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Abstract

Modern vibrational spectroscopy is more than just an analytical tool. Informa-

tion about the electronic structure of a molecule, the strength of its bonds, and

its conformational flexibility is encoded in the normal vibrational modes. On

the other hand, normal vibrational modes are generally delocalized, which

hinders the direct access to this information, attainable only via local vibration

modes and associated local properties. Konkoli and Cremer provided an inge-

nious solution to this problem by deriving local vibrational modes from the

fundamental normal modes, obtained in the harmonic approximation of the

potential, via mass-decoupled Euler–Lagrange equations. This review gives a

general introduction into the local vibrational mode theory of Konkoli and

Cremer, elucidating how this theory unifies earlier attempts to obtain easy to

interpret chemical information from vibrational spectroscopy: (a) the local

mode theory furnishes bond strength descriptors derived from force constant

matrices with a physical basis, (b) provides the highly sought after extension of

the Badger rule to polyatomic molecules, (c) and offers a simpler way to derive

localized vibrations compared to the complex route via overtone spectroscopy.

Successful applications are presented, including a new measure of bond

strength, a new detailed analysis of infrared/Raman spectra, and the recent

extension to periodic systems, opening a new avenue for the characterization

of bonding in crystals. At the end of this review the LMODEA software is

introduced, which performs the local mode analysis (with minimal computa-

tional costs) after a harmonic vibrational frequency calculation optionally

using measured frequencies as additional input.
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1 | INTRODUCTION

Over the past decades, vibrational spectroscopy has developed into an important analytical tool1–21 with ample applica-
tions in chemistry and beyond.22–31 Today modern vibrational spectroscopy has much more to offer; detailed informa-
tion on the electronic structure of a molecule and its chemical bonds is encoded in the normal vibrational modes, ready
to be deciphered. With the increasing number of available high precision measured spectra, complemented with theo-
retical calculations, vibrational spectroscopy can become an excellent source for decoding electronic structure informa-
tion of a molecule; in particular providing a new quantitative measure of the intrinsic strength of a chemical bond.

As revealed in Figure 1, the idea of characterizing a chemical bond via the stretching force constant dates back to
the 1920s and 1930s. In 1934, Badger published an inverse power relationship between the bond length and the
stretching force constant for a series of diatomic molecules, termed the so-called Badger rule.33 While this rule works
fine for diatomic molecules, its extension to polyatomic molecules turned out to be difficult because normal vibrational
modes tend to delocalize over the molecule rather than being localized in a specific bond; where this mode localization
is a prerequisite for using the stretching force constant as a suitable bond strength measure.34,35 As shown in Figure 1,
the following decades saw various efforts to overcome this problem via modification and extension of the original Bad-
ger rule. In many cases these extensions only worked for specific sets of molecules;32 and more importantly, the simplic-
ity of Badger's original idea diminished. Therefore, it became clear that a successful generalization of the Badger rule to
polyatomic molecules required the solution to the basic problem, namely to revert to local stretching force constants
derived from local vibrational modes.

Before a more detailed discussion of the local vibrational mode theory of Konkoli and Cremer,36–40 which led to the
generalized Badger rule32 and a new measure of the intrinsic strength of a chemical bond, is provided, some remarks
on the origin of the term local modes are necessary (see summary in Figure 2).

In 1929, Ellis41 introduced a local X-H Morse oscillator description to explain overtone absorptions in hexane, cyclo-
hexane, benzene, chloroform, and aniline. The anharmonic bond oscillators became decoupled with increasing
stretching energies, leading to a local description and the original idea of local modes. This local mode concept enabled
a refined way of describing highly excited stretching states of anharmonic vibrations. But it was in contrast to the
normal-mode-based vibrational picture where all atoms of the molecule move in phase during a normal vibration. In
the following two decades, Mecke and co-workers42–46 explored the anharmonic decoupling of the local modes and
their relation to normal mode theory, and they advocated the use of local modes instead of normal modes. However,
with overtone spectroscopy at its infancy and difficulties formulating exact vibrational Hamiltonians that include all
vibrational degrees of freedom and not only the stretching vibrations, the simpler normal mode description based on a
harmonic potential remained favored. In 1940, Darling and Dennison found evidence for a new and important

FIGURE 1 Use of stretching force constants and frequencies as bond strength descriptors based on the Badger rule. A comprehensive
overview is given in Table 4.1 of Reference 32
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resonance between the overtone levels of the normal mode symmetric and antisymmetric stretching vibrations in
water, later known as Darling–Dennison resonance.47 Since they could explain this resonance within the context of
normal modes, this also added to the popularity of normal modes. Therefore, it took until the late 1960s for the local
mode models to be rediscovered; primarily through the work of Henry, Siebrand, and others48–54 who established the
generality of local mode behavior in overtone spectra for a wide variety of molecules. In addition, Child and Lawton
derived local and normal vibrational states with a harmonically coupled anharmonic-oscillator model.55–58 This work
was followed by important contributions of Lehmann,59,60 and Mills and Robiette,61 on the relationship of local and
normal mode models; Bagott,62 who interrelated normal and local mode descriptions with the so-called x, K relations
combining normal mode anharmonicity constants x and the Darling–Dennison resonance constants K; which was fur-
ther developed by Law and Duncan63–65 via their anharmonically-coupled local mode to normal mode Hamiltonian
transformations. A more comprehensive overview of this important time period has been given in several reviews, for
example, by Quack,66 Halonen,67 and Jensen.68 In the last 20 years it has been theoretically predicted and to a large
extent experimentally verified, that local mode behavior is not only induced by vibrational excitation, but also by excita-
tion of rotational motion.68–70

Near-infrared spectroscopy (NIRS) has substantially developed over the last few decades as an invaluable and rich
source of information on the anharmonic nature of molecular vibrations.9 It has entered modern analytical applica-
tions, even moving in the direction of complex systems and biomolecules.71 However, the intrinsic complexity of NIR
spectra compared to conventional mid-range infrared (MIR) spectra focusing on fundamental vibrations, forces the
extensive use of pretreatment methods and causes challenges for the data analysis.9 Also, the emerging field of theoreti-
cal NIRS is faced with several challenges. While the calculation of MIR or Raman spectra in the harmonic approxima-
tion is nowadays routine, NIR modes require to go beyond the harmonic approximation. Accurate variational methods
are practically applicable to the simplest systems only. More practical methods are for example vibrational self-
consistent field (VSCF) methods.72–74 The key economical feature of these methods is the approximate treatment of
inter-modal anharmonicity; like in Hartree Fock theory any given mode feels an averaged effect resulting from all other
modes. Another class of anharmonic methods is based on perturbation theory of the molecular Hamiltonian after its
expansion via power series of products of vibrational and rotational operators, also referred to as vibrational perturba-
tion theory.75 This approach is particularly appealing for its computational efficiency in treating medium-to-large
systems,75 and has been extended to simulations of IR absorptions for molecular systems in excited electronic states.76

Recently, the use of molecular dynamics (MD) simulations have been advocated.77 Although anharmonic simulations
of vibrational spectra of larger molecules including transition metal complexes78,79 and/or biomolecules are now in
reach,80,81 it is still unclear how one could derive generally applicable bond strength measures from these local modes,
and the search for other alternatives related to vibrational spectroscopy has continued over the past decades, as is sum-
marized in Figure 3.

FIGURE 2 Local modes and overtone spectroscopy
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In 1939 Wilson82 and in 1940 El'yashevich83 independently derived the secular equation for molecular vibra-
tions in matrix from, frequently referred to as the Wilson GF method. Central to their work was the extension
from Cartesian coordinates x to internal coordinates q via the so-called B matrix (details are given below). It was
recognized that expressing the potential energy of a vibrating molecule in terms of internal coordinates q, such
as interatomic distances, bond angles, dihedral angles, and so on led to an easier physical interpretation; and
that the force constants derived from these potentials, appeared to carry over from one similar molecule to
another. This important observation, combined with earlier work on vibrational spectra and molecular structure,
formed the basis for the development of the force field methods. In this connection, the pioneering studies of
Andrews84 on the relation between Raman spectra and structure of small organic molecules, and Dennison's85,86

work on infrared spectra of polyatomic molecules have to be mentioned, as well as the extensive work of
Linnett.87,88 Andrews's promising assumption that “the restoring forces in vibrating molecules consist in first
approximation of harmonic forces along the directions of the chemical bonds and perpendicular to them”84 was
realized in one of the first empirical molecular mechanics force fields, for example, the Urey–Bradley force
field.89 The transition from the original idea of using force fields to reproduce or predict vibrational spectra to
the application of force fields for the study of molecular structure started in the 1940s with Hill's work on steric
effects,90 the studies of Dostrovsky et al. on SN2 reactions,91 Gordy's early work on force constants and molecular
properties,92 as well as the work of Westheimer, leading to one of the first force fields for organic molecules.93,94

A detailed overview of the subsequent development of the field of molecular mechanics and force field calcula-
tions would be beyond the scope of this article, therefore we refer the reader to the work of Allinger95,96 or
Machida97 for examples.

The original work on force fields (i.e., finding the optimal force constant values to match experimental spectra) trig-
gered the idea of using bond stretching force constants, contained in the force constant matrix Fq, that is, the Hessian
in internal coordinates, as a bond strength measure. However, it was soon realized that Fq depends on the choice of
internal coordinates used to describe the molecular geometry, thus leading to force constants values which depend on
the definition of all other internal coordinates, so that their transferability is rather limited. Decius suggested to solve
this problem by using the inverse of the force constant matrix,98 because the inverse is invariant under coordinate trans-
formations.99 In 1963 he derived the inverse force constant matrix, which he called compliance matrix Γ, from the
potential energy of a molecule written as a quadratic form in terms of generalized displacement forces and proved that

FIGURE 3 Development of bond strength descriptors based on the force constant matrix Fq
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Γ is independent of the choice of the internal coordinates.100 Based on these findings he promoted the idea to use
the diagonal elements of Γ, the so-called compliance constants Γnn as bond strength descriptors.100 As the units of
compliance constants are reciprocal force constant units, Jones and Swanson suggested to use the reciprocal compli-
ance constants instead, which they coined relaxed force constants,101 complying with general chemical thinking that
a stronger bond should be assigned to a larger force constant. An important factor promoting the use of Hessian
derived bond strength descriptors was the development of analytic second energy derivatives for routine ab initio
calculations of force fields and vibrational spectra, moving theoretical vibrational spectroscopy to another level. In
1979 Pople and co-workers reported analytical Hessians for Hartree Fock theory and Møller Plesset perturbation
theory of second order,102 incorporating the early ideas of Gerratt and Mills.103 The work on analytic second deriva-
tive techniques quickly stretched across the field of theoretical chemistry, as is documented in the work of
Pulay,104–106 Schaefer,107–110 Handy,111–113 Bartlett,114,115 and others,116–120 published in the 1980s, just to give a few
examples. Some comprehensive overviews can be found for example in References 121–128. One can say that even
today any new computational method strongly benefits from the availability of first and second analytical
derivatives.

Over the past decades, the use of compliance constants and relaxed force constants as bond strength descriptors
has become popular.129–136 Some concerns were raised with regard to weak chemical interactions suggesting that in
these cases the compliance constants should be complemented with an electron density and/or population analy-
sis.137,138 In addition, the use of the off-diagonal compliance matrix elements Γij as coupling constants131,133 to
describe the coupling between compliance constants Γii and Γjj has been questioned. Whereas the off-diagonal Hes-
sian matrix element Fq

ij has the meaning of a coupling force constant,34 describing the coupling between internal coor-
dinate i and j, this is not necessarily true for Γij, because Γij is not the reciprocal of Fq

ij . The most serious concern
however has been the lack of a physical basis and link to vibrational spectroscopy, as compliance constants originated
from a mathematical recipe, as well as the lack of associated local modes, frequencies, intensities, and other properties.
As is summarized in Figure 3, the local vibrational mode theory of Konkoli and Cremer36–40 provides a physically based
framework resolving these concerns and in addition to local mode force constants, has led to a repertoire of tools for
the analysis of vibrational spectra being based on normal vibrational modes in the harmonic approximation; which will
be discussed in the next chapter. Before doing so, it is useful to point out additional use of the term local mode in the
literature.

1. McKean's isolated modes obtained for CH stretching vibrations via isotope substitution139 can be considered as
experimental counterparts of the Konkoli–Cremer local vibrational modes,140 as will be discussed below. McKean's
underlying idea was to replace all but one H atom of a hydrocarbon molecule with deuterium (i.e., investigating per-
deuterated isotopomers with just one H atom in a CD2H or CDH group). In this way he could minimize the coupling
of the CH stretching mode with other modes in hydrocarbons to less than 5 cm−1.139

2. In solid state physics, the term local modes is used in several ways.141–143 In solid state Raman spectroscopy, one
often speaks of external and internal crystal lattice vibrational modes, particularly for molecular crystals.144 The
external crystal lattice vibrations are considered the collective motion of the molecules in the crystal as a whole,
whereas the internal crystal lattice vibrational modes, (called local modes in this connection) arise from the cou-
pling of the vibrational modes of the individual molecular species. Often the vibrational mode(s) caused by an
impurity in a solid material is (are) called local modes145,146 and quasi-local modes are considered as vibrational
states physically located next to defects in an ideal lattice.147 Similar to the “impurity” concept, materials scien-
tists refer to local vibrational modes as Raman peaks corresponding to the active modes of atomic implants, sub-
stitutional atoms, or dopants in thin solid films.148–151 It has to be noted that the use of the term local modes in
solid state physics is completely different from our use of local modes for periodic systems, which will be dis-
cussed in Section 3.

3. Reiher and co-workers152–154 calculated unitarily transformed normal modes of a polymer associated with a given
band in the vibrational spectrum, where the criteria for the transformation are inspired by those applied for the
localization of molecular orbitals. Similar to Reiher's work, Cheng and Steele155 and Panek and co-workers156 also
employed a unitary transformation to derive localized modes from the normal modes to be used for VSCF calcula-
tions to account for anharmonicity in simulated vibrations. The authors speak in these cases of local vibrational
modes, because the modes are localized in just a few subunits of the entire system. However, these so-called local-
ized modes are still delocalized within the subunits.
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2 | THEORY OF LOCAL VIBRATIONAL MODES

2.1 | Lagrangian approach to vibrational spectroscopy

The Lagrangian mechanics157 provides a convenient way to describe the atomic motions during a molecular vibration
within the classical picture by solving the Euler–Lagrange equations

d
dt

∂L x, x
:! "

∂ _xi
−
∂L x, x

:! "

∂xi
=0, i=1,…,3N , ð1Þ

where the Lagragian L x, x
:! "

is defined as the difference of the kinetic energy T x
:! "

and the potential energy V(x) of the
vibrational mode.

L x, x
:! "
=T x

:! "
−V xð Þ, ð2Þ

=
1
2
x
: †Mx

: −
1
2
x†Fxx: ð3Þ

Vector x contains the 3N Cartesian displacement coordinates of the molecule being composed of N atoms describing
the deviation of the atoms from their equilibrium position during the vibration, and a dot over a variable (e.g., x

:
)

denotes differentiation with respect to time. Fx is the force constant matrix (Hessian) in Cartesian coordinates x. The
diagonal mass matrix M contains each atomic mass three times to account for the motion in the x-, y-, and z-direction,
repectively, that is, Mi,i = {m1, m1, m1, m2, m2, m2, …}. Both square matrices have the dimension (3N× 3N). The poten-
tial energy V(x) is zero when the atoms are in their equilibrium positions and greater than zero otherwise. The † super-
script denotes transpose for both vectors and matrices.

The Lagrangian can be also expressed in terms of Nvib = (3N − Σ) internal coordinates q; (Σ: number of translations
and rotations; 6 for nonlinear and 5 for linear molecules)34:

L q, q
:! "
=T q

:! "
−V qð Þ, ð4Þ

=
1
2
q
: †G−1 q

:
−
1
2
q†Fqq: ð5Þ

Fq is the force constant matrix in internal coordinates q, G is the Wilson G matrix,34 also called “inverse kinetic
energy” matrix. G is symmetric about its main diagonal (i.e., Gij = Gji) and contains only real elements. Both Fq and
G are square matrices with the dimension Nvib × Nvib.

The relationship between internal and Cartesian coordinates is provided by the Wilson B matrix,34 a rectangular
(Nvib × 3N) matrix containing the first derivatives of the internal coordinates qn(n = 1, 2, 3…Nvib) with respect to the
Cartesian coordinates xi(i = 1, 2, 3…3N),

Bn =
δqn xð Þ
δxi

: ð6Þ

The transformation between internal and Cartesian coordinates via Equation (6) can be extended to puckering coor-
dinates, symmetry coordinates or other special coordinates, for example, coordinates including dummy atoms as long
as the first derivative of the considered coordinates with respect to Cartesian coordinates can be worked out via analytic
or numerical differentiations.34 The B matrix also provides the important link between the M and G matrices via the
following relationship.34,82

G=BM−1B†: ð7Þ

Equation (5) reveals that there are two different coupling mechanisms between the vibrational modes, mass cou-
pling due to the off-diagonal elements of the Wilson G matrix, reflecting pairwise kinetic coupling between the internal
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coordinates and electronic coupling due to the off-diagonal coupling force constants of the Fq matrix.34 It has to be noted
that in this connection the term electronic coupling refers to the potential energy and should not be confused with the
use of the term electronic coupling in electron and/or excitation energy transfer theory.158,159

The electronic coupling can be eliminated via the Wilson GF-matrix formalism applied to Equation (1),34,82,160,161

that is, solving the vibrational secular equation:

FxL=MLΛ: ð8Þ

Matrix Λ is a diagonal matrix with the eigenvalues λμ, which leads to the Nvib (harmonic) vibrational frequencies ωμ

according to λμ =4π2c2ω2
μ, and L collects the vibrational eigenvectors lμ in its columns, with the following properties

L†FxL=FQ =K, ð9Þ

L†ML=MR: ð10Þ

Equations (9) and (10) define the diagonal normal force constant matrix FQ = K and the reduced mass matrix MR

(with elements mR
μ ), respectively. Q is a vector that collects the Nvib normal coordinates.162 It is important to note that

the diagonalization of the force constant matrix Fx, that is, transforming to normal coordinates Q163–165 eliminates the
off-diagonal coupling force constant matrix elements.34 The vibrational secular equation expressed in internal coordi-
nates q is given by34

FqD=G−1DΛ: ð11Þ

D contains the normal mode column vectors dμ (μ = 1, # # #, Nvib) in internal coordinates,34 which can be related to
its counterpart L in Cartesian coordinates by.164

L=CD, ð12Þ

D=BL, ð13Þ

where C is the pseudo-inverse matrix of B

C=M−1B†G−1, ð14Þ

Fq in Equations (5) and (11) can be calculated with the help of C

Fq =C†FxC: ð15Þ

2.2 | Derivation of local vibrational modes

The transformation to the diagonal force constant matrix K is routinely performed during a harmonic vibrational fre-
quency calculation in standard quantum chemistry packages. However this procedure does not eliminate mass-cou-
pling, which often has been overlooked. Konkoli and Cremer were the first to solve this problem via mass-decoupled
Euler–Lagrange equations,36–40 that is, solving the Euler Lagrange equations for a molecular fragment ϕn being
described by an internal parameter qn and being independent of all the other internal coordinates qm (m 6¼ n). In their
seminal paper,36 Konkoli and Cremer derived two different ways to define the local motions of the fragment ϕn;
Approach 1: all masses but the ones which belong to the atoms of fragment ϕn are zero, that is, the rest of the molecule
is considered as a collection of massless points that just define the molecular geometry and Approach 2: the fragment
motion is considered as a motion being obtained after relaxing all parts of the vibrating molecule but the fragment
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under consideration. Because of this property, they originally coined these modes adiabatic internal coordinate
modes.36,37 However, over the years for reasons of simplicity, the term local modes was adapted.166

In Approach 1, the Euler–Lagrange equations (4) take the following form

pn =
δL q, q

:! "

δ _qn
6¼ 0, _pn =

δV qð Þ
δqn

6¼ 0,

pm =
δL q, q

:! "

δ _qm
=0, _pm =

δV qð Þ
δqm

=0, 8m 6¼ n,

ð16Þ

Equation (16) can be solved by expressing _pn as a function of a parameter λn leading to

_pn =
δV qð Þ
δqn

= λn ð17Þ

which defines a one-dimensional subspace in the full vibrational space for each internal coordinate qn. In this way, one
obtains an internal, that is, local vibration an associated with fragment ϕn.

36

In Approach 2, qn is frozen at its equilibrium value q?n while the other coordinates qm (m 6¼n) can relax. At the mini-
mum of the potential V(q) then the following holds:

V qð Þ=min: ð18Þ

qn = q?n: ð19Þ

Equations (18) and (19) can be solved using the method of Lagrange multipliers:

∂

∂qm
V qð Þ−λn qn−q?n

! "# $
=0 m=1,…,Nvib, ð20Þ

leading to Nvib Lagrange multipliers λn

∂V qð Þ
∂qm

= λn δmn m,n=1,…,Nvib, ð21Þ

As revealed by Equations (21) and (17) Approach 1 being based on massless internal coordinates qm (m 6¼ n) and
Approach 2 being based on the adiabatic approximation are equivalent.

After the solution of the vibrational problem in the harmonic approximation, the potential energy and each internal
coordinate qn can be expressed as functions of the Nvib normal coordinates Qμ leading in this way to the determination
of the n Lagrange multipliers λn.

V Qð Þ= 1
2

XNvib

μ=1

kμQ2
μ, ð22Þ

qn Qð Þ=
XNvib

μ=1

DnμQμ, ð23Þ

Dn,μ is an element of the normal mode matrix D in the internal coordinate space and kμ is the corresponding normal
mode force constant.

Equation (22) can be solved under the constraint Equation (19)
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∂

∂Qμ
V Qð Þ−λn qn Qð Þ−q?n

! "# $
=0 μ=1,…,Nvib, ð24Þ

leading to Equations (25) and (26)

∂V Qð Þ
∂Qμ

−
∂λn
∂Qμ

qn Qð Þ−q?n
! "

−λn
∂ qn Qð Þ−q?n
! "

∂Qμ
=0, ð25Þ

∂V Qð Þ
∂Qμ

= λn
∂qn Qð Þ
∂Qμ

, ð26Þ

considering that in Equation (25) qn Qð Þ= q?n at a equilibrium, that is, qn Qð Þ−q?n
! "

=0 and that q?n is a constant, that is,
∂q?n=∂Qμ =0.

If Equation (22) for V(Q) and Equation (23) for qn(Q) are inserted into Equation (26) the result becomes

∂

∂Qμ

1
2

XNVib

ν=1

kνQ2
ν = λn

∂

∂Qμ

XNVib

ρ=1

DnρQρ, ð27Þ

which leads to

kμQμ = λnDnμ, ð28Þ

and for the μth normal coordinate (concerning the internal coordinate qn) to

Q nð Þ
μ =

Dnμ

kμ
λn, ð29Þ

where the superscript (n) of Q(n) denotes a solution obtained under the constraint for qn = q?n . This leads to an expres-
sion for the Lagrange multipliers λn in terms of q?n

q?n =
XNVib

μ=1

DnμQ nð Þ
μ =

XNVib

μ=1

D2
nμ

kμ
λn ð30Þ

λn =
1

PNVib

μ=1

nμ
D
kμ

q?n: ð31Þ

Inserting Equation (31) into Equation (29) one obtains the normal coordinate Qμ
(n) as a function of q?n

Q nð Þ
μ =

Dnμ

kμ

PNVib

ν=1

D2
nν
kν

q?n =Q0
μ,n q

?
n, ð32Þ

with the constant Q0
μ,n defining the μth component of the adiabatic vector in the normal coordinates

an = Q0
1,n,Q

0
1,n,…,Q0

μ,n,…
% &†

=
K−1d†

n

dnK−1d†
n

, ð33Þ
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where dn is the nth row of the D matrix, which is computed by

dn =Bn L , ð34Þ

where Bn is Wilson's B matrix34 of the n-th internal coordinate. Equation (33), which completely specifies the form of
the adiabatic mode, implies the important result that what is needed for the local mode analysis are the normal mode
force constant matrix K and the normal mode vectors dn in internal coordinates, that is, the analysis can be routinely
performed after a standard vibrational frequency calculation via the Wilson GF formalism.

The local mode vector an can be easily transformed into Cartesian coordinate space

axn =Lan, ð35Þ

where L is the normal mode matrix in Cartesian coordinates.

2.2.1 | Properties of local modes

Once the local mode vector an, which determines the movement of the molecule under the influence of parameter q?n is
known one can define molecular properties corresponding to this motion, such as local mode force constant, local mass,
and local frequency.

When the kinetic energy adopts a minimum,

T x
:! "
=
1
2
x
: †Mx

:
=min, ð36Þ

_qn = q?n
:

=Bn x
: ð37Þ

Equations (36) and (37) can be solved as defined in Equation (6) from

∂

∂ x
:
1
2
x
: †Mx

: −λ Bn x
: − q?n

:% &' (
=0 ð38Þ

and

x
:
=M−1B†

nλ=M−1B†
n

Bn x
:

BnM−1B†
n
=

M−1B†
n

BnM−1B†
n
q?n
:

ð39Þ

Using Equation (39), Equation (36) can be rewritten as

T q?n
:% &

=
1

2BnM−1B†
n

_q?n
! "2 ð40Þ

From Equation (40), the adiabatic mass associated with the internal coordinate qn can be derived

ma
n =

1
BnM−1B†

n
=

1
Gnn

ð41Þ

where Gnn is a diagonal element of Wilson's G matrix34 and superscript a denotes adiabatically relaxed, that is, derived
from a local mode.

Using Equations (22), (23), (30) and (33) the potential energy in internal coordinates q can be rewritten
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V qð Þ= 1
2

XNvib

n=1

XNvib

μ=1

Q0
μ,nKμμQ0

μ,n

h i
q?n

2 =
1
2

XNvib

n=1

a†nKan
! "

q?n
2, ð42Þ

defining the adiabatic, that is, local force constant as

kan = a†nKan = dnK−1d†
n

! "−1
: ð43Þ

Local mode force constants are sensitive to differences in the electronic structure (e.g., caused by changing a substit-
uent); because they are independent of the atomic masses they capture the pure electronic effects. In their landmark
paper, Zou and Cremer167 provided the important proof that the local stretching force constant kan (AB) reflects the
intrinsic strength of the bond/interaction between two atoms A and B being described by an internal coordinate qn.
They showed that kan (AB) is related to the second derivative of the molecular energy with respect to qn, that is, to the
curvature of the Born-Oppenheimer potential energy surface (PES) given in a specific direction defined by qn. They
illustrated that by approximating the PES in this direction with a Morse potential and keeping the electron density fro-
zen during the dissociation process, the intrinsic bond strength is directly related to kan (AB); therefore it is justified to
consider the latter as a unique and universal measure of the intrinsic strength of a chemical bond based on vibrational
spectroscopy.

For the comparison of larger sets of kan values, the use of a relative bond strength order (BSO n) is more convenient.
Both are connected according to the generalized Badger rule derived by Cremer et al.,32,168 via the following power
relationship:

BSOn= a kan
! "b

: ð44Þ

The constants a and b are calculated from ka values of two reference compounds with known BSO n values n1 and
n2 via:

a= n2= ka2
! "b, ð45Þ

and

b= ln n2=n1ð Þ=ln ka2=k
a
1

! "
, ð46Þ

and the requirement that for a force constant value of zero the corresponding BSO n value is zero. For example, for CC
bonds suitable references are ethane and ethylene with bond orders n1 = 1 and n2 = 2, respectively.169 In the case of
more complex bonding situations such as metal–ligand bonding, guidance by Mayer bond orders170–172 can be utilized,
as discussed below.

Contrary to normal mode force constants derived from Fq, local mode force constants are independent of the choice
of the coordinates used to describe the molecule in question,32,166,173 which provides a direct link to the compliance
constants of Decius.100 Utilizing Equation (11) the inverse force constant matrix (Fq)−1, that is, the compliance matrix Γ
and its diagonal elements Γn,n are given by

Γ= Fqð Þ−1 =DKD†, ð47Þ

and

Γð Þn,n =dnK−1d†
n, ð48Þ
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which implies that the relaxed force constants,101 that is, the reciprocal compliance constants100 are identical with the
local mode force constants.166

Using Equations (41) and (43), the adiabatic frequency can be calculated

ωa
n

! "2 = 1= 4π2c2
! " kan

ma
n
=1= 4π2c2

! "
Gnna†nKan: ð49Þ

It is important to note that local vibrational frequencies and corresponding force constants can also be derived from
measured fundamental normal mode frequencies, which do not depend on any model chemistry used for the calcula-
tion, and even more importantly, which include anharmonicity effects not being captured by calculated harmonic fre-
quencies.174,175 The underlying assumption is that calculated normal mode vectors dμ are a reasonable approximation
to the true normal mode vectors dμ

0
. This assumption forms the basis for all frequency scaling procedures,176–179 and

therefore is well-founded. With D
0
≈ D the true force constant matrix Fq0 can be expressed via a perturbation added to

the calculated Fq matrix, that is, Fq0 = Fq + ΔFq, as shown by Konkoli and Cremer,40 transforming Equation (11) into

Fq +ΔFqð ÞD=G−1D Λ+ΔΛð Þ ð50Þ

The perturbation matrix ΔFq can be obtained from

ΔFqD=G−1ΔΛ ð51Þ

where ΔΛ in Equations (50) and (51) collects the differences between experimental and calculated normal mode fre-
quencies. Solving Equation (11) for Fq0 leads to the true diagonal force constant matrix K

0
within the harmonic frame-

work provided by the normal mode vectors dμ. The adiabatic mode analysis can then be performed in the same way as
it is for the calculated frequencies. An example can be found in Reference 174 for the water dimer.

2.2.2 | Adiabatic connection scheme

An important milestone for the local mode theory was the proof that there exists a 1:1 relationship between a complete
set of nonredundant local modes and the normal modes via an adiabatic connection scheme (ACS), allowing a smooth
transition from local to normal modes.166 With the help of the compliance matrix Γ = (Fq)−1, the vibrational eigenvalue
Equation (11) can be expressed as:

Γ−1D=G−1DΛ, ð52Þ

and

GR=ΓRΛ: ð53Þ

A new eigenvector matrix R is given by:

R=Γ−1D=Fq D= D−1! "†K: ð54Þ

Zou and co-workers partitioned the matrices Γ and G into diagonal (Γd and Gd) and off-diagonal parts (Γod and
God)

166:.

Gd + λGodð ÞRλ = Γd + λΓodð ÞRλΛλ: ð55Þ

The perturbation parameter λ in Equation (55) slowly converts the local vibrational modes, (λ = 0) adiabatically into
their corresponding normal mode counterparts, (λ = 1) by slowly switching on Γod and God, that is, by activating the
mass-coupling. This one-to-one transformation between local and normal vibrational modes forms the fundamental
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proof for the decomposition of normal modes into local mode contributions, opening new avenues for a comprehensive
analysis of vibrational spectra.

The important question has been raised whether the Konkoli–Cremer local vibrational modes can be related to
experimentally derived local modes. Figure 4a shows that local mode CH stretching frequencies ωa

n significantly corre-
late (R2 = 0.990) with the corresponding overtone CH stretching frequencies for a selection of organic molecules.180–182

This demonstrates the important link between the local vibrational modes derived from normal modes (in the har-
monic approximation) and the local modes derived from overtone spectroscopy. The advantage of our local modes is
twofold: (a) economic aspect: they can be obtained from standard routine frequency calculations and measured funda-
mentals; (b) fundamental aspect: the use of overtone spectroscopy as a means of obtaining local mode information is
mostly limited to terminal bonds.67,183,184 Hence a generalization of the local mode description of chemical bonding
derived from overtone spectroscopy is limited.

Figure 4b correlates McKean's experimental (isolated) vibrational frequencies obtained for 66 CH bonds in 38 differ-
ent organic molecules via isotope substitution139 with the corresponding calculated local mode frequencies. The set of
molecules tested comprises alkanes, alkenes, alkynes, alcohols, amines, halogenated hydrocarbons, aldehydes, ketones,
acids, cyanides, and so on, so that CH bonds in different hybridization states of carbon and under the impact of differ-
ent substituents were represented. Due to a doubling of the hydrogen mass, frequencies for C-H/C-D stretching vibra-
tions are significantly shifted to lower values thus eliminating a mixing with the remaining CH stretching motions. The
correlation coefficient R2 = 0.976 reflects good agreement with the calculated local frequencies, suggesting that isotope
substitution leads to frequencies, which can be considered as experimental counterparts of the Konkoli–Cremer local
vibrational frequencies. An extension of the isolated stretching frequencies to other than just XH bonds is difficult since
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(b)FIGURE 4 (a) Local mode versus overtone CH stretching
frequencies; data was taken from Table 4.3 of Reference 32;
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was taken from Table 1 of Reference 140
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a doubling of the nuclear mass is not possible for any other element frequently used in organic chemistry and because
of considerable experimental efforts implied.

2.2.3 | Characterization of normal modes

In addition to local mode force constants and local mode frequencies, the local mode analysis has led to a new way of
analyzing vibrational spectra. The CNM procedure decomposes each normal vibrational mode lμ into local mode contri-
butions for a nonredundant set of Nvib local vibrational modes an by calculating the overlap between each local mode
vector axn with this normal mode vector lμ as Snμ according to Equation (56).38–40

Snμ =
axn, lμ
! "2

axn,axn
! "

lμ, lμ
! " , ð56Þ

where (a, b) is the scalar product of two vectors a and b including a metric

a,bð Þ=
X

i, j

aiOijb j: ð57Þ

Oij is an element of the metric matrix O. We generally use the force constant matrix Fx as metric, namely O = Fx, to
include the influence of the electronic structure. As derived by Konkoli and Cremer38 the contribution of local mode an
to the normal mode lμ is given by

Cnμ =
Snμ

PNvib

m
Smμ

, ð58Þ

that is, a completely localized normal mode lμ has a Cnμ value of 1 (corresponding to 100% if Cnμ is given as percentage).
In essence, the CNM procedure complements the ACS analysis with a nonadiabatic picture, that is, a snapshot of the
normal modes expressed in terms of the local mode contributions.

As an example, the ACS and CNM are shown in Figure 5 for the CH3SCN molecule, which is a popular probe mole-
cule for the vibrational stark effect (VSE). The VSE is based on Stark's original observation made in 1913, that an exter-
nal electric field can cause a splitting and shifting of atomic and molecular energy levels.188 Over the past two decades
the VSE has become an important tool to measure and analyze the in situ electric field strength in various chemical
environments with NIRS.189–198 The VSE probe molecule has a characteristic bond, called probe bond, such as CO or
CN. Assuming that the normal vibrational mode associated with the stretching frequency of the probe bond is localized
and does not couple with other modes, then a shift of the probe stretching frequency directly reflects the influence of
the electric field. Both ACS and CNM can assess the validity of this assumption in a quantitative way. As shown in
Figure 5a, the local CN stretching frequency (left side) smoothly transforms into the corresponding normal mode fre-
quency (right side) when turning on the mass coupling via the scaling parameter λ. In Figure 5b the corresponding
decomposition of the 15 normal modes (each represented by a bar) of CH3SCN into 15 local mode contributions is
shown. As obvious from the decomposition, normal mode 12 with ωμ = 2,302 cm−1 has 93% local mode character, iden-
tifying CH3SCN as suitable VSE probe. This example clearly shows the analytic potential of the local vibrational mode
theory beyond characterizing the strength of chemical bonds and weak chemical interactions.

3 | RECENT EXTENSIONS

3.1 | Generalized subsystem vibrational analysis

Caused by the fact that normal vibrational modes are generally delocalized over the molecular system, it is difficult if
possible at all to assign certain vibrations to specific fragments and functional groups, or to isolate the vibrations of a
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molecule in solution or other media being described by a multilayer hybrid method, such as a mixed quantum
mechanics/molecular mechanics (QM/MM) approach.199–203 The solution to this problem requires a procedure which
projects the normal vibrational modes of the total system into the targeted subsystem or fragment. Many efforts have
been made to derive such a procedure, including partial Hessian diagonalization,204 partial Hessian vibrational analy-
sis (PHVA),205 mobile block Hessian (MBH),206–209 vibrational subsystem analysis (VSA),210,211 and local Hessian
transformation,212 just to name a few. Also the unitary transformation of normal mode vectors,152–155 mentioned in
the introduction, belongs to this category. However, all these approaches share a common deficiency; the partitioning
of the full Hessian matrix leads to a loss of information about the interaction between the subsystem and its
environment.

Therefore, we developed a new approach, the generalized subsystem vibrational analysis (GSVA),213 which avoids
the partitioning of the full Hessian and instead extracts the intrinsic fragmental vibrations of any fragment/subsystem
from the whole system via the evaluation of the corresponding effective Hessian matrix Fx

sub for the target subsystem of
interest as outlined in Reference 213:

Fx
sub =B0†

sub B0 Fxð Þ+B0†! "−1
B0
sub, ð59Þ

FIGURE 5 (a) Adiabatic connection
scheme and (b) decomposition of normal
modes into local mode contributions for
CH3SCN; ωB97X-D/aug-cc-pVDZ level of
theory.185–187
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where Fx is the full Hessian matrix for the whole system (i.e., subsystem plus environment) with dimension (3N × 3N).
The Wilson B-matrix collecting a nonredundant set of (3n − Σsub) internal coordinates for the subsystem is denoted as
B

0
and B0

sub in full 3N columns and truncated 3n columns (excluding the environment atoms), respectively. n is the
number of atoms in the subsystem and Σsub is the total number of translations and rotations in the subsystem, (linear
subsystem: Σsub = 5, nonlinear subsystem: Σsub = 6). (Fx)+ is the Moore–Penrose inverse214,215 of Fx, which is a singular
matrix. Fx

sub has the dimension of (3n× 3n).
When deriving the effective Hessian matrix, the full Hessian matrix is projected into the internal vibration space of

the subsystem without any need for partitioning. This is manifested in two aspects: (a) the effective Hessian matrix Fx
sub

has exactly Σsub zero eigenvalues; (b) the effective Hessian matrix retains the curvature of the PES in the direction
defined by any internal coordinate within the subsystem, which provides this approach with a solid physical basis. After
the projection, the conventional normal mode analysis machinery can be employed using the geometry, atomic masses
and the effective Hessian matrix of the subsystem for the calculation of a new type of localized normal modes. We
coined these subsystem normal mode vibrations as intrinsic fragmental vibrations.213 It is important to note that these
intrinsic fragmental vibrations of the subsystem are transferable, that is, the intrinsic vibrations of the subsystem in one
environment can be directly compared with those of the same subsystem in a different environment, for example, gas
phase versus solution or solution versus inside a protein. This important feature of GSVA is discussed in the following
for formaldehyde (CH2O) in a carbon nanotube (CNT) shown in Figure 6.213

As described in Reference 213, the complete nonredundant parameter set for the effective Hessian matrix Fx
sub of

CH2O was composed of the three covalent bonds, two O─C─H angles, and one out-of-plane pyramidalization angle. In
Table 1 the fragmental vibrational frequencies CH2O in a CNT are compared with the corresponding normal vibra-
tional frequencies of CH2O in gas phase. Vibrations 3, 5, and 6 are almost unaffected by the CNT environment, with fre-
quency differences smaller than 4 cm−1. The CO stretching frequency is slightly redshifted in the CNT by 24 cm−1. The
largest effect was found for the symmetric and asymmetric CH stretching frequencies with blue-shifts of 79 and
70 cm−1, respectively. These two motions extend into the CNT framework and therefore, respond most strongly to the
confinement imposed on the formaldehyde in the CNT.

The transferability of the intrinsic fragmental vibrational frequencies can be validated via a subsequent local mode
analysis. The data in Table 2 reveals that the local mode properties for the sub-system based on the effective Hessian
Fx
sub and those based on the full Hessian Fx are identical. In summary, GSVA provides a new link between local and

normal vibrational modes connecting intrinsic (subsystem) and normal mode properties.

FIGURE 6 Structure of CH2O confined in a carbon nanotube;
calculated at the B3LYP level of theory216–219 with Grimme's empirical
D3 dispersion correction220 and Becke–Johnson (BJ) damping221

utilizing Pople's 6-31G(d,p) basis set.222 Total number of atoms is 84. For
details see Referenece [213]

16 of 34 KRAKA ET AL.



3.2 | Periodic local modes for crystals and solids

After successfully studying the intrinsic strength of chemical bonds and weak chemical interactions in single molecules
and molecular complexes (which will be discussed in more detail in Section 4) we recently extended the local mode the-
ory from molecular to periodic systems and crystals with a particular focus on local mode force constants. The major
objective of this work was to develop a method leading to a deeper understanding of crystal bonding and allow for a
direct comparison of the intrinsic bond strength in periodic and molecular systems.223

As outlined in Reference 223, a necessary prerequisite for this extension was to consider the major differences of sin-
gle molecule and solid state vibrational spectroscopy: (a) While a single molecule has always Nvib vibrational frequen-
cies, in periodic systems the number of vibrations depends on the dimensionality, that is, (3N − 4) for one-dimensional
periodic systems and (3N − 3) for two- and three-dimensional periodic systems, with N being the number of atoms in
the primitive cell.142 (b) Periodic systems may have multiple sets of vibrational frequencies depending on the wave vec-
tor q within the phonon dispersion spectrum, whereas there is one and only one set of vibrational frequencies for a
molecular systems.224 (c) Only the set of frequencies can be measured by infrared and Raman spectroscopy, which is
taken at the Γ-point, (q = 0)225–227 where q defines points of the irreducible Brillouin zones.141 Therefore, we derived
the local vibrational modes at the Γ-point, forming the basis for a direct comparison of molecular vibrations and their
periodic counterparts. Another benefit of doing so is that the lattice vibrations at the Γ-point correspond to the vibra-
tions of the primitive cell, which is the smallest unit cell with translational symmetry.141 This allows us to restrict the
calculation of the force constant matrix to the primitive cell model and qualifies local mode properties in periodic sys-
tems as being independent of the choice of primitive cell.223

As outlined in Reference 223 we define a local vibrational mode in a periodic system as a vibration initiated by a
specific internal coordinate qn (e.g., a bond length) in all primitive cells while all other parts of the periodic system
relax. This definition allows for the direct comparison of the intrinsic strength of a bond characterized by the local
mode force constant in periodic and molecular systems. In the following we will summarize the derivation of the local
mode force constant kan in periodic systems, a more detailed discussion is given in Reference 223.

TABLE 1 Intrinsic vibrational frequencies of formaldehyde in carbon nanotube (CNT) and corresponding normal mode frequencies in
the gas phase in cm−1 as well as their characterization

No Vib. mode CH2O (CNT) CH2O (gas phase) Character

1 A1 2,976 2,897 Symmetric CH stretching

2 A1 1823 1847 CO stretching

3 A1 1,554 1,555 In-plane scissoring of HCH angle

4 B2 3,024 2,954 Asymmetric CH stretching

5 B2 1,278 1,275 In plane rocking of H atoms

6 B1 1,201 1,201 Out of plane pyramidalization

Note: For details see Reference 213.

TABLE 2 Local mode force
constants kan,sub based on the effective
Hessian matrix Fx

sub and local mode
force constants kan based on the full
Hessian matrix Fx for formaldehyde

Local vib. mode qn ka
n,sub ka

n

1 R(CO) 13.306 13.306

2 R(CH) 4.924 4.924

3 R(CH) 4.918 4.918

4 α(OCH) 1.109 1.109

5 α(OCH) 1.110 1.110

6 P (C0─O─H─H) 3.496 3.496

Note: qn defines the internal coordinate being associated with local mode an. R denotes bond stretching (unit: mdyn/Å),
α angle bending (unit: mdyn Å/rad2), and P out-of-plane pyramidalization (unit: mdynÅ/rad2), where the primed C
atom moves out of the plane defined by the following three atoms. For calculational details see Reference 213.
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Given a primitive cell containing N atoms and its force constant matrix Fx
p in Cartesian coordinates, the Nvib non-

zero eigenvalues of Fx
p are collected in a diagonal matrix Λ

0

Fx
pV=VΛ0, ð60Þ

where Nvib = 3N − 4 for one-dimensional periodic systems (i.e., linear polymers) or Nvib = 3N − 3 for two-dimensional
periodic systems (i.e., slabs) and three-dimensional systems (i.e., solids). Matrix V collects Nvib eigenvectors vμ in col-
umns. Equation (60) can be rewritten as

Λ0 =V†Fx
pV: ð61Þ

The d0
n vector associated with a specific internal coordinate qn in the primitive cell is then calculated in analogy to

Equation (13)

d0
n =BnV, ð62Þ

where Bn is the Wilson B-matrix for the internal coordinate qn. Then, the local mode force constant kan in the primitive
cell is calculated by

kan = d0
n Λ0ð Þ−1d0†

n

% &−1
, ð63Þ

which is analogous to Equation (43).
One of the examples presented in Reference 223 concerns the comparison of CC bonds in molecules and solid mate-

rial. In Table 3 and Figure 7 the CC bond strength of some representative hydrocarbon molecules is compared with that
of the CC bonds in 2D-graphene sheets and solid 3D-diamond. It has been suggested in the literature that the CC bond
strength in graphene is in between that of the C─C single bond in ethane and that of the C═C double bond in ethylene,
based on the fact that in addition to forming three σ bonds with neighboring carbons each sp2 hybridized C atom in
graphene has one electron in its p orbital perpendicular to the 2D plane forming an extended π-bond being delocalized
over the whole system.228–232 The local mode analysis could for the first time rigorously quantify this suggestion via a
direct comparison of local CC force constants and related BSO n values. Compared with the CC bonds in ethane and
ethylene, the CC bonds in graphene are in between those two references with regard to both, the bond length and bond
strength as shown in Figure 7. The graphene CC bond is 0.027 Å longer than the aromatic CC bond in benzene. It is
also weaker, as reflected by the local mode force constant; 1.228 mdyn/Å in graphene versus 1.462 mdyn/Å in benzene.
In addition, more specific details could be disclosed. Although both graphene and benzene share a C6 ring topology, the

TABLE 3 CC Bond length R(CC)
in Å, local CC force constants ka in
mdyn/Å and corresponding bond
strength orders BSO n for representative
hydrocarbons, molecules (1–6), a
2D-graphene layer (7), and solid
3D-diamond (8)

# Molecule/system R(CC) ka BSO n

1 Ethane 1.535 4.011 1

2 Ethylene 1.336 9.527 2

3 Acetylene 1.212 16.923 3.169

4 1,3,5-Hexatriene (C-C) 1.449 5.200 1.231

5 Benzene 1.402 6.446 1.462

6 Naphthalene 1.441 5.248 1.274

7 Graphene 1.429 5.182 1.228

8 Diamond 1.552 3.554 0.907

Note: All 8 systems were modeled at the TPSS/6-31G(d,p) level. In addition, periodic boundary conditions were
employed for (7) and (8).223

18 of 34 KRAKA ET AL.



π electrons in graphene delocalize over a larger space, thus leading to weaker CC bonds, which is already indicated for
the CC bond of naphthalene. As shown in Table 3, the CC bond strength in graphene (BSO n = 1.228) is close to that of
the single bond in 1,3,5-hexatriene, (BSO n = 1.231).

Diamond is one of the hardest natural materials,233 which could lead to the assumption that it has one of the stron-
gest CC bonds. However, our local mode analysis identified the CC bond in diamond as the weakest among the CC
bonds presented in Table 3 and in Figure 7.223 Each carbon atom in diamond adopts sp3 hybridization leading to a tetra-
hedral configuration like in the case of ethane.234 However, the diamond CC bond is longer than the ethane CC single
bond and its local stretching force constant is smaller by 0.457 mdyn/Å (see Table 3), in line with CC bond energies of
88 kcal/mol for the CC bond in ethane235 and 62 kcal/mol for the CC bond in diamond.236

The major difference is that in diamond each C atom is surrounded by four C atoms while the C atoms in ethane
are surrounded by one C and three H atoms. Compared with the carbon atoms in diamond, the hydrogen atoms in eth-
ane are less capable of attracting bonding electrons, and in this way moving them out of the CC bond region.237 As for
the hardness of diamond not a single CC bond but the large network of covalent CC bonds matters.237,238 This example
shows how we can quantify the intrinsic bond strengths of CC bonds in 2D graphene as well as 3D diamond and rank
them among a series of hydrocarbons. Such an analysis could also be useful to quantify the CC bond strength in other
carbon allotropes,237,239 e.g., in CNTs.240 As CNTs can be made with a variety of different structures, the characteriza-
tion of the CC bond strength in CNTs will be an interesting direction to pursue.

(a)

(b)

FIGURE 7 (a) BSO (CC) determined from local
CC force constants using Equations (44)–(45).
(b) Correlation between CC bond lengths and local
force constants. CC bonds analyzed are marked in red.
For calculational details see Reference 223
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4 | APPLICATIONS

As summarized in Table 4 the local mode theory has been successfully applied to characterize covalent bonds and weak
chemical interactions such as hydrogen, halogen, chalcogen, pnicogen, and tetrel bonding, as well as BH# # #π interac-
tions. Existing concepts could be generalized such as the Badger rule, new electronic descriptors were developed such
as a new aromaticity index based on local mode force constants as well as a new descriptor of metal ligand bond
strength. Some highlights are described in the following.

The ongoing debate about a C2 quadruple bond290–293 could be brought to a successful end.167 In comparison with
the local CC stretching force constants and corresponding BSO n values of ethane, ethene, and acetylene, the intrinsic
CC bond strength of C2 in its 1Σ+

g ground state was determined to be half way between that of a double bond and that
of a triple bond.

Based on a fruitful combination of quantum chemical predictions and experimental realization, for the first time,
nonclassical H-bonding involving a BH# # #π interaction could be identified.268,269 According to the Cremer–Kraka
criteria for covalent bonding,294,295 this interaction is electrostatic in nature with a BSO n of 0.35, being comparable to
what we found for the H-bond in the water dimer.174,250

A method for the quantitative assessment of aromaticity and anti-aromaticity, based on vibrational spectroscopy
was developed,270 which led to a new understanding of Clar's rule.296 The analysis of 30 mono- and polycyclic conju-
gated hydrocarbons confirmed Clar's rule of disjoint benzene units in many cases, but corrects it in those cases where
peripheral π-delocalization leads to greater stability. The structure and stability of polycyclic gold clusters, based on a
new Clar's aromaticity rule equivalent for metal–metal bonds, could be rationalized for the first time.271

Modeling of liquid water clusters with 50 and 1,000 water molecules at different temperatures using quantum
mechanical and MD simulations, respectively led to a series of interesting results.251,252 As shown in Figure 8 each
water molecule can usually accept/donate at most 2 hydrogen bonds leading to a variety of different hydrogen bond
combinations. MD calculations identified ca. 2 million hydrogen bonds in these water clusters belonging to 16 different

TABLE 4 Successful applications
of the local vibrational mode theory

Topic References

Covalent bonds

The strongest bond in chemistry 167,169,241

Long carbon–carbon bonds 242

Carbon-halogen bonds 243,244

Generalized Badger rule, bond strength bond length relation 32,140,168,245–248

Weak chemical interactions

Hydrogen bonding 174,175,249–255

Halogen bonding 253,255–261

Pnicogen bonding 262–264

Chalcogen bonding 247,265,266

Tetrel bonding 267

BH# # #π interactions 268,269

New electronic descriptors

Aromaticity index 270–272

Metal electronic parameter 254,258,271,273–276

Additional topics

Chemical similarity 277,278

Molecular acidity (pKa)
279

Chiral discrimination 280

Unified reaction valley approach (URVA) and local modes 281–287

Force field parameters 288

Local modes for periodic systems 223,289

20 of 34 KRAKA ET AL.



types of hydrogen bonds with different strength, as shown in Figure 8. In warm water, the weaker hydrogen bonds with
predominantly electrostatic contributions are broken, smaller water clusters with strong hydrogen bonding arrange-
ments remain. These cluster units can easily rearrange to form the hexagonal lattice of ice as sketched in Figure 8.

In cold water, many weak four-coordinated hydrogen bonds exist which need to be first broken before forming the
ice lattice, which costs energy and time delaying the freezing process. Therefore, warm water freezes faster than cold
water. This effect known in the literature as the Mpemba effect, according to its discovery by Mpemba in 1969,297 could
now for the first time be explained at the atomistic level utilizing our local mode analysis.251,298

The local mode analysis has led to a new quantitative measure of metal–ligand (M–L) bonding, the metal ligand
electronic parameter (MLEP),254,258,271,273–276 work that was inspired by Tolman's electronic parameter TEP.299–301 The
TEP has been used by experimentalists over the past decades as a popular measure describing the strength of a M–L
bond, in particular in connection with transition-metal catalysis, (for a comprehensive literature overview, see Table 3
in Reference 275). Tolman's experimentally derived TEPs were complemented by computationally derived counterparts,
the so-called CEPs.302–308 Both TEP and the corresponding CEP are indirect bond strength measures being originally
defined as the A1-symmetrical CO stretching frequency of nickel tricarbonyl phosphine complexes of the type L─Ni
(CO)3, L = R3P with (pseudo)-C3v symmetry.299–301 Tolman used the A1-symmetrical CO stretching frequency because
it could be easily identified in an infrared spectrum, recorded with the instruments of the 1960s, whereas the M–L
stretching frequency was out of reach. He assumed that the carbonyl ligand reflects indirectly how the ligand L influ-
ences the electronic structure at the metal atom, and in this way M–L bonding. Tolman's line of argument was that any
ligand L increasing the electron density at the metal atom causes a transfer of negative charge from the d-orbitals of Ni
into in the low-lying π* (CO) orbitals. As a consequence, the CO bond becomes weaker and the A1-symmetrical CO
stretching frequency is red-shifted. This redshift is registered within the infrared spectrum and qualifies the TEP as an
indirect descriptor for the metal–ligand bond strength. He further assumed that (a) the A1-symmetrical CO stretching

FIGURE 8 Upper panel:
Frequency of 16 different types of
hydrogen bonds (BHs) (in %) found in
the molecular dynamics simulations
(MDS) of (H2O)1,000. The MDS
simulations were carried out at two
different temperatures to simulate warm
water (90%C; red bars) and cold water
(10%C; blue bars). The insert illustrates
the four-digit notation applied to
identify the different hydrogen bond
types. Lower panel: Explanation of the
Mpemba effect.251
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frequency does not couple with other vibrational modes and (b) that the A1-symmetrical CO stretching frequency corre-
lates with the M–L bond strength. By utilizing the local mode theory, we could for the first time assess the validity of
these important assumptions. Based on an intensive local mode analysis of ca. 200 nickel-tricarbonyl complexes we
could show that the TEP is at best a qualitative parameter, suffering from relatively large mode-mode coupling errors
(in the range of 100 cm−1).273,275 Furthermore, we unravelled the basic problem that the A1-symmetrical CO stretching
frequency correlates with the intrinsic M–L bond strength if at all only within a small set of similar compounds. There
is also no direct relationship between the intrinsic M–L bond strength and the local CO stretching frequency, which is
free from any mode-mode coupling.273–275 Therefore, it is more efficient to assess the catalytic activity of transition
metal complexes (R)nM − L directly from the metal–ligand electronic parameter (MLEP), which we define as the local
stretching force constant of the M–L bond or the related BSO n.273,275 In Tolman's defense it has to be pointed out that
he had to choose the A1-symmetrical CO stretching frequency, because of instrumental limitations. However, modern
advanced Terahertz spectroscopy5,12,309–311 can record far infrared absorptions down to 40 cm−1 which easily includes
the range of the M–L stretching frequencies. The MLEP assesses both electronic and steric factors in a quantitative way
and therefore forms the ideal basis for a collection of M–L bond strength parameters across the periodic table. In addi-
tion, the MLEP can be determined for any metal or transition metal complex whether it contains CO ligands or
not.273–275 So far we have introduced MLEPs for Pb, Ti, Cr ligand bonds,274 Au─Au interactions,271 and Fe─H
bonding,254 which is discussed in more detail in the following.

In connection with a recent study of the trans-effect of different ligands L on Fe─H2 and Fe─H− bonding of a [NiFe]
hydrogenase mimic, Mako!s and co-workers introduced the MLEP for Fe─H bonds.254 17 different ligands L were
applied including π-donor ligands such as Cl−, F−, and OH−, σ-donor ligands such as CH−

3 , C2H−
5 , NH3 and σ-donor/

π-acceptor ligands such as CN− and CO. Figure 9 shows that the BSO(FeH) values of the compounds studied in this
work range between 0.4 and 0.65. As expected, the iron-hydride bonds in complexes B1–B17 are stronger than their
Fe─H2 counterparts in complexes A1–A17. It is interesting to note that in the case of the Fe─H2 interactions, the
Fe─Ha bonds turned out to be generally weaker than Fe─Hb bonds in complexes A1–A17,254 although the Fe─Hb bond
is the bond to be broken when complex A transforms into B, which is currently under further investigation.

As revealed by the results presented in Reference 254, Fe─H interactions are weakened by σ-donor/π-acceptor
ligands while strengthened by σ-donor or π-donor ligands. The opposite is true for the H─H bond of H2. It is weakened
by σ-donor or π-donor ligands while strengthened by σ-donor/π-acceptor ligands. These findings form a valuable basis

FIGURE 9 MLEP(FeH) = BSO(FeH) for Fe─H and
Fe─H2 derived from the local FeH stretching force
constants kan (FeH) via Equations (44)–(46). Low-spin
Fe(CO)5 was used as the reference molecule, in which
one axial CO ligand was replaced by H2 ([1]) and H−

([2]), respectively. (Reprinted with permission from
Reference 254. Copyright 2019 from Springer Nature)
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for future catalyst design based on [NiFe] hydrogenase mimics and for systematic design of new biomimetic catalysts
for H2 generation. The MLEP(Fe-H) can also be applied more broadly. Figure 9 includes two iron hydrides, the high
spin FeH2 molecule, the only transition metal dihydride, which has been detected in the gas phase,312 and the diatomic
FeH molecule, which has attracted a lot of attention in astrochemistry being one of the few molecules identified in the
sun.313,314

It is interesting to note that the Fe─H bond of the lowest-lying X4Δ state of FeH is as strong as the strongest NiFe
complex B17. This example shows the potential of the new MLEP(Fe─H) for the exploration of FeH bonding and the
design of new functional materials based on metal hydrides.315,316

5 | CONCLUSIONS

In this article the local mode theory of Konkoli and Cremer was reviewed. It was shown that (a) the local mode theory
furnishes bond strength descriptors derived from force constant matrices with a physical basis, (b) provides the long-
searched-for extension of the Badger rule to polyatomic molecules, (c) and offers a simpler way to derive localized
vibrations in chemically relevant coordinates than via the complex route of overtone spectroscopy. Therefore, one can
say that the local mode theory bridges and unifies earlier attempts to obtain straightforward and easy to interpret chem-
ical information from vibrational spectroscopy.

Special features of the local mode theory which were discussed include:

• The local vibrational modes of Konkoli and Cremer can be directly derived from the fundamental normal modes
(obtained in the harmonic approximation of the potential energy) via mass-decoupled Euler–Lagrange equations.

• There is a 1:1 relationship between the normal vibrational modes and a complete, nonredundant set of local vibra-
tional modes via an ACS. This relationship forms the basis for the decomposition of each normal mode into local
mode contributions (analysis of vibrational spectra).

• The local mode analysis can also be applied to experimentally derived vibrational frequencies within the framework
of the harmonic approximation of the potential energy.

• In contrast to compliance constants being derived from the inverse of the force constant matrix in internal
coordinates,100 each local mode force constant is assigned with a local vibrational mode, local mode frequency, mass,
and other local properties. No time-consuming Hessian matrix inversion is needed which is an important advantage
for the investigation of large systems.

• Local mode stretching force constants are directly related to the intrinsic strength of a bond and therefore, provide a
unique measure of bond strength based on vibrational spectroscopy.

• Local mode properties of molecules and periodic systems can be directly compared.

An overview of the great potential of the local mode theory was given, highlighting its successful application to
characterize covalent bonds (e.g., identifying the strongest and weakest covalent chemical bonds currently known in
chemistry) and weak chemical interactions such as hydrogen, halogen, chalcogen, pnicogen, and tetrel bonding, as well
as atom# # #π interactions. New electronic descriptors such as a generalized Badger rule, a new aromaticity index and a
new metal–ligand electronic parameter, both being based on vibrational spectroscopy were discussed. We also showed
how the characterization of normal mode (CNM) procedure, which decomposes each vibrational normal mode into
local mode contributions can be used as an efficient tool to assess the validity of a VSE probe; and introduced the seam-
less extension of the local mode analysis from molecular to periodic systems. Our vision is that in the future the local
mode analysis will be routinely applied by the computational community like the natural bond orbital analysis.317,318
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APPENDIX A:
PROGRAM PACKAGE LMODEA

The local mode analysis (LMODEA) program package shown in Figure A1 takes input information from a vibrational
frequency calculation including (a) Cartesian coordinates, (b) Hessian matrix, (c) atomic masses, and (d) atomic polar
tensors for intensities (if applicable). It contains interfaces for the most commonly used quantum chemistry packages,
ensuring that LMODEA is generally available and does not depend on the use of a particular quantum chemical soft-
ware. Important to note is that experimental frequencies can be provided for the analysis. The local mode parameters
to be used can be defined in terms of internal coordinates including bond lengths, bond angles, and dihedral torsion
angles, but LMODEA supports the use of curvilinear coordinates for local mode studies of intermediates during
dynamic processes such as ring inversion, ring pseudo rotation and bond pseudo rotation in Jahn–Teller systems319–322

and Cremer–Pople ring puckering and deformation coordinates323 recently applied to the study of the interplay of ring
puckering and hydrogen bonding in deoxyribonucleosides.255 Other parameters include out-of-plane angles,
pyramidalization angles, or parameters defined with regard to dummy atoms as needed for the description of strong
and weak metal–π interactions. LMODEA will then produce local mode data and if requested perform a CNM analysis
as shown in Figure 5. Python scripts interface the LMODEA output data to graphics software. It is important to note
that the computational effort of an LMODEA analysis is comparable to that of a standard NBO analysis. The first beta-
version of the code can be retrieved upon request.
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FIGURE A1 Flowchart of the local mode program
LMODEA
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