-GAN model were ana-
lyzed based on the geometry. However, geometrical analysis can only
be performed based on simple heuristics that can be directly com-
pared. Dataset A features hydrogen migration and thus allows the
possibility of checking the hydrogen distances between a hydrogen
donor (D) and the corresponding acceptor (A). As shown in Fig. 3,
we observe similar distributions for the mean of hydrogen (H) dis-
tances between H-D and H-A for the real and generated TS guesses.
The majority of H-D/H-A distances are on an average 1.45 A, which
is a typical bond length of the H-bonds in hydrogen migration.”

The minimal movement of atoms in dataset A allows analyzing
further chemical intuition from the predicted TS guess geometry.
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FIG. 3. Mean of the distances between donor-hydrogen and hydrogen-acceptor
for all 120 reactions in the test set of dataset A.

As stated by Hammond' in 1955, a chemical reaction involving the
reactant, product, and an intermediate TS will have the TS geom-
etry closer to either the reactant or the product depending on the
least energy difference. We sorted all chemical reactions to have
reactants at higher energy than the product. Thus, all chemical reac-
tions are made exothermic in nature, and therefore, the reactant and
TS geometry should be more similar to the product and TS geom-
etry. Figure 4(a) verifies the hypothesis where we observe that the
RMSD between the reactant and TS geometry is smaller and, there-
fore, is more similar compared to the product and TS geometry.
Similar results were observed for the generated TS guess geometries
from the TS-GAN model as shown in Fig. 4(b). Note that Fig. 4(a)
shows an extension toward the negative side of the plot due to the
smoothening process (default settings of DataGraph’”) of few reac-
tions with RMSD between the reactant/product and TS being close
to zero. However, the generated guess TS geometries do not have
minute RMSD differences from the reactant/product, and therefore,
the probability curve does not extend toward the negative region
[Fig. 4(b)]. The generated guess TS geometries usually have larger
RMSD compared to real TS geometries, due to the noise added from
the GAN setting and minimization process to obtain coordinates
from CM, which slightly changes the internal coordinates (bond
length and angles and dihedrals). We further note that such an anal-
ysis cannot be made for dataset B, as the multiple atom movement
leads to a random distribution of RMSD shown in Fig. S2.

C. TS-GAN applicability

Finding the correct TS depends on the space confined to reac-
tants, products, and a good starting TS geometry. Figure 5 shows a
typical energy profile of a three-step chemical reaction, where the
TS(II) connecting intermediates R and products P is of interest.
A guess TS geometry will only lead to the desired TS(II) if it has
the correct orientation, reflected by the normal mode belonging to
the imaginary frequency. The TS optimization is generally carried
out following the normal mode associated with the imaginary fre-
quency.”* However, caused by the complexity of the PES, a slight
change in the guess TS geometry can lead to a wrong TS; as depicted
in Fig. 5, one may end up at TS(I) or TS(III) both connected with
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FIG. 4. The distribution of difference in RMSD values between the reactant and TS
and the product and TS geometry for all 120 reactions in the test set of dataset A
for (a) real and (b) generated TS. REAC, PROD, TS, and GEN refers to reactant,
product, TS, and generated TS, respectively. All reactions are sorted to be exother-
mic and, therefore, we observe TS to be more similar to the reactant verifying the
Hammond's postulate.

lower energy barriers. Thus, besides the geometry, the energy plays
a dominant role.

We utilized two methods for optimizing the TS geometry for
direct comparison with the TS-GAN model. The first method is

Free Energy

Reaction Coordinate

FIG. 5. Sketch of a free energy profile for a three-step chemical reaction. R and P
are the intermediate reactant and product of interest. There are three TSs, denoted
by I, II, and Ill, respectively, where TS(ll) is the TS connecting R and P.

ARTICLE scitation.org/journalljcp

Berny geometry optimization,'* a classical approach following the
smallest imaginary frequency from a guess geometry to the TS geom-
etry. We start from the mean of reactant and product coordinates
as the guess geometry to search for the TS geometry (here called
the GTS method). The second method is the synchronous transit-
guided quasi-Newton (QST2) method,'” which requires the reac-
tant and product geometry as the input. It is important to highlight
that the QST2 method requires TS without intervening intermedi-
ates and, therefore, only a qualitative comparison between TS-GAN
and QST2 methods can be performed and not quantitative. The two
methods are widely applied in quantum chemistry to obtain the
TS geometry. We note that the GTS method was used for the TS-
GAN model to optimize the TS geometry from the predicted TS
guess geometry. In all further references, TS-GAN refers to GTS
optimized TS geometries based on predicted TS guess geometries
unless stated otherwise. The TS optimization and Hessian calcula-
tions were done using the same DFT level as used for optimizing
the test sets in Sec. II A. For each calculation, the Cartesian coor-
dinates were used with Hessian computed at every cycle of opti-
mization. The default values for the step size were implemented
from Gaussianl6 software that depends on the number of internal
coordinates.”

100

— O GTS
@ asT2
@ TS-GAN

80+ ]

(o]
o
I

N
o
Il

Accuracy (%)

n
o
I

Activation Frequency Overall

a) Dataset A

100 —

[o]
o
I

N
o
Il

Accuracy (%)
(o2}
o
Il

n
o
I

Activation Frequency Overall

b) Dataset B

FIG. 6. Accuracy of TS geometry prediction based on the three methods: GTS,
QST2, and TS-GAN for (a) 120 reactions in the test set of dataset A and (b) 1900
reactions in the test set of dataset B. Activation and frequency denote the accuracy
in predicting the positive activation energy and one imaginary frequency, respec-
tively. The overall accuracy considers activation, frequency, and the number of
cycles for optimization, which should be less than 200 for correct prediction.
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The TS geometry is first analyzed by quantifying that the acti-
vation energy is greater than zero. As denoted in Fig. 5, the TS
energy should always be greater than both the reactant and prod-
uct. Energies lower than either the reactant or product are basically
not related to the real TS. The second analysis relates to the number
of cycles required to reach convergence. The optimization process
that took more than 200 cycles is labeled as the convergence error
and, therefore, has the wrong TS guess geometry. The third analysis
is based on the imaginary frequencies, which can be either none, one,
or more than one. The TS geometry is labeled as correct when one
and only one imaginary frequency is observed, denoting the saddle
point. Any other scenario is labeled as a wrong TS guess geometry.
Thus, the overall accuracy of a method is labeled as correct when all
three criteria are satisfied.

Data set A
16 I positive
false
144 Il negative
12
10 A
8 4
6 .
4 -
2 N
0 .
0.0 0.5 1.0 15 2.0 25
RMSD
Data set B
I positive
false
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Figure 6 shows the results obtained from the GTS, QST2, and
TS-GAN methods. Dataset A is composed of hydrogen migrations.
The starting structures for the QST2 method were the reactant and
product corresponding to the intermediate (local energy minima’s
around the intermediate). The dataset is complex as multiple com-
parable hydrogen atoms have the possibility of migrating from one
atom to the other. The GTS and QST2 methods show a low per-
formance of 42% compared to TS-GAN (92%) in identifying the
correct TS geometry based on the activation energy. GTS, QST2, and
TS-GAN methods correctly identified one imaginary frequency for
81%, 64%, and 65%, respectively. However, multiple TS geometries
with one imaginary frequency predicted by GTS and QST2 meth-
ods failed in identifying the correct geometry as observed by the
activation energy, leading to poor performances of 39% and 29%,

Data set A

positive

negative

Data set B

negative

false

positive

FIG. 7. The distribution of RMSD values for predicted TS guess geometries for positives, false negatives (false), and negatives are shown as a histogram. The success rate

in identifying the correct TS geometries are shown as pie charts.
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respectively. Dataset B is composed of isomerization reactions only
and, therefore, involved multiple atoms movement for the reaction.
The multi-dimensional PES for the isomerization reaction makes it
complex to find the correct TS geometry as several saddle points exist
for the compound. The activation energy is correctly predicted for
all three methods, as shown in Fig. 6(b). However, the QST2 method
fails for a significant portion (47%) of the isomerization reactions
based on the imaginary frequency. The GTS and TS-GAN methods
correctly predict one imaginary frequency for 84% and 95%, respec-
tively. TS-GAN shows a remarkable performance with an overall
accuracy of 95%.

Having made sure that the TS-GAN model is able to
guess the correct TS geometry, we shift our focus toward the

ARTICLE

scitation.org/journalljcp

smallest frequency and its relation with the geometry. The opti-
mized TS geometries from the TS-GAN model based on the TS
guess geometry are labeled as positive, negative, and false. Posi-
tives are those complexes where the generated TS geometrically
resembles the real structure, and the TS optimized correctly (i.e.,
imaginary frequency corresponds to the expected vibration). Neg-
atives are those systems for which the TS optimization failed
due to a wrong TS geometry leading to either no imaginary fre-
quency or multiple imaginary frequency or convergence error
within 200 cycles. False negatives are the generated structures that
have more symmetry planes or different rotations of certain atoms
in the molecule. Note that the false negative TS guess geome-
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FIG. 8. Multi-step reaction for (a) ruthenium-trimethylphosphine catalyzed hydrogen transfer from alcohol and (b) nickel bis-dimethyl-phosphino-ethane [Ni(dmpe)] catalysts.
Transition state structures were predicted based on the intermediates as starting points. In green color are marked structures predicted by TS-GAN, QST2, or GTS.
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the labels, i.e., positive, negative and false negative, are shown in
Fig. S2.

Figure 7 shows the RMSD distribution of the generated TS
guess geometry and the corresponding pie chart with the annotated
labels. The majority of the predicted TSs are positive and have RMSD
values below 1.0 A for both datasets A and B with an accuracy
of 53% and 77%, respectively. The distribution of RMSD values is
based on the noise in the CM of the TS guess geometry. This results
in deviation of bond lengths, angles, and dihedrals for the atoms
involved in the TS guess geometry. However, such slight changes
do not interrupt the optimization process for the correct TS geom-
etry. The negative labels have wide distribution of RMSD values
ranging from 0.5 to 2.6 A. Negative structures with relatively low
RMSD values between 0.5 and 1.2 A show that the generated TS
guess geometry resembles the real TS; however, the TS optimization
failed during converge, which in many cases include self-consistent
field (SCF) optimization failures. The higher RMSD values for the
negative labels correspond to failure in the distance matrix generated
from the TS-GAN model. The false negative labels, similar to posi-
tives, have low RMSD values of less than 1.0 and 1.5 A for datasets A
and B, respectively.

The possibility of predicting multi-step reactions by TS-GAN is
explored through dataset C, which contains 15 chemical reactions,
with either Ni, Ru, or Au transition metal atoms. Similarly, as in the
previous examples, we compared TS-GAN, QST2, and GTS meth-
ods. Figure 8 shows two reaction profiles of catalysts containing Ru
and Ni, while the corresponding reaction of Ru and Au-catalysts is
presented in Fig. S3. Transition states are predicted based on the
intermediates. For example, TS2-3 was predicted using intermedi-
ates 2 and 3 as starting structures. Additionally, Fig. 8 shows whether
TS structures are predicted by TS-GAN, QST2, or GTS.

Figure 8(a) presents the energy profile of the ruthenium-
trimethylphosphine catalyzed hydrogen transfer from alcohol.
RMSD values range from 0.28 to 0.55 A, showing that the gener-
ated TS guess is geometrically close to the real TS. The generated TS
guess geometry from TS-GAN was able to successfully reach the cor-
rect TS geometry for four out of five intermediates in the reaction.
The QST2 method correctly detected the TS geometry for two, while
GTS detected for three out of the five intermediates. Additionally, we
analyzed a similar reaction with Ru-bimethylphosphine. As shown
in Fig. S3 of the supplementary material, the TS-GAN predicted all
TS structures correctly for given intermediates.

We further looked at the reaction of the C-C and C-H
bond activation of acetonitrile by a zerovalent nickel bis-dimethyl-
phosphino-ethane [Ni(dmpe)] catalysts.”” This multi-product reac-
tion starts with an #3-H,C,C-acetonitrile complex containing an
agostic C-H interaction with the metal center. As shown in Fig. 8(b),
this stable species (1) lies on a relatively flat surface connecting to
transition states leading to products 2, 3, and 4. The RMSD values
between the generated guess geometry and original TS are in the
range 0.28-0.84 A. TS-GAN and GTS predicted correctly all three
TSs, while QST?2 predicted only two.

The third multi-step reaction involves the hydroalkoxyla-
tion of allenes using N-heterocyclic carbene gold(I) complexes,
[NHC]JAu(I).* The reaction profile is presented in Fig. S3. The gen-
erated guess geometries are similar to the real TS, which is confirmed
by RMSD values of 0.62 and 0.23 A. TS-GAN predicts both TS
structures, which lead to the correct TS geometry.

ARTICLE scitation.org/journalljcp

Cartesian coordinates of the generated TS structures are avail-
able in the supplementary material.

IV. CONCLUSIONS

We discuss in this work how a generative adversarial network
can be applied to predict transition state guess geometries based on
the Cartesian coordinates of reactants and products. The TS-GAN
model was trained on three separate datasets, predicting transi-
tion state guesses for the H-migration reactions, isomerization reac-
tions, and transition-metal catalyzed reactions. We showed that the
TS-GAN model can be a powerful tool for predicting the TS guess
geometry for reactions similar to those trained. For example, dataset
A involves hydrogen migration reaction, and therefore, the trained
model for this dataset can be used to predict TS guess geometries for
all reactions that involve hydrogen migration. Similarly, the model
trained on dataset B can be used to predict TS guess geometries for
isomerization reactions, while transition metal-based reactions can
be predicted on the model trained on dataset C.

A direct comparison with classical approaches proves the effi-
ciency of our new TS-GAN method providing guess geometries
that are close to the optimized ones. Additionally, we observed that
the TS-GAN model follows Hammond’s postulate and, therefore,
is selective in generating TS guesses for a particular reaction with
multiple intermediates and several energy pathways. In the case of
dataset C, the TS-GAN model showed promise in generating good
TS guesses for the multi-step reactions involved in the catalytic
cycles of homogeneous transition metal catalysis.

In summary, we provide a new framework for finding TS guess
geometries that can be easily applied and extended to any dataset
that contains sufficient chemical reactions for training. The software
is freely available for training, experimentation, and prediction at
https://github.com/ekraka/TS-GAN.

SUPPLEMENTARY MATERIAL

The supplementary material contains citations to original
papers related to the transition metal catalysis reactions contained
in dataset C; RMSD between real and generated TS over the itera-
tion number for datasets A, B, and C; RMSD distributions of dataset
B for reactions in the test set; and energy profiles for Ru and Au
catalysts.
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