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ABSTRACT
The relativistic Hamiltonian Normalised Elimination of the Small Component with atomic unitary
transformation (NESCau) was used for the first time to calculate geometries and harmonic vibra-
tional frequencies of actinide sandwich compounds An(CnHn)2 (An: Th, Pa, U, Np, Pu; n = 5−8). In
addition, the Local Vibrational Mode analysis, the Natural Bond Orbital analysis, and the Atoms in
Molecules analysis were applied to quantitatively assess the intrinsic strength and the nature of the
An-ring interactions. Our results show that actinide sandwich compounds prefer strong covalent
interactions between actinide and carbon atoms, similar to those found for homologous ferrocene-
type complexes Fe(CnHn)2. Themetal centre rather than the ring size plays a key role in the strength
of those interactions.
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1. Introduction

The discovery of ferrocene, Fe(C5H5)2, in 1951 [1],
added a new important field to organometallic chem-
istry: metal sandwich complexes [2]. The first synthesis
of sandwich complexes using an actinide metal cen-
tre was reported in 1968 [3] followed by the series
M(C8H8)2(M = Th,U,Np, Pu) [4,5]. Organometallic
complexes of actinide-ηn-carbocyclic derivatives were
added to the repertoire because they showed promising
magnetic, electronic, photo-physical and catalytic prop-
erties [6–9]. The last few years have seen a significant

CONTACT Elfi Kraka ekraka@gmail.com Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel
Avenue, Dallas, TX 75275-0314, USA

increase of the synthesis of thorium and uranium sand-
wich complexes [10–14]. In addition, neptunium and
plutonium complexes with four (C5H5) and two (C8H8)

ligands have shown a unique behaviour in many small-
molecule reactions [15,16]. In order to further develop
the field of actinide sandwich complexes, a deeper and
more comprehensive understanding of f-block metal-
ligand bonding is needed. The experimental investigation
of actinide compounds is extremely challenging because
of their harmful radioactive character. Also computa-
tional studies are difficult, because they require a careful
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Figure 1. NESC: Normalised Elimination of the Small Component [23,24]; NESC-EP: NESC using an Effective Potential [25]; X2C: eXact
Two-Component [27–32]; DKH2: Second-Order Douglas-Kroll-Hess [33,34]; DKHn: nth-Order Douglas-Kroll-Hess [35–38]; IODKH: Infinite-
Order Douglas-Kroll-Hess [39–41].

consideration of relativistic effects, which play a signif-
icant role for the modelling and prediction of reliable
physical and chemical properties of compounds with
heavy elements, i.e. atoms with an atomic number larger
than 20 [17,18], as pointed out in the pioneering work
of Desclaux [19], Grant [20] and Pyykkö [21,22]. One
has also to consider that relativistic calculations may sig-
nificantly increase the computational costs; therefore it
is imperative to find the right balance between accuracy
and efficiency.

Over the past decades a lot of effort has been put into
the development of quantum chemical methods includ-
ing relativistic effects [23–41]. In analogy with Perdew’s
prominent ‘Jacob’s ladder’ of density functional theory
[42] one can establish a relativistic Jacob’s ladder, as
sketched in Figure 1 stretching from the non-relativistic
earth to the quantum electrodynamics (QED) heaven
[43,44].

The most rigorous way to include relativity in the
calculation of molecular systems is to use Dirac’s full
4-component (4c) formalism leading to wave func-
tions being vectors of four complex numbers (known as
bispinors) [45,46]. A large variety of approximate meth-
ods (the lower ladders in Figure 1) have been derived over
the years, motivated by the assumption that the full 4c
approach is computationally too demanding and cannot
be applied to larger molecules. One of the most pop-
ular approximation is the so-called 2-component (2c)
approximation, derived from decoupling the large and
small components of the Dirac spinor. This approach
forms the basis for two important families; the Douglas-
Kroll-Hess (DKH) [47,48] method and the regular
approximation (RA) [49]. The most famous DKH-type
Hamiltonian is the second-order DKH (DKH2) [47,48],

which encouraged the development of higher finite-
order Hamiltonians, the so-called DKHn Hamiltonians
[50–52]. Concerning the RA family, the zeroth-order RA
(ZORA) has been widely used in different forms [53,54].
It is important to note that these low-order approximate
relativistic Hamiltonians do not treat the core orbitals
exactly.

In 1997, Dyall developed the Normalised Elimina-
tion of the Small Component (NESC) method [23,24],
an important milestone, as NESC could be identi-
fied as the first Dirac-exact 2-component relativistic
approach (X2C), i.e. a quasi-relativistic (2c) method,
which reproduces the one-electron energies of the orig-
inal 4-component Dirac method and treats both core
and valence orbitals exactly [55]. Dyall’s work was the
starting point for the development of a whole family
of X2C relativistic methods [56–61], also called Diract-
exact NESCmethods [62–69], defining the upper ladders
in Figure 1. Nowadays, X2C methods are the most pop-
ular exact relativistic methods for the characterisation of
compounds with heavy atoms [26]. Another well-known
exact relativistic method is the infinite-order DKH
(IODKH; also called infinite-order two-component)
method [70,71], which is based on the Barysz-Sadlej-
Snijders (BSS) approach [72]. A comprehensive review of
those approaches are collected in Ref. [73].

Since the X2C Hamiltonian is mathematically sim-
pler, analytic nuclear gradients [27–29,74] and analytic
Hessians [31,32,56] have been derived, being important
for relativistic geometry optimisations and frequency
calculations. Recently, we adopted a new version of
NESC using the atomic approximation (NESCau), which
substantially increases the efficiency of relativistic calcu-
lations [56], as demonstrated in this work.



MOLECULAR PHYSICS 3

Figure 2. Schematic representationof all complexes investigated
in this work. In the case of An(C6H6)2 bent structures with C2v
symmetry were more stable than the D6h structures.

In addition to choosing the appropriate relativistic
method for the description of the actinide sandwich
compounds, a suitable measure assessing the intrin-
sic strength of the An-ring interaction is needed. The
local vibrational mode analysis, originally developed by
Konkoli and Cremer [75–78] provides the perfect tool
for this purpose. So far, the local mode analysis has been
successfully applied for the characterisation of covalent
bonds [79–85], a broad range of weak chemical interac-
tions in gas phase, solution and an enzyme environment
[86–102], aswell as chemical bonding in periodic systems
and crystals [103,104]. In thiswork, we extended the local
vibrational mode analysis by introducing a new quan-
titative measure of the intrinsic strength of metal–ring
interactions in metal sandwich compounds, as is further
described below.

A test set of 20 An(CnHn)2 (n = 5−8; An = Th, Pa,
U,Np, Pu) complexes (see Figure 2) was investigated
in this work with NESCau followed by the local mode
analysis, in order to deepen our understanding of
actinide–ligand bonding, focusing in particular on the
following objectives:

• to determine the strength of the An-ring interaction
in An(CnHn)2 utilising the local mode analysis;

• to investigate how the strength of the An-ring interac-
tion is related to 5f orbital occupation;

• to determine the intrinsic strength of the An-C ring
bonds, in particular their covalent or non-covalent
character;

• to compare metal–ring interactions of An(CnHn)2
with those of the Fe(C5H5)2 prototype.

The paper is arranged as follows. In Section 2, we pro-
vide details about the computational methods applied
including a description of NESCau and the local mode
analysis. In Section 3, we systematically elucidate the
An-ring interactions and discuss themost important fac-
tors determining the stability of these complexes; includ-
ing local stretching force constants as bond strength
descriptors, the natural bond orbital (NBO) analysis
[105] exploring 5f occupation, and the topological analy-
sis of the electrondensity analysing the covalent character
of An-ring bonding. The last section summarises the
most important results and draws some conclusionwhich
are useful for future fine-tuning and design of actinide
sandwich compounds.

2. Computational method

2.1. Normalised elimination of the small component

The continuous development of NESC has been descri
bed in several articles [29,32,62–65,67,106,107] including
two reviews [26,66], and a number of applications have
been reported [27,68,69,108,109]. Therefore, in the fol-
lowing only a short introduction of NESC is given focus-
ing on the NESCau extension.

Starting from the 4c-Dirac equation with embedded
restricted kinetic balance (RKB), a Dirac equation in
matrix picture was obtained by Dyall [23],(

V T
T W − T

) (
A− A+
B− B+

)

=
(
S 0
0 1

2c2T

) (
A− A+
B− B+

) (
ε− 0
0 ε+

)
(1)

where S, T and V are, respectively, the overlap, kinetic
energy and nuclear attraction integral matrices,W is the
matrix of the operator (σ · p)V(r)(σ · p)/(4c2), and ε+
(ε−) is the electronic (positronic) eigenvalues with the
eigenvectors A+ (A−) for large component and B+ (B−)
for pseudo-large component. Chemists are generally not
interested in the positronic solutions in ε−, i.e. they are
discarded. After some algebra, Dyall derived the NESC
equation considering only the electronic eigenvalues ε+:

L̃A+ = S̃A+ε+ (2)

with the NESC Hamiltonian

L̃ = U†T + TU − U†(T − W)U + V (3)
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and the metric

S̃ = S + 1
2c2

U†TU. (4)

In above equations, U can be calculated by B+ = UA+.
Within the one-electron approximation to the many-

body relativistic problem, theNESCHamiltonian L̃has to
be renormalised on the non-relativistic metric S through
the following equation

HNESC = G†L̃G (5)

where the renormalisation matrix [60] is given by

G = S−1/2K S1/2, (6)

K =
(
S−1/2S̃S−1/2

)−1/2
. (7)

The renormalised NESC Hamiltonian HNESC in Equa
tion (5) is then used to replace the one-electron Hamil-
tonian in the non-relativistic Fock matrix leading to the
coverage of relativistic effects. This is the essence of
the Dirac-exact NESC method [106], also called X2C
method, as stated [110].

Compared to other relativistic methods, NESC (i.e.
X2C) has the advantage of accuracy, simplicity and
efficiency [59]. However, for medium-sized and larger
molecules, NESC becomes time-consuming due to the
involved matrix inversion and diagonalisation proce-
dures. An efficient cure for this problem is the so-called
FromAtoms ToMolecule approach [59]. Considering that
the molecular U matrix is substantially atomically local,
it can be approximated by the direct sum of a series
of atomic U matrices; similarly the molecular G matrix
can also be constructed approximately. This NESC vari-
ant, which is essentially as accurate as standard NESC,
has been coined NESC with atomic unitary transforma-
tion (NESCau, i.e. X2Cau) [56]. Since the approximateU
and Gmatrices in NESCau do not depend on molecular
geometries, analytic calculations of nuclear gradients and
Hessians are very efficient [56], and therefore can be used
to investigate large molecules as is demonstrated in this
study.

2.2. The local vibrational mode analysis

The central starting point isWilson’s theory of vibrational
spectroscopy. In Equation (8), the Wilson equation of
vibrational spectroscopy for a vibrating systems with N
atoms is given [111–117]:

FxL̃ = ML̃� (8)

where Fx is the force constant matrix or Hessian matrix
expressed in Cartesian coordinates xi (i = 1, ··· 3N).

M is the mass matrix and matrix L̃ collects the vibra-
tional eigenvectors lμ in its columns (μ = 1, . . . ,Nvib ).
The number of vibrational modes Nvib equals 3N – Ntr
with the translational and rotational modes Ntr being 5
for linear and 6 for non-linear molecules. � is a diagonal
matrix with the eigenvalues λμ, which leads to the (har-
monic) vibrational frequencies ωμ according to λμ =
4π2c2ω2

μ. The tilde symbol indicatesmassweighting. The
normal mode eigenvectors and eigenvalues are obtained
by diagonalising the force constant matrix Fx defined in
Equation (8) according to L̃†FxL̃ = � and L̃†ML̃ = I.

One usually re-normalises the normal mode vectors
l̃μ according to L = L̃ (MR)1/2, where the elements of
the mass matrix MR are given by mR

μ = (l̃†μ l̃μ)−1 and
represent the reduced mass of mode μ.

Without mass-weighting Equation (8) takes the form
[111,112,116]

FxL = ML� (9)

leading to the diagonal normal force constant matrix K,
and the reduced mass matrix MR in normal coordinates
Q, respectively.

L†FxL = K (10)

L†ML = MR (11)

The dimension of matrices K andMR is Nvib × Nvib.
It is often more convenient to express the molecular

geometry in terms of internal coordinates q rather than
Cartesian coordinates x. Doing so the Wilson equation
adopts the following form [111]:

FqD = G−1D� (12)

where D collects the normal mode vectors dμ (μ =
1, . . . ,Nvib ) column-wise, and the Wilson matrix G,
which is defined as

G = BM−1B† (13)

represents the kinetic energy in terms of internal coordi-
nates. The elements of the Bmatrix in Equation (13) are
defined by the partial derivatives of internal coordinates
with regard to Cartesian coordinates. It is important to
note that the Bmatrix plays a central role for the Wilson
equation of spectroscopy, namely connecting different
sets of coordinates (internal, symmetry, curvilinear, etc.)
with the Cartesian coordinates [111]. Therefore, when-
ever a new set of coordinates is introduced, the first step
is to derive the appropriate B matrix. This is an impor-
tant point for deriving a new bond strength measure for
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metal–ring interactions, as discussed below. Diagonalisa-
tion of Equation (12) leads to

D†FqD = K (14)

Equations (9) and (12) are connected by the following
equations [111]:

Fq = C†FxC (15)

D = BL (16)

Matrix C is the pseudoinverse of the Bmatrix defined by

C = WB†
(
BW B†

)−1
(17)

where W is an arbitrary nonsingular 3N × 3N square
matrix. At a stationary point (i.e., the energy gradient is
a zero-vector), theNtr translational and rotational eigen-
vectors are decoupled from theNvib vibrational eigenvec-
tors, and thereforeW does not affect the results [118]. For
reasons of simplicity, one often usesW = I3N (usually for
the geometry optimisation procedure in internal coordi-
nates) orW = M−1. Using the latter definition, which is
more physically sound [119] this leads to

C = M−1B†G−1 (18)

and

BC = INvib (19)

However, it should be noted that CB �= I3N since B is
spanned in a Nvib -dimensional vibrational space.

While the solution of the Wilson equation, i.e. the
transformation to normal coordinates Q leads to a diag-
onal normal force constant matrix K free from any elec-
tronic coupling, there is still mass-coupling which pre-
vents the direct use of normal mode force constants
as intrinsic bond strength measure, a fact which often
has been overlooked. In 1998, Konkoli and Cremer
[75,76,120–122] derived for the first time local vibra-
tional modes directly from normal vibrational modes by
solving the mass-decoupled Euler-Lagrange equations,
i.e. by solving the local equivalent of theWilson equation
for vibrational spectroscopy. They developed the lead-
ing parameter principle [75,120] which states that for any
internal, symmetry, curvilinear, etc. coordinate a local
mode an can be defined. an is independent of all other
internal coordinates used to describe the geometry of
a molecule, which means that it is also independent of
using redundant or non-redundant coordinate sets. The
local mode vector an associated with the nth internal

coordinate qn is defined as [75,120]

an = K−1d†
n

dnK−1d†
n

(20)

where the local mode an is expressed in terms of nor-
mal coordinates Q and dn is the nth row vector of the
Dmatrix defined in Equation (16).

dn = bnL (21)

Equation (20) reveals that only matrices K and D are
needed to determine an, i.e. once the normal analysis
is completed, a following local mode analysis is straight
forward [75,120].

To each local mode an local mode properties can be
assigned. The local mode force constant kan of mode n
(superscript a denotes an adiabatically relaxed, i.e. local
mode) is obtained via Equation (22):

kan = a†
nKan = (dnK−1d†

n)
−1 (22)

It is noteworthy that local mode force constants, contrary
to normal mode force constants, have the advantage of
being independent of the choice of the coordinates used
to describe the molecule in question [75,76].

The local mode mass ma
n of mode n is given by

ma
n = 1/Gn,n = (bnM−1b†

n)
−1 (23)

where Gn,n is the nth diagonal element of the Wilson G
matrix. For a chemical bond A-B, Equation (23) leads
to MAMB/(MA + MB), which has the same form as the
reduced mass of diatomic molecules.

Local mode force constant and mass are needed to
determine the local mode frequency ωa

n

(ωa
n)

2 = 1
4π2c2

kanGnn (24)

Apart from these properties, it is straightforward to deter-
mine other local mode properties, such as infrared inten-
sities [77].

In the following, we will derive a local mode stretch-
ing force constant for the An-ring interaction. One could
think of calculating the local modes for all An-ring car-
bon interactions and averaging over the corresponding
local mode force constants. A better way is to use only
one interaction parameter describing the local stretching
between the An atom and the centre M of the ring, as
depicted in Figure 3 leading to a straight forward com-
parison of the strength of An-ring interaction in different
An-sandwich complexes.

Similar to the stretching between two atoms [111], the
B-matrix of the stretching between the An atom and the
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Figure 3. Definition of the local mode force constant ka(An-M)
describing the An-ring interaction, M denotes the ring centre.

geometrical centre of the ring defined by dummy atomM
can be calculated via the unit vector e1,2 = r1,2/r1,2 from
An to M,

sAn = e2,1 = −e1,2 (25)

sM = e1,2 (26)

and the threeB-matrix elementsBi,x,Bi,y andBi,z for each
ring atom i are given by

si = 1
Nj

sM (27)

where Nj denotes the number of ring atoms.
In order to determine the position ofM, the Cartesian

coordinate system is rotated into the standard orienta-
tion with uniquely defined the standard x-, y- and z-axes,
which is defined by the Cremer-Pople mean ring plane
[123,124] of the ring atoms. As sketched in Figure 3,
one can then uniquely define a projected stretching
direction e′1,2 = r1′,2/r1′,2 along the normal vector direc-
tion −→n of the ring’s unique mean plane [123,124], and
derive the force constant ka(An-M) and related frequency
ωa(An-M).

The local mode analysis was complemented with the
Natural Bond Orbital (NBO) analysis [105,125–127] to
determine the 5f orbital occupation number of the An
atom in each compound, in this way identifying which
of the 5f orbitals are participating in bonding. In order
to examine the covalent character of the An-C bonds we
applied the Cremer-Kraka Criterion [128–130] for cova-
lent bonding, which is based on the local energy density
H(r)

H(r) = G(r) + V(r) (28)

where G(r) is kinetic energy density (positive, destabili
sing) and V(r) is potential energy density (negative, sta-
bilising). Taken at the bond critical point rb of the elec-
trondensityρ(r) [131] between twobonded atoms,H(rb)
< 0 indicates a covalent bond, while H(rb) > 0 indicates
an electrostatic interaction.

The set of 20 complexes An(CnHn)2 (An : Th(IV),
Pa(V), U(IV), Np(IV), Pu(IV); CnHn = [C5H5]−, C6H6,
[C7H7]+, [C8H8]2−) and as a reference Fe(C5H5)2 were
calculated at the NESCau/M06 level of theory [132] util-
ising the Jorge-triple zeta valence quality plus polar-
isation (Jorge-TZP-DKH) basis set for all metals and
the double zeta (Jorge-DZP-DKH) for carbon and
hydrogen atoms [133–136]. These basis sets have been
reported as an efficient choice for relativistic calcula-
tions of actinide compounds, because of a balanced
description of core and valence electrons [136,137]. The
NESCau/M06 geometry optimisations and frequencies
calculations, aswell as the subsequent localmode analysis
was carried out with the Cologne2020 program pack-
age [138]. For the NBO analysis, the NBO 6 program
[139] was used, whereas the topological electron den-
sity analysis of ρ(r) was carried out with the program
AIMAll [140].

3. Results and discussion

3.1. Geometries and strength of the an-ring
interaction

The optimised geometries of all complexes An(CnHn)2
(An : Th, Pa, U,Np, Pu; n = 5−8) are of Dnh symmetry
with a linear M-An-M arrangement, with one exception;
the An(C6H6)2 complexes adapt C2v symmetry with a
bent M-An-M arrangement (see Figure 2), in line with
other studies [141–144]. All complexes were identified as
minimum structures on the potential energy surface; i.e.
no imaginary vibrational frequencies were encountered.
Possible reasons for the bent structures are i) the competi-
tion between ligand repulsion and bond stabilisation, dis-
cussed in the literature as a common feature of actinide
sandwich complexes [145,146], or ii) a Jahn-Teller or
pseudo-Jahn Teller distortion [147,148], which so far has
beenmostly observed for 3d-metal sandwich compounds
[149,150]. Work is in progress to further explore possi-
ble Jahn-Teller distortions in 5f-metal complexes inmore
detail.

The results of our relativistic calculations are pre-
sented in Table 1. The calculated distances between the
metal and the centre of the ring (An-M) for Th(C8H8)2,
U(C8H8)2 and Np(C8H8)2 are 1.999, 1.930, 1.911 Å,
respectively, in good agreement with the correspond-
ing experimental values of 2.004, 1.926 and 1.909 Å
[151,152]. The same holds for the Fe-M distance of
Fe(C5H5)2; the calculated distance is 1.644 Å and the
experimental distance is 1.648 Å [153,154]. This con-
firms the validity of our chosen NESCau/M06 model
chemistry.
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Table 1. Summary of Geometric, and Vibrational Data for Complexes An(CnHn)2.a

q (An-M) ka (An-M) ωa (An-M) R �(R − q) ka (An-C) ωa (An-C) 5f (An) ρ(rb) (An-C) H(rb) (An-C) ρ(rc) (An-M) H(rc) (An-M)

Fe(C5H5)2 1.644 3.424 549.8 2.041 0.397 1.76 448.1 0.6264 −0.2321
(C5H5)2
Th 2.429 2.854 388.2 2.707 0.278 1.013 318.8 0.01 0.3042 −0.0495 0.2207 0.0227
Pa 2.450 2.314 363.2 2.731 0.281 0.886 287.1 1.18 0.2666 0.0045 0.1917 0.0235
U 2.363 1.659 333.1 2.648 0.285 0.747 258.4 2.81 0.3178 −0.0222 0.2254 0.0227
Np 2.345 1.261 302.3 2.635 0.290 0.618 227.0 4.22 0.3259 −0.0251 0.2200 0.0240
Pu 2.335 2.024 350.3 2.626 0.291 0.827 267.3 4.96 0.2956 −0.0144 0.2254 0.0227

(C6H6)2
Th 2.253 2.361 385.7 2.607 0.354 1.003 297.7 0.00 0.3336 −0.0410 0.1464 0.0223
Pa 2.163 2.473 332.1 2.591 0.428 1.123 271.3 1.36 0.2174 −0.0104 0.1377 0.0345
U 2.310 1.576 338.7 2.539 0.229 0.775 242.4 2.63 0.2747 −0.0456 0.1599 0.0283
Np 2.257 1.075 369.7 2.512 0.255 0.922 211.4 3.78 0.2173 −0.0374 0.1613 0.0276
Pu 2.138 2.191 333.3 2.563 0.425 1.165 250.1 4.87 0.3064 −0.0269 0.1599 0.0283

(C7H7)2
Th 2.036 2.573 402.4 2.609 0.573 1.088 275.5 0.02 0.3381 −0.0493
Pa 2.007 3.174 310.0 2.777 0.770 1.095 247.5 1.62 0.2474 −0.0021
U 2.144 1.566 375.4 2.482 0.338 0.948 231.2 2.43 0.2917 −0.0314
Np 2.096 1.179 321.9 2.601 0.505 0.857 211.4 4.03 0.2477 −0.0063
Pu 2.130 1.833 318.7 2.674 0.544 0.917 223.4 4.82 0.2643 0.0019

(C8H8)2
Th 1.999 3.548 412.6 2.651 0.652 1.145 266.1 0.00 0.3151 −0.0424
Pa 1.981 2.442 363.8 2.686 0.705 0.890 209.9 1.73 0.2760 0.0026
U 1.930 2.147 369.2 2.651 0.721 0.917 206.9 2.76 0.3232 −0.0041
Np 1.911 1.288 334.3 2.616 0.705 0.752 179.6 4.19 0.2699 −0.0270
Pu 1.987 1.650 320.3 2.710 0.723 0.771 211.3 5.79 0.2653 −0.0147

a Calculated at NESCau/M06/Jorge-(T/D)ZP-DKH (T for An, D for C and H) level of theory. q metal–ring distances in Å; ka(An-M) local stretching force constants
of An-ring interactions in mDyn/Å; ωa(An-M) local stretching frequency of An-ring interactions in cm−1; R (An-C) bond length in Å; �(R − q) the difference
between A-C bond length and A-Mmetal–ring length; ka(An-C) the average of local stretching force constants of An-C bonds in mDyn/Å;ωa(An-C) the average
of local stretching frequency of An-C bond in cm−1; 5f occupation numbers of An; ρ(rb) the average of density and H(rb) the average of energy density at bond
critical point between An and each C-atom of the ring in e/Å3 and Hartree/Å3, respectively; ρ(rc) the density at the cage critical point in e/Å3; H(rc) the energy
density at the cage critical point in Hartree/Å3.

The weakest metal–ring interactions are observed for
the Np-complexes with an average ka(An-M) value of
1.200mDyn/Å, and the strongest interactions for the
Th- and Pa-complexes, with average ka(An-M) values
of 2.834 and 2.600mDyn/Å, respectively. In compari-
son, the ferrocene complex has a local mode force con-
stant ka(An-M) of 3.424mDyn/Å. Figure 4 shows the
relationship between the local force constant ka(An-
M) and the An-M distance. The An(C5H5)2 complexes
have the longest An-M distances, while An(C8H8)2
the shortest. The local force constants ka range from
1.075mDyn/Åfor Np(C6H6)2, (i.e. weakest interaction)
to 3.548mDyn/Åfor Th(C8H8)2, (strongest interac-
tion, even stronger than the Fe-M interaction with
3.424mDyn/Å). This shows that the metal centre plays
a key role with regard to the strength of the An-M
interaction.

Although there is no overall significant correlation
between distance and strength, we can see some trends.
For the sandwich complexes with 6-membered (6MR)
and 7-membered (7MR) rings we find a Badger-type
[155] relationship, i.e. for each of the series a shorter dis-
tance relates to a stronger interaction. However, for the
sandwich complexes with five-membered (5MR) rings,
(longest An-M distances) and 8-membered (8MR) rings,
(shortest An-M distances), we find an inverse Badger

Figure 4. An-M distance q vs. local stretching force constant
ka(An-M). Calculated at the NESCau/M06/Jorge-(T/D)ZP-DKH (T
for An, D for C and H) level of theory.

relationship, i.e. within each of this series the longer An-
M distance is paired with larger local force constant. In
both cases, the ring is negatively charged leading to elec-
trostatic repulsion between ring and metal centre. This is
in linewith previous studieswherewe observed increased
bond weakening with decreasing bond length for chem-
ical bonds between two electronegative atoms (e.g. NF)
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Figure 5. Relationship between the local force constants ka(An-
C) averaged over all ring An-C bonds for each ring and the local
stretching force constants ka(An-M) for themetal ring centre inter-
action. Calculated at the NESCau/M06/Jorge-(T/D)ZP-DKH (T for
An, D for C and H) level of theory.

caused by increasing electrostatic repulsion, which over-
rules the Badger rule [83,156].

Figure 5 correlates the local mode force constants
ka(An-C) averaged over all ringAn-Cbonds for each ring
and the local stretching force constant ka(An-M) for the
metal–ring centre interaction. There is a significant cor-
relation between both local force constants for the 5MR,
7MR and 8MR sandwich compounds. However, Figure 5
clearly reveals that the former are smaller, i.e. the strength
of the interaction between the metal and the ring ligands
is underestimated when using the average interaction
between the metal and the individual carbon atoms of
the ring as bond strength measure. This is also reflected
by the local vibrational frequencies ωa values collected
in Table 1. In the case of the bent 6MR sandwich com-
plexes the correlation between the two force constants
falls short, confirming that only the local ka(An-M) force
constants are suited as intrinsic bond strength measure,
applicable to complexes with higher and lower symmetry.

3.2. NBO analysis and 5f occupation

Actinides are characterised by gradually filling the 5f-
electron shell. The level of localisation and participation
of the actinide 5f valence orbitals in covalent bonds across
the actinide series is still an ongoing debate [157,158].
The 5f orbitals of actinides can be localised like 4f orbitals
in the lanthanide series, or delocalised like d orbitals in
transition metals. Also, relativistic effects can move the
5f and 6d orbital energies closer together, allowing both
orbitals to participate in chemical bonding [159].

Figure 6. 5f occupation numbers of the An atoms vs local
stretching force constants ka(An-M). Calculated at the
NESCau/M06/Jorge-(T/D)ZP-DKH (T for An, D for C and H)
level of theory.

In order to describe the role of 5f electrons in An-
ring bonding, the 5f orbital occupation number of the
An atom of each compound investigated in this work
was calculated via an NBO analysis and compared with
the corresponding local stretching force constant ka(An-
M). In Table 1 all 5f occupation numbers are collected.
In Figure 6, the 5f occupation numbers are compared
with the local stretching force constants ka(An-M). An
isolated Th atom with the electron configuration of
[Xe]6d27s2 has no 5 f occupation. This is reflected by the
close to zero values in Table 1 found for all Th sand-
wich complexes, independent of the type and size of the
ring. However, as depicted in Figure 6 the local ka(An-
M) force constants vary from 2.361mDyn/Å(6MR)
to 3.584mDyn/Å(8MR), showing a clear variation in
metal–ring bonding. This indicates that 5f molecular
orbitals do not participate in the Th-ring interaction, in
line with the finding that Th tends to resemble d-block
transition metals [160,161]. The 5f occupation numbers
of the Pa complexes are in the range of 1.18 e (5MR)–1.73
e (8MR), being smaller than the 5f occupation number in
the isolated Pa atom ([Xe]5f26d17s2). However, there is
no direct correlation with the local stretching force con-
stants ka(Pa-M), i.e. the interaction is not dominated by
5f electron participation.

The same holds for the 5f occupation numbers of
the U-complexes ranging from 2.43 e (7MR) –2.81 e
(5MR) which are smaller than that of the isolated U
atom ([Xe]5f36d17s2.) Again, there no direct correlation
between 5f delocalisation and bond strength, the largest
ka(U-M) value of 2.417mDyn/Å is found for the 8MR
while the smallest 5f occupation number of 2.43 e, i.e.
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Figure 7. (a) Average electron density ρ(rb) and ρ(rc) vs ka(An-M); (b) H(rb) and H(rc) vs ka (An-M). Calculated at the
NESCau/M06/Jorge-(T/D)ZP-DKH (T for An, D for C and H) level of theory.

largest delocalisation is found for the 7MR. The 5f occu-
pation numbers for the Np-complexes are close to the
configuration of the isolated Np atom ([Xe]5f46d17s2).
It is interesting to note that in the case of the 5MR
and 8MR the 5f occupation number is larger than 4
(4.22 e, 5MR and 4.19 e, 8MR) indicating a delocali-
sation of charge from the negatively charged ring into
the 5f orbitals, which correlates with the higher ka(An-
M) values of 1.261mDyn/Å, 5MR and 1.288mDyn/Å,
8MR. However, overall the Np complexes have the
weakest metal–ring interaction compared to other An-
complexes, in line with arguments that the 5f electrons
in Np are more localised and less prone to metal–ring
interactions [160,162]. The 5f occupation numbers of
the Pu-complexes are in a range of 4.82 e (7MR)–5.79
e (8MR) which are again smaller than the 5f occupa-
tion number in the isolated Pu atom ([Xe]5f66d07s2). But
also in this case there is no direct correlation between 5f
electron occupation and the strength of the metal–ring
interaction.

3.3. Electron and energy density distribution

The local mode and the NBO analyses were comple-
mented with the topological analysis of the electron den-
sity ρ(r) focusing on the characterisation of the An-C
bonds. Table 1 collects the electron density ρ(rb) at the
An-C bond critical point rb averaged over all An-C ring
bonds for each ring and the corresponding energy den-
sity H(rb). For 5MR and 6MR complexes in addition to
bond critical points rb also cage critical points rc [131]
were found. The corresponding electron density ρ(rc)
and energy densityH(rc) at the cage critical point are also
included in Table 1. In Figure 7(a), ρ(rb) and ρ(rc) values
are compared with the local mode force constants ka(An-
M), whereas Figure 7(b) relates energy density H(rb) and
H(rc) with the local mode force constants ka(An-M).

As discussed above, the covalent character of a chem-
ical bond is reflected by a negative value of H(rb),
while a positive energy density H(rb) corresponds to
a chemical bond with dominant electrostatic charac-
ter [129,130,163]. The energy density H(rb) of the Th-
complexes is between −0.0410 and −0.0495Hartree/Å3

indicating the covalent character of the Th-C ring bonds,
which correlates with larger local mode force constants
ka(An-M), see Table 1 and Figure 7(b). Pa(C5H5)2,
Pa(C7H7)2 and Pa(C8H8)2 complexes have H(rb) values
from −0.0021 to 0.0045Hartree/Å3, showing a mixture
of the electrostatic and the covalent bonding between
metal and ring atoms. The Pa(C6H6)2 complexwhich has
a bent geometry contrary to the linearM–Pa–M arrange-
ment of the other Pa sandwich complexes, has an H(rb)
value of −0.0304 Hartree/Å3, revealing larger covalent
character of the Pa–C bonds. This can be explained by the
larger overlap between the π orbitals of benzene with the
6d and 5f orbitals of the metal in the bent geometry, lead-
ing to stronger electron donation from the ring and to
more covalent bonding character. The same effect is true
for the bentU(C6H6)2, Np(C6H6)2 and Pu(C6H6)2 com-
plexes. The only exception is the bent Th(C6H6)2 com-
plex, showing less covalent character than the other Th
complexes. In this case, the 5f orbitals are empty, and the
bent structure does not necessarily lead to a stronger elec-
tron donation from the ring to the metal atom. Overall,
as depicted in Figure 7(a,b), there is no direct correla-
tion between An-C bond critical point properties and the
intrinsic strength of the An-ring interaction represented
via the local mode force constants ka(An-M).

4. Conclusion

This work provides a detailed analysis of An(CnHn)2
(An: Th, Pa, U, Np, Pu; n = 5−8) sandwich com-
plexes combining the NESCau approach and the local
vibrational mode analysis. We could shed new light on
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the An-carbon bonding and the An-ring interactions in
these f-block sandwich complexes including the follow-
ing highlights:

• Our study shows that NESCau is an easily applicable
method providing a solid fundament for the calcula-
tion of compounds with superheavy elements. Build-
ing upon the locality of relativistic effects, NESCau
makesNESC calculations dozens to hundreds of times
faster without losing accuracy [56].

• An(CnHn)2 complexes with smaller ring are characte
rised by longer An-ring distances than complexes with
larger rings. However, the strength of the An-ring
interaction does not correlate with ring size and/or
metal–ring distance; it is determined by the character
of the metal centre. The weakest An-ring interactions
were observed for Np(CnHn)2 while the strongest for
Th(CnHn)2 complexes.

• Calculated 5f occupation numbers are in line with the
expected An oxidation states. They increase across the
actinide series denoting a successive increase of the
electron localisation on the An centre with increas-
ing atomic number. As reflected by the correspond-
ing local mode force constants, delocalisation of the
5f-orbitals leads to aweakening of theAn-ring interac-
tion. Th complexes with a 5f occupation number close
to zero have the strongest An-ring interactions. This
clearly shows that in these compounds 5f orbitals do
not play a role for the metal–ring interactions.

• According to the Cremer-Kraka criterion strongest
covalent An-C bonds were observed in Th-complexes,
followed by U and Np complexes, while Pu and in
particular Pa complexes showed a mixture of covalent
bonding and electrostatic interactions.

By rationalising the intrinsic strength of An-C bond-
ing and An-ring interactions and their interplay in a
series of 20 An sandwich complexes An(CnHn)2, this
work provides valuable information for the fine-tuning
and future synthesis of An sandwich compounds.We also
hope to encourage by our study the use of NESCau for
the investigation of large systems with heavy metal and
superheavy metal atoms.
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