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Abstract
The interplay between FeC and CO bonding in carboxymyoglobin (MbCO) and the role of potential hydrogen bonding between
the CO moiety and the side chains of the surrounding protein amino acids have been the subject of numerous experimental and
theoretical studies. In this work, we present a quantitative measure for the intrinsic FeC and CO bond strength in MbCO, as well
as for CO⋯H bonding, based on the local vibrational mode analysis, originally developed by Konkoli and Cremer. We
investigated a gas phase model, two models of the wild-type protein, and 17 protein mutations that change the distal polarity
of the heme pocket, as well as two protein mutations of the heme porphyrin ring. Based on local mode force constants, we could
quantify for the first time the suggested inverse relationship between the CO and FeC bond strength, the strength of CO⋯H
bonding, and how it weakens the CO bond. Combined with the natural orbital analysis, we could also confirm the key role of π
back donation between Fe and the COmoiety in determining the FeC bond strength.We further clarified that CO and FeC normal
modes couple with other protein motions in the protein environment. Therefore, normal mode frequencies/force constants are not
suited as bond strength descriptors and instead their local mode counterparts should be used. Our comprehensive results provide
new guidelines for the fine-tuning of existing and the design of MbCO models with specific FeC, CO, and CO⋯H bond
strengths.
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Introduction

The metallo-enzyme myoglobin (Mb) is responsible for stor-
age of oxygen in vertebrates and plays an important role in
many physiological functions of the heart and skeletal muscles
[1–4]. The Mb active site involves a heme group with iron in

an oxidized (Fe3+, ferric) or reduced (Fe2+, ferrous) form. As
shown in Fig. 1, the heme group is fixed in the Mb active site
via Fe-N bonding with the side chain of H93 (proximal
histidine), while the opposite site of the heme pocket is occu-
pied by H64 (distal histidine), leaving enough space for small
ligands such as CO, NO·, and O2 to enter and bind to the iron.
These small molecular ligands play a key role in many bio-
logical processes via transferring signals for conformational
changes of the Mb protein, resulting in diverse enzymatic
activity [5]. One has monitored the interaction between the
small ligands coordinated to the iron of the heme group and
the active site pocket of Mb by vibrational spectroscopy, in
particular by resonance Raman techniques [6] and time-
resolved resonance Raman spectroscopy [7]. CO has been
considered a useful vibrational spectroscopy probe because
the CO absorption band can easily be identified in the spec-
trum. It has been assumed that the CO vibration does not
strongly couple with other vibrational modes, and in this
way directly reflects the interaction with Fe and the heme
pocket, an important assumption, which has also laid the basis
for using CO as a frequent vibrational Stark effect (VSE)
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probe [8–14]. Caused by the popularity of the CO ligand,
carboxymyoglobin (MbCO) has been the subject of intense
experimental [15–36] and theoretical [37–52] studies since the
first Mb X-ray structure published in 1960 [2].

The IR absorbance spectrum of sperm whale MbCO
[28] (PDB entry: 1A6G) shows four maxima, which were
originally assigned to the CO stretching vibration of dif-
ferent conformational states, labeled as A0 – A3; A0

(1965 cm−1), A1 (1947 cm−1), A2 (1942 cm−1), and A3

(1932 cm−1) [53–55]. At a neutral or alkaline pH, the
most dominant band was found at 1945 cm−1 being iden-
tified as a combination of the two A1 and A2 conformers
[53, 54]. It has been suggested that the observed differ-
ences in the CO absorptions originate from changes in the
electrostatic interaction between the CO coordinated to Fe
and the heme pocket, which adapts a somewhat different
electronic structure for each of the different conformation-
al states [20, 21, 29]. The A0 state was assigned to a
structure where the protonated imidazole side chain of
H64 is moved from the distal heme pocket into the sur-
rounding water solvent. The A1 and A3 states were

characterized by a neutral imidazole side chain inside
the heme pocket. Exchange kinetics between the A1 and
A3 states suggested that they originate from two slightly
different conformations of H64 in the distal pocket, where
A1 corresponds to a weaker interaction between H64 and
CO, while A3 corresponds to a stronger interaction [17,
18, 32, 33, 54, 56]. The situation has been complicated by
the fact that the distal histidine H64 can form two tauto-
mers (ϵ and δ) leading to a different interaction with the
CO molecule coordinated to iron, as shown in Fig. 1. So
far, the relationship between the A conformational states
and the H64 tautomer remains controversial, mainly be-
cause of the fact that it is still unclear which tautomer of
H64 is more stable [17, 18, 20, 23, 26, 28, 29, 37–39, 42,
51].

Other studies [40, 43, 52, 57] pointed out that there is
obviously an inverse correlation between the FeC and CO
stretching frequencies observed in MbCO and its mutations,
suggesting that strengthening of the FeC bond leads to weak-
ening of the CO bond. It has been argued that this inverse
correlation originates from π back donation from the occupied

Fig. 1 a MbCO active site model in the gas phase (Gas), QM part of
MbCOH64ϵ andH64δ; the distal His64 is shown in blue. b QM part of
MbCO H64ϵR and H64δR; the different position of the heme vinyl
groups in the R forms is marked in red. For a detailed description, see

text. Snapshots of the active site pocket for all MbCO systems
investigated in this work are collected in the electronic supplementary
material, in Figs. S1–S4
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dπ orbitals of iron into the vacant CO π∗ orbitals. The resulting
electron transfer into the CO π∗ orbitals weakens the CO bond
and strengthens the FeC bond [52, 58, 59]. However, to quan-
tify this important reverse relation for the wild-typeMb and its
protein mutations, one needs a quantitative measure of the
intrinsic strength of a chemical bond. The local mode theory,
originally developed by Konkoli and Cremer [60–64], pro-
vides this highly sought-after bond strength measure based
on vibrational spectroscopy, which was applied in this work.

It has been known for a long time that the Mb environment
lowers the binding affinity of CO to the heme group compared
to O2, whereas in solution CO binds to the free heme stronger
than O2 [65]. One possible explanation was based on different
electrostatic interactions between the ligand and the distal site
of the heme pocket [66], resulting in a stronger hydrogen bond
between H64ϵ and O2 compared to the CO ligand. Some
theoretical studies argued that the difference in the hydrogen
bond energies of H⋯O2 and H⋯OC leads to the discrimina-
tion between the O2 and CO ligands by the protein [39, 44].
These findings are in line with neutron scattering data sug-
gesting the existence of a H⋯O2 bond in the oxymyoglobin
(MbO2) complex [67], whereas no H⋯OC hydrogen bond
was observed in the MbCO complex [68]. So far, the potential
role of hydrogen bonding as a stabilizing factor ofH64ϵ over
H64δ has remained unclear.

To shed light into the currently open questions in a system-
atic way, our study was primarily aimed at the following:

1. To derive intrinsic FeC and CO bond strength measures
based on local vibrational force constants and related
bond strength orders BSO n.

2. To quantify the suggested inverse relationship between
FeC and CO bond strength based on local vibrational
force constants.

3. To further explore the postulated relationship between π
back donation and FeC bond strength.

4. To clarify the role of hydrogen bonding on the CO bond
strength.

5. To assess to what extent the FeC and CO vibrational
modes in these proteins are localized, which determines
their suitability as bond strength measures.

As a test set, we chose 20 different MbCO systems;
the MbCO active site model in the gas phase (Gas), the
MbCO wild-type ϵ and δ tautomers (see Fig. 1a),
complemented with 17 protein mutations involving the
replacement of distal His64 and/or other distal amino
acids with amino acids that change the distal polarity,
and two protein mutations involving a reversed orienta-
tion of the vinyl groups in the heme porphyrin ring
(Fig. 1b). The selected protein mutations were based
on experimental spectroscopy data being available in
the literature [17, 21, 22, 25, 33, 35, 69]. The

nomenclature of these mutations was adapted from the
literature: H64A, H64G, H64I, H64L, H64M, H64Q,
and H64V are MbCO protein mutations where the distal
histidine H64 is mutated; F43W, F43V, F46V, L29F,
V68F, and V68N are MbCO protein mutations where
other amino acids of the distal pocket are exchanged
while keeping H64 in the ϵ tautomeric form [18, 29,
41]; H64QL29F and H64LV68F are MbCO double
protein mutations involving mutations of H64; and
H64ϵR and H64δR are MbCO mutations with a re-
versed orientation of the vinyl groups [35]. Table S1
of the electronic supplementary material provides further
details about the protein mutations. While in this work
we focused predominantly on distal modifications, in
future work, we will investigate the influence of proxi-
mal modifications as well.

As a suitable measure of the intrinsic bond strength, local
mode force constants were derived from the local vibrational
mode theory originally developed by Konkoli and Cremer
[60–64]. A short introduction into the local mode theory is
given in the following computational section. Local mode
force constants were complemented with atomic charges of
the Fe, C, O, and NH93 atoms, FeCO bond angles, the popu-
lation of the CO π∗ molecular orbitals, and electron density
features such as the energy density at the FeC and CO bond
critical points determining the covalent bond character.

Computational methods

Local vibrational mode theory

The normal vibrational modes of a molecule are generally
delocalized over parts or even over the whole molecule
[70–72]. Therefore, normal mode vibrational frequencies or
the corresponding normal mode force constants are ineligible
as bond strength measures [73–75]. A molecular vibration can
be described via the Euler-Lagrange equations:

L x; ẋ
! "

¼ T ẋ
! "

−V xð Þ ð1Þ

¼ 1
2
ẋ
†
Mẋ−

1
2
x†Fxx ð2Þ

where the Lagrangian L x; ẋ
! "

is defined as the difference of
the kinetic energy T ẋ

! "
and the potential energy V(x) of the

vibrational mode.
Vector x contains the 3N Cartesian displacement coordi-

nates of the molecule being composed of N atoms describing
the deviation of the atoms from their equilibrium position

during the vibration, and ẋ denotes differentiation with respect
to time. Fx is the force constant matrix (Hessian) in Cartesian
coordinates x. M is the diagonal mass matrix containing the
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atomic masses. Both square matrices have the dimension
(3N × 3N).

The Lagrangian can be also expressed in terms of
Nvib = (3N −K) internal coordinates q (K number of transla-
tions and rotations; 6 for nonlinear and 5 for linear molecules)
[70]:

L q; q̇
! "

¼ T q̇
! "

−V qð Þ ð3Þ

¼ 1
2
q̇
†
G−1q̇−

1
2
q†Fqq ð4Þ

Fq is the force constant matrix in internal coordinates q; G
is the Wilson G matrix, also called inverse kinetic energy
matrix [70]. Both Fq and G are square matrices with the di-
mension Nvib ×Nvib.

The relationship between internal and Cartesian coordi-
nates is provided by the Wilson B matrix [70], a rectangular
(Nvib × 3N) matrix containing the first derivatives of the inter-
nal coordinates qnðn ¼ 1; 2; 3⋯Nvib ) with respect to the
Cartesian coordinates xi(i = 1, 2, 3…3N):

Bn ¼
δqn xð Þ
δxi

ð5Þ

The B matrix also connects the M and G matrices via the
following relationship [70, 76]:

G ¼ BM−1B† ð6Þ

Equation (1) reveals that there are two different coupling
mechanisms between the vibrational modes, mass coupling
due to the off-diagonal elements of the Wilson G matrix,
reflecting pairwise kinetic coupling between the internal co-
ordinates and electronic coupling due to the off-diagonal ele-
ments of the Fq matrix [70].

The electronic coupling can be eliminated via the Wilson
GF-matrix formalism applied to Eq. (1) [70–72, 76], i.e., solv-
ing the vibrational secular equation:

FxL ¼ MLΛ ð7Þ

Λ is a diagonal matrix with the eigenvalues λμ, which leads
to the Nvib (harmonic) vibrational frequencies ωμ according to
λμ ¼ 4π2c2ω2

μ, and L collects the vibrational eigenvectors lμ
in its columns, with the following properties:

L†FxL ¼ FQ ¼ K ð8Þ

L†ML ¼ MR ð9Þ

Equations (8) and (9) define the diagonal normal force
constant matrixFQ =K and the reducedmassmatrixMR (with
elementsmR

μ ), respectively.Q is a vector that collects the Nvib

normal coordinates [77]. In essence, diagonalization of the
force constant matrix Fx, i.e., transforming to normal

coordinates Q [78–80], eliminates the electronic coupling
[70] a procedure which is routinely performed in standard
quantum chemistry packages during a harmonic vibrational
frequency calculation.

However, the transformation to normal coordinatesQ does
not eliminate the mass-coupling. Konkoli and Cremer elimi-
nated the remaining mass coupling via mass-decoupled Euler-
Lagrange equation [60–64]:

pi ¼
δL q; q̇
! "

δq̇i
≠0; ṗi ¼

δV qð Þ
δqi

≠0;

pj ¼
δL q; q̇
! "

δq̇ j

¼ 0; ṗ j ¼
δV qð Þ
δqj

¼ 0;∀ j≠i

ð10Þ

which defines a one-dimensional subspace in the full vibra-
tional space for each internal coordinate qi, i.e., only the
masses of the atomic fragment involved in the vibration de-
scribed by internal coordinate qi are non-zero. This led for the
first time to mass-decoupled local vibrational modes ai direct-
ly derived from normal vibrational modes dμ and the force
constant matrix K:

ai ¼
K−1d†i

di K−1 d†i
ð11Þ

To each local mode ai, a corresponding local mode frequen-
cy ωa

i , local mode massG
a
ii, and a local force constant k

a
i can be

defined [60–63], The local mode frequency ωa
i is defined by:

ωa
i

# $2 ¼ 1
4π2c2

kai G
a
ii ð12Þ

and the corresponding local mode force constant kai by:

kai ¼ a†i K ai ¼ di K−1 d†i
! "−1

ð13Þ

As shown by Zou and Cremer [81], local mode stretching
force constants can be directly associated with the intrinsic
strength of a chemical bond and/or weak chemical interaction.
Based on their landmark paper, local vibrational stretching
force constants have been successfully applied to assess the
strength of strong and weak covalent bonds [81–88], to inves-
tigate weak chemical interactions including hydrogen, halo-
gen, pnicogen, chalcogen and tetrel bonding [83, 89–109], to
derive a new description of metal-ligand bonding, [96, 100,
110–113] and [114] and a new aromaticity index [110,
115–117]. There exists a 1:1 relationship between a complete
set of non-redundant local modes and the normal modes via an
adiabatic connection scheme, allowing a smooth transition
from local to normal modes [117]. This forms the basis of
the characterization of the normal mode (CNM) procedure
[63]. CNM decomposes each normal mode into local mode
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contributions offering a new, comprehensive way of analyz-
ing IR and Raman spectra, which we successfully applied to
assess the usefulness of vibrational Stark effect probes [118].
Recently, the local mode theory was extended for the descrip-
tion of chemical bonding in periodic systems [119, 120].

When comparing a large set of ka values, the use of a
relative bond strength order (BSO) n is convenient. Both are
connected according to the generalized Badger rule derived by
Cremer, Kraka, and co-workers [73, 74], via the following
power relationship:

BSO n ¼ A kað ÞB ð14Þ

The constants A and B are fully determined by two
reference compounds with known BSO n and ka values
and the requirement that for a zero-force constant BSO n
becomes 0. In this work, we used as references for the FeC
bonds the CuC bond in CuCH3 as a bond close to a single
bond and the NiC bond in NiCH2 as a bond close to a
double bond (details are given in the supplementary mate-
rial). To quantify the single- or double-bond character, the
Mayer bond orders [121–123] for these molecules were
calculated to be n(Mayer, CuC) = 1.0048 and n(Mayer,
NiC) = 1.8937, which corresponds to a rat io of
1.00:1.8846. The corresponding constants A and B are
0.248 and 1.184. For the CO bonds, we used the CO single
bond in CH3OH with BSO n = 1 and the CO double bond
in CH2O with BSO n = 2 [93], leading to A and B values
of 0.309 and 0.704, respectively. For the hydrogen bonds,
we used the HF bond of FH with BSO n = 1 and the HF
bond in the [H⋯F⋯H]− anion with BSO n = 0.5 as refer-
ences [93], leading to A and B values of 0.451 and 0.348,
respectively.

We determined the covalent character of the FeC, CO, and
the hydrogen bonds via the Cremer-Kraka criterion [124, 125]
for covalent bonding which is based on the local energy den-
sity H(r):

H rð Þ ¼ G rð Þ þ V rð Þ ð15Þ

whereG(r) is kinetic energy density (positive, destabilizing) and
V(r) is potential energy density (negative, stabilizing). Taken at
the bond critical point rb of the electron density ρ(r) [126, 127]
between two bonded atoms,H(rb) < 0 indicates a covalent bond,
while H(rb)> 0 indicates an electrostatic interaction.

Computational details

All gas phase calculations were performed with the PBE0
functional [128] and Pople’s 6-31G(d,p) basis set [129].
The QM/MM calculations were performed at the PBE0/6-
31G(d,p)/AMBER level of theory using the ONIOM
methodology with electronic embedding [130] and the
AMBER force field for the MM part [131]. The protein

geometries were based on the X-ray structure of sperm
whale MbCO [28] (PDB entry: 1A6G). The QM part was
composed of all atoms of the heme group and side chain
atoms of both the distal H64 and the proximal H93 histi-
dine (average number of QM atoms, 100). In the case of
H64A, H64G, H64I, H64L, H64M, H64Q, H64V,
H64QL29F, and H64LV68F with a replacement of H64,
the QM part included the side chain atoms of the corre-
sponding replacement amino acid. All remaining protein
atoms were included in the MM part (average number of
MM atoms, 2960). Additional technical details of the QM/
MM calculations are provided in the electronic supple-
mentary material. For both gas phase and all protein mol-
ecules, full geometry optimizations were performed
followed by harmonic frequency calculations and subse-
quently by local mode analyses. All vibrational frequency
calculations were completed without imaginary frequen-
cies, confirming all systems as minima on the potential
energy surface. The DFT calculations in the gas phase
and in the protein were carried out with Gaussian16
[132]. The local mode analysis was performed with
COLOGNE16 [133]. Natural bond orbital (NBO) charges
and CO π∗ populations were calculated with the program
NBO 6 [134]. The energy densities at bond critical points
were calculated using the AIMALL program [135].

Results and discussion

In Table 1, calculated FeC and CO distances d, local mode
force constants ka and corresponding bond strength orders
BSO n, FeCO bond angles, and energy densities H(rb), as
well as NBO charges for Fe, C, O, NH93, and CO π∗ pop-
ulations for the 20 compounds investigated in this work
are collected. In Table 3, calculated local mode stretching
frequencies ωa(FeC) and ωa(CO) and the experimental
normal mode frequencies ωexp (being identified by isotope
substitutions as FeC and CO stretching frequencies) for 14
complexes with available experimental data are shown.
Table 2 contains hydrogen bond (HB) distances d, local
mode force constants ka(HB) and corresponding BSO n
values, NBO charges of O and H atoms, and energy den-
sities H(rb) for the hydrogen bonds formed between the
CO oxygen and the side chain His64ϵ hydrogen of the
MbCO wild type and those of the corresponding muta-
tions. Figures S1–S4 of the electronic supplementary ma-
terial provide active site snapshots of all QM/MM opti-
mized protein structures.

In the following, we will focus first on the local mode
discussion of the FeC and CO bonds, followed by the assess-
ment of experimental normal mode frequencies as bond
strength descriptors. Then, we will discuss hydrogen bonding.
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Table 1 Calculated FeC and COdistances d, local mode force constants
ka, corresponding bond strength orders BSO n, FeCO bond angles α, and
energy densities H(rb); NBO charges for Fe, C, O, NH93, and CO π∗

populations. Gas phase calculations at the PBE0/6-31G(d,p) and protein
calculations at the PBE0/6-31G(d,p)/AMBER levels of theory

Model d (Å) ka (mDyn/Å) BSO n (α∘) H(rb) (Hartree/Å
3) NBO charge (e) π∗ (e)

FeC CO FeC CO FeC CO FeCO FeC CO Fe C O NH93 CO

Gas phase 1.760 1.148 2.654 18.209 0.786 2.388 180.00 − 0.3617 − 5.2273 0.666 0.600 − 0.464 − 0.491 0.3940

H64ϵ 1.728 1.156 3.023 16.977 0.918 2.273 173.76 − 0.4326 − 5.1024 0.678 0.599 − 0.518 − 0.513 0.4665

H64δ 1.759 1.147 2.580 18.176 0.761 2.384 171.78 − 0.3833 − 5.2414 0.691 0.601 − 0.454 − 0.508 0.3838

H64A 1.744 1.150 2.824 17.926 0.846 2.361 173.42 − 0.4049 − 5.1996 0.676 0.598 − 0.475 − 0.506 0.4173

H64G 1.746 1.150 2.773 17.915 0.828 2.360 171.63 − 0.4056 − 5.1949 0.679 0.596 − 0.477 − 0.509 0.4181

H64I 1.750 1.150 2.748 17.870 0.820 2.356 171.19 − 0.3995 − 5.1902 0.679 0.593 − 0.479 − 0.508 0.4181

H64L 1.745 1.150 2.807 17.914 0.840 2.360 174.14 − 0.4015 − 5.2016 0.680 0.596 − 0.476 − 0.510 0.4185

H64M 1.749 1.150 2.769 17.888 0.827 2.358 173.27 − 0.3975 − 5.1989 0.678 0.594 − 0.470 − 0.510 0.4117

H64Q 1.735 1.154 2.931 17.288 0.885 2.302 173.64 − 0.4224 − 5.1422 0.679 0.595 − 0.498 − 0.513 0.4489

H64V 1.749 1.150 2.783 17.888 0.832 2.358 173.48 − 0.3955 − 5.1922 0.677 0.595 − 0.478 − 0.510 0.4170

F43W 1.746 1.151 2.797 17.807 0.837 2.350 170.57 − 0.4103 − 5.1848 0.676 0.585 − 0.478 − 0.509 0.4247

F43V 1.734 1.156 2.934 17.012 0.886 2.276 172.00 − 0.4278 − 5.1078 0.683 0.596 − 0.512 − 0.512 0.4595

F46V 1.722 1.156 3.126 17.064 0.955 2.281 176.14 − 0.4420 − 5.0984 0.668 0.616 − 0.529 − 0.509 0.4758

L29F 1.722 1.156 3.178 17.109 0.973 2.285 172.77 − 0.4488 − 5.0990 0.671 0.610 − 0.531 − 0.511 0.4700

V68F 1.730 1.156 3.003 16.947 0.910 2.270 178.01 − 0.4211 − 5.1017 0.674 0.598 − 0.517 − 0.512 0.4702

V68N 1.721 1.159 3.131 16.608 0.956 2.238 177.59 − 0.4386 − 5.0626 0.672 0.596 − 0.549 − 0.513 0.5025

H64QL29F 1.730 1.154 3.050 17.372 0.927 2.310 171.78 − 0.4346 − 5.1395 0.676 0.601 − 0.507 − 0.512 0.4484

H64LV68F 1.750 1.150 2.770 17.860 0.827 2.355 178.85 − 0.3833 − 5.1949 0.676 0.596 − 0.476 − 0.510 0.4158

H64ϵR 1.723 1.157 3.147 16.974 0.962 2.272 179.17 − 0.4366 − 5.0943 0.674 0.608 − 0.523 − 0.511 0.4932

H64δR 1.742 1.150 2.864 17.871 0.861 2.356 178.63 − 0.4015 − 5.1976 0.676 0.600 − 0.475 − 0.506 0.4176

Fe(CO)5(ax) 1.791 1.144 3.006 18.731 0.911 2.436 180.00 − 0.3274 − 5.2885 − 0.842 0.614 − 0.416 – 0.4188

Fe(CO)5(eq) 1.777 1.148 3.025 18.164 0.918 2.383 180.00 − 0.4053 − 5.2165 − 0.842 0.583 − 0.434 – 0.4433

CO – 1.135 – 20.264 – 2.574 – – − 5.2227 – 0.508 − 0.508 – 0.0

Table 2 Bond lengths d, local force constants ka, bond strength orders
BSO n, NBO charges of O and H atoms, energy densities H(rb) of the
NH⋯OC hydrogen bond between CO and the imidazole hydrogen of
distal His64 of H64ϵ, and its mutations with possible hydrogen

bonding (PBE0/6-31G(d,p)/AMBER level of theory). For comparison,
the hydrogen bonds of the water dimer and the ammonia-formaldehyde
dimer are included (gas phase; PBE0/6-31G(d,p) level of theory)

Model d ka BSO n NBO charge H(rb)

(Å) (mDyn/Å) O/N(e) H(e) (Hartree/Å3)

H64ϵ 2.078 0.109 0.209 − 0.518 0.464 0.0013

H64Q 2.444 0.039 0.146 − 0.498 0.431 0.0047

F43V 2.125 0.098 0.201 − 0.512 0.464 0.0020

F46V 2.082 0.072 0.181 − 0.529 0.470 0.0040

L29F 1.980 0.192 0.254 − 0.531 0.468 0.0034

V68F 2.130 0.080 0.187 − 0.517 0.464 0.0027

V68N 2.197 0.050 0.159 − 0.549 0.464 0.0047

H64QL29F 2.180 0.114 0.212 − 0.507 0.434 0.0020

H64ϵR 2.013 0.145 0.230 − 0.523 0.467 0.0007

H2O⋯HOH 1.906 0.214 0.264 − 0.960 0.486 − 0.0088
H2NH⋯OCH2 2.224 0.079 0.187 − 0.527 0.397 − 0.0013
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Analysis of FeC and CO bonds

In Fig. 2, the BSO n values for FeC and CO bonds are shown,
calculated from the corresponding local mode force constants
ka via Eq. (14). For comparison, the data of the corresponding
FeC and CO bonds of Fe(CO)5 (D3h symmetry) are added.
The BSO n values of the FeC bonds range from 0.761 to 0.973
(see Fig. 2a and Table 1). Weakest FeC bonds are found for
wild-type H64δ (BSO n = 0.761) and the gas phase model
(BSO n = 0.786), whereas the strongest FeC bond is encoun-
tered for L29F (BSO n = 0.973), followed by H64ϵR (BSO
n = 0.962), V68N (BSO n = 0.956), and F46V (BSO n =
0.955).

The averaged FeC bond strength in Fe(CO)5 (BSO n =
0.915) is close to that in the wild-typeH64ϵ (BSO n = 0.918).

As revealed from the data in Table 1 and from Fig. 2,
modification of the porphyrin frame as realized in H64ϵR
versus H64ϵ and H64δR versus H64δ with reversed periph-
eral vinyl groups has a larger impact on FeC bond strength.
Resonance Raman studies observed substantial changes in the
low-frequency region for these modifications; however, their

impact on the FeC vibration could not be quantified [35]. For
both H64ϵR and H64δR, the FeC bond strength increases
compared to the native orientation (H64ϵR: BSO n = 0.962,
H64ϵ: BSO n = 0.918; H64δR: BSO n = 0.861, H64δ: BSO
n = 0.761). However, there is no effect on the FeC bond
strength for the same modification of the porphyrin frame in
the gas phase model (see Table S2 of the electronic supple-
mentary material). This strongly suggests that the increase of
the FeC bond strength observed in H64ϵR and H64δR is
mediated via the protein environment.

The BSO n values of the CO bonds range from 2.238 to
2.388 (see Fig. 2b and Table 1). The weakest CO bond is
found for V68N (BSO n = 2.238) and the compounds with
the strongest CO bonds are the Gas model (BSO n = 2.388)
and wild-type H64δ (BSO n = 2.384), which are both weaker
than the CO bonds in Fe(CO)5 (BSO n = 2.410, average val-
ue). In comparison, the BSO n value of the CO molecule is
2.574 (see Table 1). This value should not be confused with
the conceptual molecular orbital description of the CO bond as
a triple bond, resulting from formally subtracting the number
of occupied antibonding MOs from the number of occupied
bonding MOs leading for CO to a value of 3. The conceptual
description of the carbon monoxide bond does not consider
the magnitude of overlap and the bond polarity in any quan-
titative sense and therefore is of limited value. A bond strength
measure based on vibrational spectroscopy is more relevant
[84]. The chemical bonding of CO in transition metal com-
plexes, usually described in terms of the Dewar-Chatt-
Duncanson model [136–139], suggests a synergetic interplay
between donation from the 7σ homo of CO into an empty σ
metal orbital and a back donation from an occupied d(π) or-
bital into the empty π∗ orbital of CO leading to a weakening of
the CO bond strength, observed via red shift of the CO vibra-
tional stretching frequency [140–143]. A prominent example
is Tolman’s electronic parameter (TEP) [144, 145] describing
the transition metal ligand strength in metal-carbonyl com-
plexes indirectly via a redshift of the A1 symmetric CO
stretching frequency, which recently has been replaced by
the metal ligand electronic parameter (MLEP) of Cremer,
Kraka, and co-workers, a direct metal ligand bond strength
measure being based on local vibration modes [111–113].

Two points are noteworthy; (i) the two strongest CO bonds
belong to compounds which cannot form a hydrogen bond
with the distal protein residue, whereas the opposite holds
for the compounds with the weakest CO bonds, i.e., H⋯OC
hydrogen bonding is one factor weakening the CO bond; (ii)
comparing Fig. 2a and b it also becomes already apparent that
stronger FeC bonds are related to weaker CO bonds and vice
versa.

In Fig. 3a, local mode force constants ka(FeC) are com-
pared with the FeC distances and in Fig. 3b local mode force
constants ka(CO) with the corresponding CO distances. In
both cases, we find a significant correlation (FeC bonds: R2
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= 0.9779, CO bonds: R2 = 0.9879) confirming that the gener-
alized Badger rule of Kraka, Larsson, and Cremer [74] applies
to the 20 compounds investigated in this work. The general-
ized Badger rule extends Badger’s original rule [146]
predicting an inverse power relationship between the bond
length and the stretching force constant for diatomic mole-
cules to polyatomic compounds by replacing normal mode
force constants with their local mode counterparts. A caveat
is appropriate; it is not always true that the stronger bond is the
shorter bond [82, 147]; however, for our series with only
marginal bond length changes (FeC bonds, 0.039 Å (2%);
CO bonds, 0.012 Å (1%)) reflecting the space confinement
enforced by the Mb pocket, it is valid. As revealed by the data
in Table 1, the longest and weakest FeC bonds are found for
the gas phase model Gas (d = 1.760 Å) and wild-type H64δ
(d = 1.759 Å), whereas V68N (d = 1.721 Å), F46V (d = 1.722
Å),L29F (d = 1.722 Å), andH64ϵR (d = 1.723 Å) possess the
shortest and strongest FeC bonds, belonging to the class of
compounds which can form a hydrogen bond with the distal
protein residue. The axial FeC bond in Fe(CO)5
(Fe(CO)5(ax), d = 1.791 Å) is 0.031 Å longer than the gas

phase value, suggesting that not only space confinement but
also electronic effects influence the FeC bond distance.
Figure 3b corroborates an inverse relationship between FeC
and CO bonds. The longest and weakest CO bond is found for
V68N (d = 1.159 Å) and the shortest and strongest for the gas
phase model Gas (d = 1.148 Å) and wild-type H64δ (d =
1.147 Å), which is in the same range of the CO bonds in
Fe(CO)5 (Fe(CO)5(ax), d = 1.144 Å; Fe(CO)5(eq), d =
1.148 Å), however 0.012 Å longer than the CO bond in carbon
monoxide (see Table 1).

In order to connect the description of bonding via the local
force constant, a potential energy-related property with an
electron density-related property was correlated with local
force constants ka with energy densities H(rb). Figure 4a
shows the correlation between the energy density
H(rb)(FeC) and the local force constant ka(FeC) and Fig. 4b
the corresponding correlation for the CO bonds. As shown in
Fig. 4a, stronger FeC bonds trend toward having more cova-
lent character than their weaker counterparts. However, there
is some scattering, as is reflected by the R2 value of 0.8796.
The largest covalent character is found for L29F (H(rb) = −
0.4488 Hartree/A3 ), F46V (H(rb) = − 0.4420 Hartree/A3 ),
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V68N (H(rb) = − 0.4386 Hartree/A3 ), andH64ϵR (H(rb) = −
0.4366 Hartree/A3). This is completely in line with the BSO n
values (see Fig. 2) and the FeC distances (see Fig. 3). The
weaker FeC bonds show some irregularities as depicted in
Fig. 4a. In contrast, we find a significant correlation (R2 =
0.9851) for the CO bonds; stronger CO bonds are related to
smaller H(rb) values, i.e., the covalent character of the CO
bonds increases with increasing bond strength. We found the
smallest H(rb)(CO) values for the gas phase model Gas (−
5.2273 Hartree/A3) and wild-typeH64δ (− 5.2414 Hartree/A3)
(see Table 1). These values are in good agreement with H(rb)
of carbon monoxide (− 5.2227 Hartree/A3 ) and the H(rb)
values of the two CO bonds in Fe(CO)5 (axial CO bonds: −
5.2885 Hartree/A3; equatorial CO bonds: − 5.2165 Hartree/A3

). It seems that in particular for FeC bonds additional factors
determine the bond strength, which are not reflected by the
H(rb) values focusing just on the bond critical point rb, such as
the charge of carbon monoxide oxygen and the CO π∗ back
donation, which will be discussed in the following.

In Fig. 5a, the CO π∗ populations reflecting π back
donation from the occupied dπ orbitals of iron into the
vacant CO π∗ orbitals are correlated with the local mode

force constants ka(CO) and in Fig. 5b the NBO charges
on the carbon monoxide oxygen are related to the local
mode ka(CO) force constants. As expected, we find the
lowest CO π∗ populations for the wild-type H64δ (CO
π∗ = 0.3838 e) and the gas phase model Gas (CO π∗ =
0.3940 e) being identified via their BSO n values as the
compounds with the strongest CO bonds among the 20
compounds investigated in this work. The largest CO π∗

population is encountered for V68N (CO π∗ = 0.5025 e)
followed by H64ϵR (CO π∗ = 0.4932 e) belonging to the
compounds with the weakest CO bonds. In comparison,
π back donation in Fe(CO)5 (Fe(CO)5(ax), CO π∗ =
0.4188 e; Fe(CO)5(eq), CO π∗ = 0.4433 e) falls into
the medium range. It is noteworthy that all compounds
with larger CO π∗ population and as such weaker CO
bonds belong to the class of compounds forming a hy-
drogen bond between the distal histidine and the carbon
monoxide oxygen atom. This important finding will be
further discussed below. Figure 5b looks like a mirror
image of Fig. 5a, i.e., CO π∗ population correlates with
the charge on O, which is shown in Figure S5 of the
electronic supplementary material; R2 = 0.9604. The larg-
est NBO charge on O is found for V68N (NBO(O)
charge = − 0.549 e) and the smallest for H64δ (NBO(O)
charge = − 0.454 e) and gas phase model Gas (NBO(O)
charge = − 0.464 e). For comparison, the oxygen charge
of carbon monoxide (NBO(O) charge = −0.508 e) lies in
between. Again, all compounds with larger oxygen
charges belong to the class of compounds which form
hydrogen bonds.

We did not find a correlation between the NBO charges
on the carbon monoxide carbon and the local mode force
constants ka(FeC); see Fig. S6 of the electronic supple-
mentary material. On the other hand, we observed an in-
teresting correlation between the CO π∗ population and
local mode ka(FeC) force constants, as shown in Fig. 6a,
and a similar correlation between NBO(O) charges and
local ka(FeC) force constants, as shown in Fig. S7 of the
electronic supplementary material. Weaker FeC bonds are
related to smaller CO π back donation, i.e., stronger CO
bonds and vice versa. Closing the circle, Fig. 6b shows a
direct comparison of local ka(CO) and ka(FeC) quantify-
ing for the first time the suggested inverse relationship
[40, 52, 57–59] between the CO and FeC bond strengths
in these compounds on the basis of local mode force con-
stants as quantitative bond strength measure.

Hydrogen bonding

In the following, we will address two so far open questions: (i)
how distal hydrogen bonding is influenced by the protein
environment and (ii) what role it plays for the modulation of
the CO and FeC bond strengths. In Fig. 7a, hydrogen bond
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strength orders BSO n(HB) calculated from local mode force
constants ka(HB) are shown and in Fig. 7b hydrogen bond
distances d are related with the local mode force constants
ka(HB). In Fig. 8a, the covalent character of the hydrogen
bond is shown as reflected by the H(rb)(HB) values and in
Fig. 8b local mode force constants ka(HB) are related to the
charge on the CO oxygen atom. Table 2 summarizes the cor-
responding hydrogen bond data. As reference, the water dimer
and the ammonia-formaldehyde dimer are included.

As demonstrated by our results, local mode force constants
ka(HB) and related BSO n(HB) are sensitive antennas moni-
toring even small changes in hydrogen bonding resulting from
a different electrostatic and steric environment in the modified
heme pocket of the mutants. Although all hydrogen bonds
investigated in this work are of the same type, i.e., NH⋯OC
bonds formed between CO and the His64 ϵ tautomer or its
replacement with another amino acid (see Table S2 of the
electronic supplementary material), they are of different
strengths with BSO n values ranging from 0.146 (H64Q) to
0.254 (L29F), which almost reaches the hydrogen bond
strength of the water dimer (NBO n = 0.264) while the hydro-
gen bond of the ammonia-formaldehyde dimer lies in the mid-
dle range with an NBO n value of 0.187. The hydrogen bond

distances stretch from 1.980 Å forL29F to 2.444 Å forH64Q.
As in the case of the CO and FeC bonds, the Badger rule
applies to the hydrogen bonds (although some scattering, R2

= 0.790), i.e., the shortest hydrogen bond is also the strongest
whereas the longest is the weakest, as shown in Fig. 7b.

In the V68N mutation, Val68 of wild-type H64ϵ is re-
placed with asparagine. Replacing the non-polar Val68 side
chain with a polar form amide group enhances the electrostatic
field in the heme pocket. The O atom of CO gets attracted by
the amide hydrogens too, enlarging its distance to the His64
hydrogen from 2.078 Å in H64ϵ to 2.197 Å, substantially
weakening the hydrogen bond. In H64Q, His64 is replaced
by glutamine, which is a more drastic change. Instead of a
hydrogen bond via the imidazole side chain, the hydrogen
bond is now formed via a hydrogen of the amide side chain,
leading to the weakest (BSO n = 0.146) and longest hydrogen
bond (d = 2.444 Å) of our series. Noteworthy is that the stron-
gest hydrogen bond is not found for a His64 replacement but
for replacing the distal Leu29 with phenylalanine in wild-type
H64ϵ distal heme pocket, i.e., replacing the isopropyl side
chain with a phenyl group, as realized in L29F. The phenyl
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π cloud pushes the O atom closer to His64, leading to the
shortest H⋯O distance of 1.980 Å and strongest hydrogen
bond. It is also interesting to note that the second strongest
hydrogen bond (BSO n = 0.230) is found for H64ϵR with a
reversion of the peripheral vinyl groups of the porphyrin
framework. This result clarifies for the first time that in addi-
tion to effecting overall heme properties, such as the reduction
potential, this reversion also influences the binding of exoge-
nous ligands, such as CO, as has been questioned [35, 52].
Combining the replacement of the distal Leu29 with a phenyl-
alanine and the replacement of His64 with glutamine as real-
ized in H64QL29F leads to a medium hydrogen bond
strength of 0.212, obviously balancing the two extremes.

In Fig. 8a, the energy density H(rb)(HB) is compared
with the local force constant ka(HB). According to the
Cremer-Kraka criterion [120, 125] for covalent bonding,
all hydrogen bonds investigated in this work are of
electrostatic character. There is the trend that weaker
hydrogen bonds have an increase in electrostatic charac-
ter, in line with our studies on other hydrogen bonded
systems [89]. According to its ka value, the outlier
L29F should have covalent hydrogen bond character
in contrast to all other compounds investigated in this

work. It is interesting to note that L29F has been orig-
inally identified as A3 conformer with a somewhat dif-
ferent electron density distribution [25]. H(rb) as a local
electron density measure focusing on the bond critical
point rb cannot pick up these more regional differences.

As evidenced by Fig. 5, mutations with distal hydrogen
bonding possess stronger CO π back donation and as such
weaker CO and stronger FeC bonds. Therefore, the question
arises if hydrogen bonding leads to enhanced CO charge po-
larization and stabilization of the negative charge on the CO
oxygen which goes in line with stronger CO π back bonding.
However, as revealed by Fig. 8b, this is not the case; there is
no correlation between ka(HB) and the NBO charge on oxy-
gen. The same holds for CO π back donation. As shown in
Fig. S8 of the electronic supplementary material, there is only
no direct correlation between the hydrogen bond strength and
the CO π∗ population. Therefore, the conclusion is that the
key role of distal hydrogen bonding is structural rather than
electronic; hydrogen bonding keeps the CO ligand at a Fe
distance with optimum orbital overlap between the Fe dπ
and the CO π∗ orbitals, which is a prerequisite for π back
donation. There is no significant correlation between hydro-
gen bonding and FeCO bending angle as reflected by the
FeCO bond angles in Table 1 and Fig. S9 of the electronic
supplementary material. In line with experimental studies
reporting only small FeCO angular distortions in the crystal
structures of MbCO mutants in comparison with NO and O2

ligands [52], we find angle variations from 180∘ of less than
10∘, which are too small to allow a separation of mutants with
and without hydrogen bonding.

Assessment of experimental frequencies as FeC and
CO bond strength descriptors

The discussion of the FeC bond and CO bond strength based
on resonance Raman spectroscopic data has drawn upon nor-
mal vibrational FeC and CO vibrational frequencies [17, 22,
25, 35, 69]. As discussed above, normal vibrational modes are
generally delocalized; therefore, the identification of a partic-
ular normal mode as FeC or CO stretching (in most studies
performed via isotope substitution [52, 148]) seems to be
questionable, in particular for a complex system with more
than 100 atoms and normal mode vectors with a dimension
of almost 300. The local vibrational mode analysis does not
only provide local mode stretching force constants and fre-
quencies as useful bond strength measures, it can also serve
as an effective tool to analyze the character of normal vibra-
tional modes.

For smaller systems, in particular gas phase molecules, this
can be accomplished via the CNM procedure [63, 118]. In
Fig. 9, the decomposition of the CO, FeC, and axial FeN
normal modes into local mode contributions is shown in the
form of a pie diagram for iron-porphyrin imidazole, a simpler
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mimic of the gas phase model, which was recently suggested
as potential vibrational Stark effect probe [118]. The complete
CNM of all normal modes is shown in Fig. S11 of the elec-
tronic supplementary material in the form of a bar diagram.
The CO normal mode is localized by more than 95% with a
small contribution of less than 5% of the FeC mode. The FeC
normal mode is more delocalized (83% FeC contribution),
resulting from mode coupling of 7.5% with the axial FeN
stretching mode, 5.4% coupling with NeqFeNax, and about
3% coupling with equatorial CFeN bending modes. The axial
FeN modes show a similar delocalization (83% FeN contribu-
tion), with a coupling of 6.4% from the imidazole CNC bond-
ing mode.

For protein systems, the CNM procedure is no longer do-
able; however, we can compare the normal FeC and CO vi-
brational stretching frequencies with their local mode counter-
parts. If the normal modes would be free of mode-mode cou-
pling, both sets of frequencies should correlate. Therefore, we
tested for all complexes with published experimental FeC and/
or CO normal mode frequencies to what extent these frequen-
cies accord with the corresponding local mode frequencies.
The results are summarized in Table 3 and Fig. 10.

As revealed by the data in Table 3 and Fig. 10, there is
some weak correlation between FeC normal and local modes.
Smallest normal and local frequencies are found forH64I and
H64V with weaker FeC bonds (see Fig. 2a), while H64ϵR
with a strong FeC bond is characterized by both large normal
and local mode frequencies. Figure 2a also shows some out-
liers. This demonstrates that (i) the assignment of a protein

normal vibration mode with many degrees of freedoms via
isotope substitution is not free from ambiguities, and (ii) that

N

N

N

N N

N
Fe

C

OFig. 9 Decomposition of the CO,
FeC, and axial FeN normal modes
into local mode contribution,
shown in the form of a pie chart
for a simplified gas phase model.
Contributions are given as
percentages. Calculated at the
PBE0/6-31G(d,p) level of theory

Table 3 Calculated local mode frequenciesωa and experimental normal
mode frequencies ωexp of FeC and CO bonds for those complexes with
available experimental data. Calculated frequencies at the PBE0/6-
31G(d,p)/AMBER level of theory

Model FeC CO

ωa ωexp Ref. ωa ωexp Ref.
(cm−1) (cm−1) (exp) (cm−1) (cm−1) (exp)

H64ϵ 721 508 [25] 2050 1944 [69]

509 [69] 1945 [25]

1946 [17]

H64A 696 504 [25] 2106 1958 [25]

H64G 690 506 [17] 2106 1944 [17]

H64I 687 505 [22] 2103 – –

H64L 694 506 [22] 2106 – –

H64M 690 506 [17] 2104 1947 [17]

H64Q 709 507 [69] 2069 1944 [69]

H64V 691 504 [22] 2104 – –

F43W 693 503 [25] 2099 1955 [25]

F46V 733 504 [25] 2055 1956 [25]

L29F 739 526 [25] 2058 1932 [25]

V68N 733 508 [25] 2028 1944 [25]

H64QL29F 724 513 [69] 2074 1938 [69]

H64ϵR 735 511 [35] 2050 – –
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there is mode-mode coupling with other protein motions. It is
interesting to note that the experimental resonance Raman
spectrum of the L29F protein mutation shows only one max-
imum related to the FeC stretching vibration (526 cm−1),
which was originally assigned to the A3 rather than A1 con-
formation state [25]. This explains the large derivation from
the other complexes shown in Fig. 10a. For the CO stretching
mode, which is almost perfectly localized in the gas phase,
there is no correlation between normal and local vibrational
modes for the ten complexes shown in Fig. 10b. This suggests
that the stronger exposure of the CO ligand to the electrostatic
field created by the heme pocket leads to enhanced mode-
mode coupling, clearly disqualifying the normal mode CO
frequencies as bond strength descriptors in the protein envi-
ronment. Only their local mode counterparts can serve for this
purpose.

Conclusions

In this QM/MM computational study, we investigated the FeC
and CO bond strength and potential hydrogen bonding in 20

MbCO models, involving a gas phase model, two models of
the wild-type protein, and 17 protein mutations. As a key
analysis tool, we used the local mode theory which provides
via local mode force constants a quantitative measure of the
strength, a chemical bond, and/or weak chemical interaction
based on vibrational spectroscopy. The results of our investi-
gation quantify for the first time the suggested inverse rela-
tionship between the FeC and CO bond strength in these sys-
tems, i.e., weaker FeC bonds are related to stronger CO bonds
and vice versa. The FeC and CO bond strengths are deter-
mined by electronic structure reorganization of the Fe-CO
moiety, which is initiated by the π back donation between
Fe dπ and CO π∗ orbitals. π back donation is modified by
the electrostatic field of the distal side of the heme pocket,
which polarizes the oxygen charge of carbon monoxide. In
addition, CO bonding is weakened by potential hydrogen
bonding between the CO oxygen and side chains of the sur-
rounding amino acids. Such a complex scenario needs a qual-
ified bond strength descriptor absorbing all these cumulative
effects. We have shown that local mode force constants or
local mode frequencies are the perfect tool for this purpose
whereas normal mode frequencies are not qualified. Our com-
prehensive results provide new guidelines for the fine-tuning
of existing and the design ofMbCOmodels with specific FeC,
CO, and CO⋯H bond strengths.
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