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Abstract

We evaluate the correlation between binding energy (BE) and electron density ρ(r) at

the bond critical point for 28 neutral hydrogen bonds, recently reported by Emamian

and co-workers (J. Comput. Chem., 2019, 40, 2868). As an efficient tool, we use local

stretching force constant kaHB derived from the local vibrational mode theory of

Konkoli and Cremer. We compare the physical nature of BE versus kaHB , and provide

an important explanation for cases with significant deviation in the BE– kaHB relation

as well as in the BE–ρ(r) correlation. We also show that care has to be taken when

different hydrogen bond strength measures are compared. The BE is a cumulative

hydrogen bond strength measure while kaHB is a local measure of hydrogen bond

strength covering different aspects of bonding. A simplified and unified description

of hydrogen bonding is not always possible and needs an in-depth understanding of

the systems involved.
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In a recent article,1 Emamian and co-workers judiciously selected a

diverse collection of 42 hydrogen-bonded dimers including 28 neutral

and 14 charged complexes, in order to study the nature of hydrogen

bonds with quantum chemistry. The geometry of these 42 dimer com-

plexes was optimized at B3LYP-D3(BJ)/ma-TZVPP level2–4 and the

binding energies (BEs) characterizing the strength of H-bonding were

calculated at CCSD(T)/jul-cc-pVTZ level5,6 employing half of basis set

superposition error correction.7,8 The authors utilized symmetry-

adapted perturbation theory (SAPT) at the SAPT2 + (3)δMP2/aug-cc-

pVTZ level9–11 to decompose the BEs into energy components and

proposed a novel classification of hydrogen bonding into four catego-

ries: very weak, weak to medium, medium, and strong. Emamian and co-

workers observed fairly strong linear correlation between the

CCSD(T) BEs and the electron density ρ(r) at the (3,−1) hydrogen bond

critical point (BCP) for both the neutral (R2 = 0.9732) and charged

(R2 = 0.9644) complexes. They advocated the use of this correlation

between BE and ρ(r) as a convenient way to predict in the molecular

systems the BE of individual hydrogen bonds when these BEs are

unattainable. We reassessed the correlation between BE and ρ(r) for

those hydrogen bonds in the 28 neutral complexes by utilizing the

local vibrational mode theory12,13 and obtained interesting insights

which provide a different perspective complementing the work of

Emamian and co-workers.

As shown in Figure 1(A), the correlation between BE and ρ(r) at

the BCP of 28 neutral hydrogen bonds contains four cases with signif-

icant deviation identified with a deviation criterion of 1.5!σ (σ is the

standard deviation of the residuals after fitting). However, Emamian

and co-workers did not provide any remarks on possible reasons.

In order to better understand and assess the above correlation,

we employed the local vibrational mode theory originally developedSadisha Nanayakkara and Yunwen Tao authors contributed equally to this work.
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by Konkoli and Cremer to calculate the local stretching force con-

stant kaHB of these 28 hydrogen bonds (collected in Table 1) based on

the Hessian (second-order derivatives of energy) matrices of the equi-

librium geometries optimized at the B3LYP-D3(BJ)/ma-TZVPP

level.2–4 Konkoli and Cremer derived in 1998 the local vibrational

modes associated with individual internal coordinates qn (e.g., H! ! !A
hydrogen bond length in D–H! ! !A hydrogen bonding) directly from

the normal vibrational modes (within the harmonic approximation)

by solving the mass-decoupled Euler-Lagrange equations.12 The

local vibrational mode associated with a bond stretching can be

considered as the motion being obtained via an infinitesimal

change in the bond length followed by the relaxation of all other

atoms in the molecular system. Each local mode has its

corresponding local mode frequency ωa
n and local mode force con-

stant kan (subscript n represents the target internal coordinate parame-

ter qn). The local mode force constant is independent of atomic masses

and characterizes pure electronic structure effects. The underlying physi-

cal nature of local mode force constant associated with a chemical bond

is the curvature of the Born–Oppenheimer potential energy surface (PES)

in the direction of the bond (i.e., diatomic) stretching. Therefore, the local

stretching force constant has been extensively used to quantify the

F IGURE 1 Correlation between BE and ρ(r) at the BCP of the, (A) 28 neutral hydrogen bonds in the original dataset (reproduced from ref.
[1]); (B) 22 neutral hydrogen bonds in the standard model or Group 0; (C) 35 neutral hydrogen bonds in the extended dataset. Group 1+ and Group
2+ dimers are represented by red triangles and squares, respectively. For a definition of Group 0, Group 1+, and Group 2+, see main text. mi
(i = 1–7) denotes the new dimers. Coefficient of determination R2, standard deviation of the residuals RMSE, and the sample size n are indicated
in blue for each linear regression line [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Local stretching force constant kaHB in mdyn/Å for the
28 neutral hydrogen bonds investigated by Emamian et al. in ref. [1]

Complex kaHB Complex kaHB

1 0.018 15 0.095

2 0.025 16 0.098

3 0.026 17 0.099

4 0.028 18 0.099

5 0.028 19 0.127

6 0.027 20 0.177

7 0.042 21 0.167

8 0.054 22 0.176

9 0.049 23 0.164

10 0.066 24 0.195

11 0.082 25 0.251

12 0.094 26 0.194

13 0.088 27 0.315

14 0.092 28 0.372

Note: The ordering of these 28 complexes stays the same as the
original work.
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intrinsic strength of both covalent bonds14–16 and noncovalent interac-

tions including hydrogen,17–20 halogen,21–24 chalcogen,25–27

pnicogen,28–30 and tetrel bonding.31 Concerning the detailed mathemati-

cal derivation of local vibrational mode theory, interested readers are

referred to a recent review article.13

We observed a rather strong correlation between the local

stretching force constant kaHB and the electron density ρ(r) at the BCP

for the 28 neutral hydrogen bonds (see Figure 2(A)) and this correla-

tion is marginally stronger than that between BE and ρ(r) according to

the coefficient of determination (R2). For hydrogen bonding denoted

as D–H! ! !A (D: donor atom/group; A: acceptor atom/group), the

(3,−1) BCP of hydrogen bond H! ! !A is a point between two bonding

atoms (H and A) where the first derivative of electron density vanish

(i.e., rρ(r) = 0) while the Hessian of dimension (3×3) for ρ(r) has two

negative eigenvalues and one positive eigenvalue.32 Furthermore,

the local stretching force constant kaHB of the H! ! !A hydrogen bond is

the curvature of the PES in the direction of H! ! !A stretching. Both ρ(r)

and kaHB are local second-order response properties associated with

the H! ! !A bond. This explains the strong correlation and also corrobo-

rates the fact that the local mode force constant characterizes the

pure electronic structure effects.

The linear correlation between BE and local stretching force

constant kaHB (see Figure 3(A)) is in the same range as the correlation

between BE and ρ(r). On one hand, Emamian and co-workers carefully

picked small-sized molecules for their set of 28 neutral hydrogen

bonded dimers with marginal secondary interactions, i.e. additional

interactions between the two monomers besides the target hydrogen

bonding, so that in this particular case the BE predominantly reflects

the pure hydrogen bonding strength. On the other hand, the local

stretching force constant kaHB with its physical nature as the curvature

of PES in the direction of hydrogen bond stretching has been widely

recognized as an intrinsic bond strength descriptor derived from vibra-

tional spectroscopy.13 Therefore, it is of interest to check in more

detail to what extent BE and kaHB as two different hydrogen bond

strength descriptors are compatible with each other.

We got particularly interested in the five cases with significant

deviation in the BE versus kaHB correlation identified with the devia-

tion criterion of 1.5!σ (see Figure 3(A)) because four of them overlap

with the significantly deviated points in the BE versus ρ(r) correlation.

Before we delve into this, however, it is necessary to review the

underlying physical nature of BEs when characterizing hydrogen bond

strength, especially on what physical interactions are covered in

F IGURE 2 Correlation between local stretching force constant kaHB and ρ(r) at the BCP of the, (A) 28 neutral hydrogen bonds in the original
dataset; (B) 22 neutral hydrogen bonds in the standard model or Group 0; (C) 35 neutral hydrogen bonds in the extended dataset. Group 1+ and
Group 2+ dimers are represented by red triangles and squares, respectively. For a definition of Group 0, Group 1+, and Group 2+, see main text. mi
(i = 1–7) denotes the new dimers. Coefficient of determination R2, standard deviation of the residuals RMSE, and the sample size n are indicated
in blue for each linear regression line [Color figure can be viewed at wileyonlinelibrary.com]
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comparison with local stretching force constants. Emamian and co-

workers claimed1 that the BE “is best to exhibit intrinsic binding

strength of the monomers without considering the structural relaxa-

tion of the monomers.” In other words, the BE includes all energy con-

tributions collectively upon complexation of the monomers. As we

sketch in Figure 4, the local stretching force constant kaHB for H! ! !A

bond covers the pure hydrogen bond interaction connecting the two

monomers, it does not cover additional interactions within the mono-

mers caused by hydrogen bonding. Based on this analysis, we can

explain the cases with significant deviation in the correlation between

BE and kaHB shown in Figure 3(A).

The five points with significant deviation can be grouped into two

parts including three above the regression line as Group 1 and two

below the regression line as Group 2. Additionally, Group 0 refers to

the standard model obtained after excluding Group 1 and Group 2,

which will be discussed in detail later. We find that Group 1 complexes

share the similarity that (1) the donor molecule is hydrogen fluoride

and (2) the acceptor atom A has more than one lone pair available to

delocalize into the σ*(F H) antibonding orbital. Since F H! ! !SH2

(complex 22) also has hydrogen fluoride as its hydrogen bond donor,

it belongs to Group 1. The fluorine atom is extremely electronegative

and therefore tends to attract F H bonding electron density creating

a partially positive charge on hydrogen atom. When hydrogen fluoride

and the acceptor monomer is hydrogen bonded, the lone pair elec-

trons from acceptor atom A delocalize into the σ*(F H) antibonding

orbital. The delocalization is further strengthened by the pulling of the

F IGURE 3 Correlation between BE and local stretching force constant kaHB of the, (A) 28 neutral hydrogen bonds in the original dataset;
(B) 22 neutral hydrogen bonds in the standard model or Group 0; (C) 35 neutral hydrogen bonds in the extended dataset. Group 1+ and Group 2+
dimers are represented by red triangles and squares, respectively. For a definition of Group 0, Group 1+, and Group 2+, see main text. mi (i = 1–7)
denotes the new dimers. Coefficient of determination R2, standard deviation of the residuals RMSE, and the sample size n are indicated in blue
for each linear regression line. Linear regression equations are shown for original and standard models [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 Schematic representation of a dimer system D–H! ! !A–
R stabilized by hydrogen bond H! ! !A. D–H is the donor monomer and
D represent the atom/group covalently bonded to hydrogen. A is the
acceptor atom/group and R is the rest part of the acceptor monomer.
In this model, no secondary interaction between two monomers exists
except the hydrogen bond. The local stretching force constant kaHB
associated with hydrogen bond H! ! !A covers the hydrogen bond
interaction between these two monomers but it does not cover the
additional (de)stabilization within monomers [Color figure can be
viewed at wileyonlinelibrary.com]
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electronegative fluorine atom. This provides the hydrogen atom in

F H with excess electron density leading to repulsive interaction with

the electron density of the fluorine atom. Such a repulsion counting

as a destabilizing factor toward the total BE is not reflected in the

local stretching force constant kaHB explaining why these four data

points are located above the regression line.

For Group 2 complexes, the donor monomers are hydrogen azide

(HN3) and hydrogen fluoride (HF), both of which are weak acids while

the acceptor monomer is ammonia (NH3) as weak base. The associa-

tion of ammonia and weak acid molecules reminds us of the formation

of ammonium salt consisting of an ammonium cation (NH+
4 ) and an

anion. Therefore, in the case of hydrogen bonding between ammonia

(NH3) and a weak acid (D–H), the partially ionic character of ammo-

nium salt arising from the delocalization of ammonia lone pair into the

σ* (D–H) antibonding orbital (covalent character of H! ! !N) leads to an

electrostatic attraction between the anion (D−) and the ammonium

cation (H+!NH3).
33 Such an ionic attraction counts as a stabilizing fac-

tor toward the total BE but is not reflected by the local stretching

force constant kaHB of H! ! !N explaining why these two cases with sig-

nificant deviation are found below the regression line.

Furthermore, to demonstrate that the observed deviations to the

BE and kaHB model are not artifacts of the statistical method used here,

but instead have a sound physical basis, we calculated BE, ρ(r) (at the

same levels of theory as in the ref. 1), and kaHB for a set of newly

designed dimers (see Table 2). These were designed to have similar

hydrogen bonding environment as in Group 1 or Group 2 dimers,

which deviate from the simple hydrogen bond situation due to the

presence of additional (de)stabilization. The new dimers contain as

their acceptor or donor at least one of the monomers incorporated in

the original 28 dimers. For a systematic comparison of how the pres-

ence of complexes that deviate from simple hydrogen bond situation

can affect the quality of the BE and kaHB model, we did the following.

First, we removed all the systems belonging to and as characterized

by Group 1 and Group 2 dimer classes (i.e., Group 1: (20), (22), (25),

(27), and Group 2: (26), (28), respectively) and only considered the

rest of the 22 dimers (denoted as Group 0). These dimer systems

have the simple situation in their hydrogen bonding nature and

the corresponding linear regression line is considered as a standard/

simple model between BE and kaHB , which has R2 = 0.9871 with

RMSE = 0.1937 (see Figure 3(B)). Then, with the inclusion of the

seven new dimers (denoted by Group 1+ and Group 2+) we did linear

regression for the extended data set with 35 dimers, and the

corresponding linear regression line between BE and kaHB has

R2 = 0.9413 with RMSE = 1.0356 (see Figure 3(C)). In comparison to

the standard model between BE and kaHB , we could still see a fairly

high correlation for the extended data set, but the deviation (given by

RMSE) is much more pronounced now. This is a clear indication that

in the presence of complexes that diverge from the simple hydrogen

bond situation, the quality of the model is affected and as a caveat we

like to point out that careful consideration should be taken when pre-

senting a unified picture of hydrogen bonding under such circum-

stances. Also, this analysis further confirmed, the identification of the

deviations defined as Group 1 and Group 2, is not merely based on the

points produced by the statistical method we used here, but rather

guided by our chemical intuition. A similar kind of evaluation was also

carried out for BE and ρ(r), and kaHB and ρ(r) relationships as shown in

Figures 1(B),(C) and 2(B),(C), respectively.

The conclusions of our work can be summarized as follows.

• Those cases with significant deviation in the ρ(r) versus BE correla-

tion are difficult to explain in reminiscence of the Hohenberg–

Kohn theorem which relates energy to electron density, but so far

the actual functional between the two is still not known. The local

stretching force constant kaHB of hydrogen bond H! ! !A characteriz-

ing the hydrogen bond strength between the donor and acceptor

monomers is an effective tool for assessing cases with significant

deviation in the BE– kaHB and BE–ρ(r) correlations.

• For 28 neutral hydrogen-bonded dimer complexes investigated by

Emamian and co-workers, both BE and kaHB are reasonable descrip-

tors for quantifying the hydrogen bond strength and they provide

in general consistent ordering of bond strength for these 28 com-

plexes. We show that both BE and kaHB provide similar measures of

hydrogen bond strength based on the judicious selection of donor/

acceptor monomers forming 28 simple dimer complexes made by

Emamian and co-workers. However, the local stretching force con-

stant kaHB avoids the twist of borrowing additional local descriptors

to indirectly quantify the hydrogen bond strength (like the use of

ρ(r) to predict BE). Therefore, the use of kaHB is straightforward

TABLE 2 Binding energy (CCSD(T)/jul-cc-pVTZ level with half counterpoise correction, indicated as BE) in kcal/Mol, ρ(r) (B3LYP-D3(BJ)/ma-
TZVPP level) in a.u., local stretching force constant kaHB in mdyn/Å for the newly designed dimers

Group Complex Structure BE ρ(r) kaHB

Group 1+ m1 FH! ! !NCH −7.40 0.0399 0.251

m2 FH! ! !OC −1.54 0.0160 0.083

m3 FH! ! !FCCH −1.01 0.0133 0.053

Group 2+ m4 N3H! ! !N(Me)3 −9.47 0.0438 0.231

m5 FH! ! !N(Me)3 −16.38 0.0763 0.406

m6 HCOOH! ! !NH3 −12.02 0.0508 0.285

m7 HCO3H
a! ! !NH3 −14.08 0.0557 0.309

aPeroxy acid.
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when measuring the hydrogen bond strength and generally appli-

cable also to complex systems like water clusters or proteins.

• Our work provides a different point of view into the nature of

hydrogen bonding by emphasizing the interactions within the

donor/acceptor monomer which are not reflected by local

electronic structure descriptors of H! ! !A such as ρ(r) and kaHB but

contribute marginally to the total BE of the 28 neutral hydrogen-

bonded complexes. Therefore, care has to be taken when different

hydrogen bond strength measures are compared. The BE is a

cumulative hydrogen bond strength measure while kaHB is a local

measure of hydrogen bond strength.

• As a caveat we want to highlight, any attempt to present a simplified

and unified description of hydrogen bonding as done in the work of

Emamian and co-workers via their BE and ρ(r) model, can be clouded

by the fact that many systems tend to diverge from the simple hydro-

gen bond situation due to other factors that come into play. Thus,

careful consideration should be taken under such situations.
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