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ABSTRACT
The conformational properties of ring compounds such as cycloalkanes determine to a large extent their stability and reactivity. There-
fore, the investigation of conformational processes such as ring inversion and/or ring pseudorotation has attracted a lot of attention over
the past decades. An in-depth conformational analysis of ring compounds requires mapping the relevant parts of the conformational
energy surface at stationary and also at non-stationary points. However, the latter is not feasible by a description of the ring with Carte-
sian or internal coordinates. We provide in this work, a solution to this problem by introducing a new coordinate system based on the
Cremer–Pople puckering and deformation coordinates. Furthermore, analytic first- and second-order derivatives of puckering and defor-
mation coordinates, i.e., B-matrices and D-tensors, were developed simplifying geometry optimization and frequency calculations. The new
coordinate system is applied to map the potential energy surfaces and reaction paths of cycloheptane (C7H14), cyclooctane (C8H16), and
cyclo[18]carbon (C18) at the quantum chemical level and to determine for the first time all stationary points of these ring compounds in a
systematic way.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144278., s

I. INTRODUCTION

Theoretical chemists generally prefer the use of Cartesian coor-
dinates when solving the Schrödinger or Dirac equation in some
approximate way. This results from the fact that the electron inte-
grals and their derivatives can be efficiently calculated in terms
of Cartesian coordinates and that there is always a unique set
of 3N Cartesian Coordinates for a system being composed of N
atoms. On the other hand, experimentally oriented chemists gen-
erally prefer to describe molecular geometries in terms of internal

coordinates, such as bond lengths, bond angles, and dihedral angles,
because they are more intuitive.1 However, there is no unique set of
(3N – Ntr) internal coordinates, with Ntr = 6 for nonlinear and 5 for
linear polyatomic molecules. This often leads to the question, which
internal coordinates are best suited for the description of the molec-
ular system under consideration.2 The basic equation of vibrational
spectroscopy is defined in Cartesian coordinates.3 However, it can
be extended to internal coordinates using the well-known Wilson
B-matrix formalism, which connects internal or other coordinates
(e.g., symmetry coordinates) to Cartesian coordinates via the first
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order derivatives of the internal coordinates with regard to Carte-
sian coordinates.3–5 This formalism is at the heart of modern vibra-
tional spectroscopy6,7 and has been realized in an increasing number
of algorithms, such as the natural extension reference frame algo-
rithm8 or even involving machine learning procedures,9 just to name
a few.

Despite their popularity, both Cartesian and internal coordi-
nates are no longer an optimal choice for the description of reacting
molecules. As the atoms of a molecule move on curved paths in such
a situation, the dynamics of a molecule is better described in terms
of curvilinear coordinates.10,11 In computational chemistry, the defi-
ciency of internal coordinates can be alleviated to some extent by
using redundant sets of internal coordinates,12–15 which help us to at
least approximately describe the curved paths of the atoms during
geometry optimization.16–19 However, these approximations tend
to fail for the description of vibrating molecules,20,21 and for the
description of ring systems and their conformational changes,22–24

or in more general terms, when a dynamic process of a molecule
has to be described in a precisely defined space. For example, the
conformational space of a puckered N-membered ring (N − ring)
is spanned by N − 3 coordinates,24,25 the Jahn–Teller surface for
bond pseudorotation by 2N − 3 coordinates, which contains N − 2
two-dimensional subspaces,22 the space of the Berry pseudorota-
tion of an AB5 system is 2-dimensional26 as well as that of the
corresponding turnstile pseudorotation.27 In all these cases, it is
not clear which internal coordinates should be used to determine
the corresponding conformational energy surface (CES). The geom-
etry of a puckered N-ring might be described by N ring bonds,
N − 3 internal ring angles, and N − 3 dihedral angles. Since there
is no unique way of selecting N − 3 angles out of a set of N pos-
sible angles, the question which is the best set of internal coordi-
nates to be used for specifying the geometry of a puckered N-ring
cannot be answered. The stationary points on the CES can be deter-
mined using redundant internal coordinates. However, in order to
map the relevant parts of the CES, which describe conformational
processes such as ring inversion and/or ring pseudorotation with
quantum chemical means, one has to investigate also conforma-
tions at non-stationary points of the CES. This is not feasible by
the description of the ring with Cartesian or internal coordinates.28

A solution to this problem is provided by using the Cremer–Pople
puckering coordinates24,28–30 that specify the pucker of an N-ring
by N − 3 uniquely defined puckering coordinates that split up into
(N − 3)/2 puckering amplitude–pseudorotation phase angle pairs
qn, ϕn with n = 2, . . ., (N − 1)/2 for N being odd and n = 2,
. . ., (N − 2)/2 and a single puckering amplitude qN /2 describing
crown-puckering for N being even. Using N bond lengths, N − 3
bond angles, and the N − 3 puckering coordinates any conformer
of an N-ring located at a non-stationary point of the CES can be
described by a constrained geometry optimization. The advantages
of describing ring pseudorotation and ring inversion with the help of
Cremer–Pople puckering coordinates are amply documented in the
literature.22,23,31–45

There remains still some arbitrariness when selecting the N
bond lengths and N − 3 bond angles complementing the N − 3 puck-
ering coordinates. This arbitrariness vanishes when complementing
the puckering coordinates by a set of 2N − 3 ring deformation coor-
dinates.22,23,40 These coordinates specify the geometry of the planar
ring form in terms of deformation amplitudes tn and deformation

phase angles τn with n = 1, . . ., (N − 2) for N odd or even and
a single ring radius R = R0 + t0 changing from the value R0 for a
regular N-membered polygon (N-gon) with DNh symmetry upon a
breathing deformation of the N-gon with amplitude t0. Using N − 3
puckering and 2N − 3 deformation coordinates, which we will call
ring puckering and deformation (RPD) coordinates in the follow-
ing, the geometry of any planar or puckered N-ring can be uniquely
defined, which is of outmost relevance for the determination of the
geometry of specified pucker and/or deformations, the analysis of
pucker and deformation in substituted N-rings, and the investiga-
tion of dynamic processes such as ring inversion, ring pseudorota-
tion, bond pseudorotation in Jahn–Teller systems, bond shifting in
annulenes, etc.

The manuscript is structured as follows: In Sec. II, we intro-
duce the theory of RPD coordinates for any N-ring system, includ-
ing analytic first and second derivatives. The implementation of
RPD coordinates is discussed in Sec. III. In Sec. IV, we apply our
new coordinates to describe the puckering of cycloheptane and
cyclooctane as representative examples for odd and even-numbered
N-rings, respectively, and also to explore the deformation of the
recently synthesized cyclo[18]carbon.46 Conclusions, including a
summary of the advantages of using RPD coordinates, are drawn in
Sec. V.

II. THEORY
A. RPD coordinates

The coordinates of an N-ring can be defined with regard to
an arbitrary orientation of the coordinate system. However, for the
calculation of the puckering and deformation coordinates, a special
orientation (called “standard orientation”) has to be adopted. This is
defined by using the xy-plane as the mean plane of the N-ring and
defining the norm to the mean plane as the +z-axis (unit vector ez).
The mean plane contains the planar reference ring of the puckered
N-ring obtained by setting all puckering amplitudes qn = 0. The geo-
metrical center of the planar reference ring is taken as the origin of
the Cartesian coordinate system and atom 1 of the planar reference
ring is positioned on the negative x-axis in the 9 o’clock position.

In the following, we will use the letter of the Greek alphabet
for atomic numbers in the clockwise direction, including (1) atomic
number α (= 1, . . ., N) in an arbitrary initial orientation, (2) atomic
number β (= 1, . . ., N) in the standard orientation of RPD coordi-
nates, and (3) γ ≡ β − 1. When needed, rlα (l = 1, 2, and 3 for x, y,
and z) will be used for the Cartesian coordinates (xα, yα, zα) ≡ rα
of atom α, and rkβ (k = 1, 2, and 3 for x, y, and z) for the Cartesian
coordinates (xβ, yβ, zβ) ≡ rβ of atom β, respectively.

The geometrical center of the N-ring being the origin of the
Cartesian coordinate system is imposed by

∑
α
rlα = 0 (1)

and the mean plane is determined with the help of two auxiliary
vectors R′ and R′′ that span the xy-plane

R′ = ∑
α
rα sin ζα, (2)

R′′ = ∑
α
rα cos ζα, (3)
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where

ζα =
2π(α − 1)

N
. (4)

The unit vector in the z-direction (normal to the mean plane), ez , is
calculated as

ez =
R′ × R′′
∣R′ × R′′∣ , (5)

and for x- and y-components, the unit vectors ex and ey may be
determined by

ex =
ez(r0

1, ez) − r0
1

∣ez(r0
1, ez) − r0

1∣
= − R′′ + ez × R′
∣R′′ + ez × R′∣

= − u
∣u∣ , (6)

and ey = ez × ex, where r0
1 is the position of the first atom in the

reference N-gon (in standard orientation),

r0
1 =

1
N ∑β′

Cβ rβ′ , (7)

and Cβ describes counter-clockwise rotation by ηγ ≡ η(0)γ = 2πγ/N
[cf. Eq. (19)] around ez ,

Cβ rβ′ = rβ′ cosηγ + (ez × rβ′) sinηγ + ez(ez , rβ′)(1 − cosηγ). (8)

The above three unit vectors ex, ey, and ez determine a unique stan-
dard orientation, and the corresponding Cartesian coordinates can
be computed by

rkβ = rβ ⋅ ek ≡ (rβ, ek). (9)

Hence, for any puckered ring, the choice of the origin and the mean
plane impose

∑
β
rkβ = 0 (10)

and

∑
β
zβ cos ζβ = 0, (11)

∑
β
zβ sin ζβ = 0. (12)

The puckering coordinates are defined by

qn cosϕn =
√

2
N ∑β

zβ cosω(n)γ , (13)

qn sinϕn = −
√

2
N ∑β

zβ sinω(n)γ , (14)

with

ω(n)γ = 2πnγ
N

, (15)

for n = 2, . . ., N/2 − 1 (N even) or n = 2, . . ., (N − 1)/2 (N odd). For
even N, an additional ring puckering amplitude describing crown
puckering is given by

qN/2 =
√

1
N ∑β

zβ cos(γπ) =
√

1
N ∑β

(−1)γzβ. (16)

The deformation coordinates of a planar N-ring are defined by
Eqs. (17) and (18)22

tn cos τn =
1
N ∑β

(xβ cosη(n)γ − yβ sinη(n)γ ), (17)

tn sin τn =
1
N ∑β

(xβ sinη(n)γ + yβ cosη(n)γ ), (18)

with

η(n)γ = 2π(n + 1)γ
N

, (19)

where n = 0, ⋯, N − 2 but t0 (i.e., radius R; also called breathing
amplitude) does not have a phase angle τ0.

Using the above formulas, the puckering and deformation
coordinates can be determined from the Cartesian coordinates of an
arbitrary ring molecule only if the atoms are correctly ordered.

For a given set of RPD coordinates, the corresponding Carte-
sian coordinates can be extracted according to

xβ = −R cosη(0)γ +
N−2

∑
n=1

tn cos(τn − η(n)γ ), (20)

yβ = R sinη(0)γ +
N−2

∑
n=1

tn sin(τn − η(n)γ ), (21)

for x- and y-coordinates, respectively, and

zβ =
√

2
N

(N−1)/2

∑
n=2

qn cos(ϕn + ω(n)γ ) (N odd), (22)

zβ =
√

2
N

(N−2)/2

∑
n=2

qn cos(ϕn + ω(n)γ )+
√

1
N
qN/2(−1)γ (N even),

(23)
for z-coordinates of atom β. The translational (T ) and rotational
(R) modes in RPD coordinates may be obtained by the generaliza-
tion of Eqs. (20)–(22), i.e., {tn−1, τn−1 = 0 or π/2} for Tx or Ty, {t0, τ0
= π/2} for Rz , {q1, ϕ1 = 0 or π/2} for Ry or Rx, and {q0, ϕ0 = 0} for
Tz , whereas, {q0, ϕ0 = π/2} does not change the geometry.

B. First derivatives of RPD coordinates
The equilibrium geometry of an N-ring corresponds to that

point on the CES, for which all internal coordinate forces f q (q: bond
lengths, bond angles, and dihedral angles) vanish. Accurate geom-
etry optimizations are based on the determination of the analytic
energy gradient that collects all forces f q. Analytical energy gradients
with regard to Cartesian coordinates rlα are available for most quan-
tum chemical methods. The transformation of Cartesian coordinates
rlα and Cartesian coordinate forces f r into internal coordinates q and
internal coordinate forces f q, respectively, can be accomplished via
the use of the Wilson B-matrix.3 The infinitesimal displacements
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Δq are related to the corresponding Cartesian displacements Δr by
the appropriate Wilson B-matrix elements3

Δq = BΔr, (24)

where
Bn
α,l =

∂qn
∂rlα

. (25)

Transformation of the forces f r collected in the gradient gr requires
the pseudo-inverse of B,

gq = A
†gr , (26)

with
A =W−1B†(BW−1B†)−1, (27)

where W is an arbitrary non-singular 3N × 3N square matrix. For
the Hessian in internal coordinates, W = M (M is the mass matrix) is
usually used,14,47 but in geometry optimizations, the identity matrix
is often taken15 for W to utilize massless dummy atoms.

For the purpose of extending standard internal coordinates to
RPD coordinates and optimizing the geometry of an N-ring in RPD
coordinates, the following B-matrix elements have to be determined:

Bn
α,l = ∑

β,k

∂ξn
∂rkβ

∂rkβ
∂rlα

, (28)

where ξn can be either puckering coordinates {qn, ϕn} or deforma-
tion coordinates {tn, τn}. Equation (28) may also be expressed in a
matrix form bn = b∗nΔ, where b∗n is a row vector of B-matrix for ξn in
the standard orientation, and the 3N × 3N matrix Δ is the response
of the Cartesian coordinates in standard orientation to the ones in
initial orientation.

The B-matrix of puckering coordinates was originally derived
in Ref. 28 and recently revisited in Ref. 48 by deriving Eqs. (13), (14)
and (16) regard to zβ

∂qn
∂zβ
=
√

2
N

cos(ω(n)γ + ϕn), (29)

∂ϕ′n
∂zβ
= qn

∂ϕn
∂zβ
= −
√

2
N

sin(ω(n)γ + ϕn), (30)

along with ∂qN/2/∂zβ = (−1)γ/
√
N for an even N-ring. In Eq. (30),

∂ϕn/∂zβ is replaced by ∂ϕ′n/∂zβ to avoid numerical instability if qn is
small or zero at some geometries; in this case, ϕn can be an arbitrary
value, and one may just take ∂ϕn/∂zα = 0.

Differentiating Eqs. 17 and 18 except for n = 0 with regard
to xβ and yβ, the B-matrix entries for deformation coordinates are
obtained,

∂tn
∂xβ
= 1
N

cos(τn − η(n)γ ), (31)

∂tn
∂yβ
= 1
N

sin(τn − η(n)γ ), (32)

∂τ′n
∂xβ
= tn

∂τn
∂xβ
= − 1

N
sin(τn − η(n)γ ), (33)

∂τ′n
∂yβ
= tn

∂τn
∂yβ
= 1
N

cos(τn − η(n)γ ). (34)

Again, we take ∂τ′n/∂xβ and ∂τ′n/∂yβ for better numerical stability,
thus ∂τn/∂xβ = ∂τn/∂yβ = 0 for small tn.

The B-matrix entry of the radius R ≡ t0 has to be derived
separately since the corresponding phase angle τ0 does not exist,
which is

∂R
∂rkβ
= 1
N2R∑β′

Cβ′−β rβ′ . (35)

In Eq. (35), the following abbreviated form has been used for
simplification:

( ∂

∂xα
,
∂

∂yα
,
∂

∂zα
) = ∂

∂rα
, (36)

and similarly a symbol for the second-order derivative ∂2/∂rα∂rα′
(see Subsection II C) may also be defined, which is a 3 × 3 matrix.

Equations 29–35 define the first term on the right-hand-side
(rhs.) in Eq. (28) for RPD coordinates, whereas the second term may
be calculated by derivation of Eq. (9), leading to

∂zβ
∂rα
= (ez , I) δαβ + (rβ,

∂ez
∂rα
), (37)

with I being the 3 × 3 identity matrix and

∂ez
∂rα
= 1
∣R′ × R′′∣ (a

′′ sin ζα − a′ cos ζα), (38)

where

a = I × R − ez(I × R, ez), (39)

with a = a′ or a′′ and R = R′ or R′′, and

I × R =
⎡⎢⎢⎢⎢⎢⎣

0 Rz −Ry
−Rz 0 Rx
Ry −Rx 0

⎤⎥⎥⎥⎥⎥⎦
. (40)

The derivatives of ex and ey with regard to rlα are

∂ex
∂rα
= 1
∣u∣ [ex(ex,

∂u
∂rα
) − ∂u

∂rα
], (41)

with
∂u
∂rα
= I cosηα +

∂ez
∂rα
× R′ + ez × I sinηα. (42)

This leads to the derivative of xβ with regard to rlα:

∂xβ
∂rα
= (ex, I) δαβ + (∂ex

∂rα
, rβ). (43)

Similar formulas may be obtained for the y-component,

∂yβ
∂rα
= (ey, I) δαβ + (∂ey

∂rα
, rβ), (44)

where
∂ey
∂rα
= ∂ez
∂rα
× ex + ez ×

∂ex
∂rα

. (45)
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The above equations provide all necessary formulas for consti-
tuting the B-matrix of a ring molecule.

C. Second derivatives of RPD coordinates
Using the B-matrix in terms of RPD coordinates as described

in Subsection II B, geometry optimization in terms of RPD coordi-
nates is principally possible. However, in some advanced optimiza-
tion methods like quasi-Newton and Newton–Raphson Schemes,49

a transformation of Cartesian Hessians Fr into internal coordinate
Hessians Fq is necessary.12,15

Fq = A†FrA −∑
n
gq,nA†DnA. (46)

In addition to the inverse of Wilson’s B-matrix (A), a D-tensor of B
derivatives (D) is also involved in Eq. (46), which is also called B′ or
C in the literature.12,14,15 The second derivatives of RPD coordinates
ξn with regard to Cartesian coordinates rlα are given by

Dn
(α,l),(α′ ,l′) ∶=

∂2ξn
∂rlα∂rl

′

α′
= ∑

β,β′ ,k,k′

∂2ξn
∂rkβ∂r

k′
β′

∂rkβ
∂rlα

∂rk
′

β′

∂rl′α′
+∑

β,i

∂ξn
∂rkβ

∂2rkβ
∂rlα∂rl

′

α′
.

(47)

Nine types of second derivatives ∂2ξn/∂rkβ∂rk
′

β′ in Eq. (47) have
to be derived to obtain the D-tensor being necessary for the transfor-
mation from Cartesian to RPD coordinates. For the ring puckering
coordinates {qn, ϕn} these are

∂2qn
∂zβ∂zβ′

= 2
Nqn

sin(ω(n)γ + ϕn) sin(ω(n)γ′ + ϕn), (48)

∂2ϕn
∂zβ∂zβ′

= 2
Nq2

n
sin(ω(n)γ + ω(n)γ′ + 2ϕn), (49)

where ω(n)γ has been defined in Eq. (15). For qN /2 of even N-
membered ring, its D-tensor is always zero.

For the planar deformation coordinates except for n = 0, the
corresponding second derivatives are

∂2tn
∂xβ∂xβ′

= 1
N2tn

sin(τn − η(n)γ ) sin(τn − η(n)γ′ ), (50)

∂2tn
∂xβ∂yβ′

= −1
N2tn

sin(τn − η(n)γ ) cos(τn − η(n)γ′ ), (51)

∂2tn
∂yβ∂yβ′

= 1
N2tn

cos(τn − η(n)γ ) cos(τn − η(n)γ′ ), (52)

∂2τn
∂xβ∂xβ′

= 1
N2t2

n
sin(2τn − η(n)γ − η(n)γ′ ), (53)

∂2τn
∂xβ∂yβ′

= −1
N2t2

n
cos(2τn − η(n)γ − η(n)γ′ ), (54)

∂2τn
∂yβ∂yβ′

= −1
N2t2

n
sin(2τn − η(n)γ − η(n)γ′ ). (55)

For small qn or τn, Eqs. 48 and 49 or Eqs. 50–55 become singular and
can be set to zero.

These derivatives have to be augmented by Eq. (56) for the ring
radius R ≡ t0

∂2R
∂rβ∂rβ′

= 1
N2R

Cβ′−β − 1
N4R3

⎛
⎝∑β′′

Cβ′′−βrβ′′
⎞
⎠
⊗
⎛
⎝∑β′′

Cβ′′−β′rβ′′
⎞
⎠

.

(56)

The second sum on rhs of Eq. (47) contains the terms

∂2rkβ
∂rα∂rα′

= ( ∂ek
∂rα′

, I)δαβ + (∂ek
∂rα

, I)δα′β + ( ∂2ek
∂rα∂rα′

, rβ), (57)

where the derivatives ∂ek/∂rlα have been given in Eqs. (38), (41) and
(45). Now only ∂2ek/∂rlα∂rl

′

α′ in Eq. (57) has to be derived further

∂2ez
∂rα∂rα′

= 1
∣R′ × R′′∣ [I × I sin(ηα − ηα′) −

∂ez
∂rα
(ez , aα′)

− ∂ez
∂rα′
(ez , aα) − ez(ez , I × I) sin(ηα − ηα′)

− ez(
∂ez
∂rα

, aα′)], (58)

∂2ex
∂rα∂rα′

= 1
∣u∣ [(ex,

∂u
∂rα′
)∂ex
∂rα

+ (ex,
∂u
∂rα
) ∂ex
∂rα′

+ ex(
∂ex
∂rα′

,
∂u
∂rα
) + ex(ex,

∂2u
∂rα∂rα′

) − ∂2u
∂rα∂rα′

], (59)

∂2ey
∂rα∂rα′

= ∂2ez
∂rα∂rα′

× ex +
∂ez
∂rα
× ∂ex
∂rα′

+
∂ez
∂rα′

× ∂ex
∂rα

+ ez ×
∂2ex

∂rα∂rα′
, (60)

where

∂2u
∂rα∂rα′

= ∂e2
z

∂rα∂rα′
× R′ + cαα′ + cα′α, (61)

aα = I × R′′ sinηα − I × R′ cosηα, (62)

cαα′ =
∂ez
∂rα
× I sinηα′ , (63)

and u has been defined in Eq. (6).

III. IMPLEMENTATION
The RPD coordinates and their derivatives have been pro-

grammed as a standalone program called RING in Fortran90, which
is freely available via our CATCO web page http://smu.edu/catco/.
The geometry optimization procedure in RPD coordinates for ring
atoms and Z-matrix coordinates for substituents was implemented
into the COLOGNE2019 program50 through an integrated RING
interface. The following two problems may be encountered.
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● During geometry optimization, qn or tn often becomes neg-
ative, which may be converted to a positive one according
to {qn, ϕn} = { − qn, ϕn ± π} and {tn, τn} = { − tn, τn ± π}.
This conversion is implemented only after the optimization
procedure when printing results; it is not performed inside
the optimization procedure since it may interfere with the
structural extrapolation algorithms. The qN /2 mode has no
phase angle, and therefore both positive and negative values
are possible.

● Substituent related bond angles may be difficult to define
by regular Z-matrix coordinates due to the use of deforma-
tion coordinates. In Fig. 1, for example, five carbon atoms
in planar C5H5 with C2v symmetry have been defined by
RPD coordinates, and then the Z-matrix coordinates of H1
cannot be defined since ∠H1−C1−C2 = ∠H1−C1−C5 = 180○

− 1
2∠C2−C1−C5, where ∠C2−C1−C5 is not known. For this

purpose, we designed a special indicator for the Z-matrix
format, which specifies a dummy atom X1 at the midpoint
between C2 and C5. Then the second dummy atom X2 in
the same plane is defined by ∠X1−C1−X2 = 90○. With the
help of X1 and X2, H1 may be easily specified in Z-matrix
coordinates.

For the identification of the position of a given form in the
(N − 3)-dimensional puckering space, besides hypercylindrical coor-
dinates {qn, ϕn}, hyperspherical coordinates {Q, θn, ϕn} may also be
used. For an N-ring with Nq = N/2 (N even) or (N − 1)/2 (N odd),
these coordinates are defined as

Q =

¿
ÁÁÁÀ

Nq

∑
n=2

q2
n. (64)

Using the symbol sn (n = 2, 3, . . ., Nq − 1) for the total puckering
amplitude in a subspace,

FIG. 1. Diagram of planar C5H5 in C2vsymmetry with two dummy atoms X1 and X2.

sn =
¿
ÁÁÀQ2 −

n−1

∑
i=2

q2
i =

¿
ÁÁÁÀ

Nq

∑
i=n

q2
i , (65)

a hyperspherical angle θn can be obtained according to

θn =
π
2
− arctan( sn

qn
). (66)

Therefore, for a given 8-ring form, the relative position between the
{q2, ϕ2} space and the 1D q4 space is determined by θ2, and that
between the {q3, ϕ3} space and the q4 space by θ3.

Similarly, one may define a total deformation amplitude

T =
¿
ÁÁÀN−2

∑
n=1

t2
n (67)

and the corresponding hyperspherical angle γn for planar deforma-
tion coordinates to form hyperspherical coordinates {T, γn, τn}.

Test calculations were carried out for 5-, 6-, 7-, and
8-membered rings. Optimized amplitudes obtained via both analyt-
ical and numerical derivatives were in good agreement within 10−5

atomic units. Since 5- and 6-membered rings have been well stud-
ied in the literature, only 7- and 8-membered rings are discussed in
this paper. For the purpose of demonstrating the advantages of using
RPD coordinates, cycloheptane (C7H14) and cyclooctane (C8H16),
were chosen as examples for odd and even N-rings, respectively. In
this work, we focused on the puckering coordinates of cycloheptane
and cyclooctane, since Q≫ T in their conformers and deformation
coordinates of planar cyclo[18]carbon (C18), whereas the applica-
tions of RPD coordinates for smaller ring systems can be found
in our early publications about puckering25,39,41,51 and deformation
coordinates.22,23,40

For cycloheptane and cyclooctane, geometry optimization and
frequency calculations were carried out in Cartesian coordinates at
the second order Møller–Plesset perturbation theory (MP2) level
with Dunning’s cc-pVTZ basis set,52 whereas the smaller cc-pVDZ
basis set was used for scanning the potential energy surface (PES) or
for exploring the potential energy curve (PEC) by constrained opti-
mization in RPD coordinates where the fixed geometric parameters
may be determined by the common symmetry. DFT (density func-
tional theory such as B3LYP53,54) calculations as well as CCSD(T)
(coupled cluster theory with all single, double, and perturbative
triple excitations) were also performed.

For cyclo[18]carbon, all calculations were performed with the
DFT M06-2X hybrid functional55 utilizing the def2-TZVPP basis
set.56 According to Ref. 57, this functional reproduces minimum
and transition state conformers of cyclo[18]carbon correctly.

The Gaussian1658 and COLOGNE201950 program packages
were used for the calculations in Cartesian and RPD coordinates,
respectively, whereas the CFOUR program59 was used for CCSD(T)
calculations.

IV. RESULTS AND DISCUSSION
A. Results for cycloheptane

As an odd-membered ring, cycloheptane does not possess
a strain-free conformation.60 Hendrickson61 showed in 1967 that
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cycloheptane has four stationary conformers: boat (B), chair (C),
twist boat (TB), and twist chair (TC), in which TC is the lowest
minimum state whereas C and TB are merely transition states.62

Eight years later, Strauss and co-workers63 found two additional
transition states, i.e., bent transition state (BTS) and twist transi-
tion state (TTS; also called T3 by Wiberg62). These six conformers
of cycloheptane and a less relevant planar one (P) with D7h sym-
metry were recalculated at the MP2/cc-pVTZ level in this work.
The results are collected in Table I (see also the supplementary
material for their Cartesian and RPD coordinates with all possi-
ble ϕn angles). It should be noted that the calculation of B and TB
with DFT is problematic. For example, both conformers are tran-
sition states according to B3LYP with small imaginary frequencies,
but become minima with other functionals according to our test
calculations.

The data in Table I reveal that cycloheptane has two minima
(TC and B) and five transition states (C, TB, BTS, TTS, and P).
The number of imaginary frequencies characterize BTS as a second-
order transition state and P as the fourth order transition state.
Inspecting the RPD coordinates of these conformers, we found that
their {q2, ϕ2} puckering coordinates are significantly different, and
thus may be used to distinguish them and to describe their rela-
tionship. As shown in Table S1, the period of ϕ2 is 3

7π (≈77.1○),
which is not an integer divisor of 2π, and therefore 1

3ϕ2 has to be
taken instead. The PES in the {q2, 1

3ϕ2} space was optimized at the
MP2/cc-pVDZ level, where all the other coordinate parameters were
relaxed.

As shown in Fig. 2, the six conformers except P can be grouped
into two families. The proper conformers C, BTS, and B with Cs
symmetry are in the ϕ2 = 3mπ/7 (m = 0, 1, . . ., 13) directions, while
the twist conformers TC, TTS, and TB with C2 symmetry are in the
3(m + 1

2)π/7 directions. The other geometries on the PES have C1
symmetry. Obviously, in the radical direction, BTS is a transition
state between C and B, and TTS a transition state between TC and
TB. Wiberg62 surmised that TTS is an intermediate transition state
between TC and B, which seems not to be true according to our
results.

TC is the global minimum with the lowest energy, with the
C conformer only 1.24 kcal/mol higher in energy allowing for a
pseudorotation between TC and C, where C is a first order transi-
tion state. The B and TB conformers are about 3 kcal/mol higher
in energy than TC. B and TB have very similar RPD amplitudes
and the largest total puckering amplitude Q. Energetically, they

can also pseudorotate freely with an energy difference of merely
0.01 kcal/mol, in which B is a local minimum and TB, a first order
transition state. Between TC (C) and TB (B), the energy barrier of
TTS (BTS) is relatively higher than the ones in the angular direction,
so the TC–C and TB–B pseudorotations are more easily to happen.
It is extremely unlikely to pass through the P conformer, a fourth
order transition state being about 54 kcal/mol higher in energy
than TC.

B. Results for cyclooctane
Cyclooctane is one of the most investigated ring molecule.

During the last 50 years, it was studied using vibrational spec-
troscopy,64,65 nuclear magnetic resonance (NMR)-spectroscopy,66

and electron diffraction analysis.67 Computational investigations
were first based on force field calculations,43,61,68–70 and only in the
last 30 years ab initio quantum chemical calculations followed.62,71,72

The conformational space of cyclooctane has been studied usingDis-
tance Geometry,73 its properties in bulk liquid liquid phases were
investigated with the help of molecular dynamics simulations,74

extending these studies to the Monte Carlo level.75 The conform-
ers of cyclooctane have been also characterized employing Bayesian
methods76 or testing new methods for the loop closure problem.77

The 72-dimensional hyperspace of cyclooctane was successfully
reduced to a 2D CES.78,79 Recently, the topological energy and con-
formational landscape of cyclooctane was explored80,81 involving
machine learning techniques.82

Many of these studies based their choice of conformers to be
discussed on the pioneering work of Hendrickson who carried out
in the mid 1960s, extensive studies on medium-seized rings using
force field methods.61,68,69 He identified ten different conformers of
cyclooctane and tried to order them in different spaces and pseu-
dorotational pairs. However, his analysis was hampered by the use
of dihedral angles and the inherent redundancy problem, which led
to ten basis conformations. Hence, most of the following studies of
cyclooctane used Hendrickson’s 10 canonical forms. This choice was
supported by the 2D CES derived by Martin and co-workers and
the dynamic processes these authors singled out on this CES.79 The
CES was found to be best described by the intersection of a sphere
and a Klein bottle where the low dimensionality was obtained by a
decomposition of the Klein bottle into two Möbius strips. This pre-
sentation may be quite useful, but is plagued by the fact that the con-
formational description is carried out with torsional angles, which is
problematic when defining the unique forms of cyclooctane.

TABLE I. Stationary points of cycloheptane, MP2/cc-pVTZ calculations.

ΔE Q T R q2 q3 θ2

No. Form Sym. (kcal/mol) (Å) (Å) (Å) (Å) (Å) (deg) Imag. freq. (cm−1)

1 TC C2 0.00 0.849 0.099 1.621 0.547 0.649 40.1 min.
2 C Cs 1.24 0.803 0.084 1.634 0.460 0.658 35.0 113i (a′′)
3 B Cs 2.95 1.173 0.120 1.554 1.173 0.015 89.3 min.
4 TB C2 2.96 1.172 0.120 1.554 1.172 0.012 89.4 20i (b)
5 TTS C2 8.20 1.060 0.137 1.584 1.015 0.304 73.3 218i (a)
6 BTS Cs 12.20 0.963 0.112 1.621 0.914 0.302 71.7 263i(a′), 135i (a′′)
7 P D7h 53.54 0.000 0.000 1.789 0.000 0.000 90.0 416i (e′′3 ), 257i (e′′2 )
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FIG. 2. PES and stationary points of
cycloheptane in the {q2, 1

3ϕ2} space.

Note that at the center with q2 = 0 Å, the
{q3, ϕ3} coordinates are relaxed, so it is
not the planar form P.

Before analyzing cyclooctane in terms of puckering coordi-
nates, it is useful to summarize all its stationary conformers reported
in the literature, which are much more complex than those of cyclo-
heptane. Hendrickson’s 10 conformers61,68 are boat–chair (BC),
chair–chair (CC), boat–boat (BB; also called “saddle”61 but the lat-
ter name was not generally accepted60), twist chair (TC), chair (C),
boat (B), crown (CR), twist chair–chair (TCC), twist boat–chair
(TBC), and a “S4” conformer (denoted as S to distinguish from its S4
point group symmetry). However, several of them were questioned
in subsequent studies.

● S. Wiberg62 showed that the S conformer was indeed, BB
after optimization with B3LYP, but the existence of S is con-
firmed in Ref. 72 by Hartree–Fock (called the “B” conformer
by mistake as pointed by Wiberg62) and also in this work
using MP2/cc-pVTZ.

● CC and TCC. Rocha et al.72 pointed out that the CC and
TCC conformers do not exist at all at the Hartree–Fock
level, which is also supported in this work by DFT calcu-
lations with different functionals. MP2 results are quite dif-
ferent: TCC exists if the basis set is large enough (e.g., 6-
311†G∗ by Wiberg62 and cc-pVTZ in this work), whereas
CC may be obtained only with smaller Pople basis sets
such as 3-21G and 6-311G, but turns into CR after geom-
etry optimization with larger basis sets like 6-311††G∗∗,
cc-pVDZ, cc-pVTZ, etc. We also performed CCSD(T)/6-
311G and CCSD(T)/cc-pVDZ calculations in this work to
confirm the existence of CC and TCC, but even higher
levels of calculations may be needed to further confirm
them.

Apart from the well-known ten conformers of Hendrickson,
other conformers were reported in the literature and also found in
this work.

● TB. Hendrickson’s S conformer was also named twist-
boat (TB),73,76,79,83,84 but in early work,73,83 the geome-
try of TB appears to be quite different from that of the
known S conformer although being of S4 symmetry. There-
fore, this TB conformer should be better considered as
a new stationary geometry of cyclooctane. This new TB
conformer has also been reported by Rocha et al., called
TS1.72

● WT1, WT2, and WT4. Wiberg calculated four new transi-
tion states at the MP2 level of theory (i.e., TSn, n = 1, 2, 3,
and 4, denoted as WTn in this work), in which WT2 is the
same as the TS2 conformer by Rocha et al.,72 whereas WT3
is identical to TC according to the RPD coordinate analysis
of their coordinates.

● NTn (n = 1, 2, . . ., 7). In this work, seven new transition
states were identified with the help of RPD coordinates,
denoted as NTn; among them, NT3 resembles the “peak”
conformer of Martin et. al.79 However, these authors did
not provide coordinates for an additional analysis via RPD
coordinates.

● P. A planar conformer (P) with D8h symmetry is a high-
order transition state with high energy. Different from the
P conformer of cycloheptane, here, P plays a certain role
since the D8h point group has more subgroup symmetries
than D7h.

All 22 conformers, including the uncertain CC are summa-
rized in Table II. Cartesian and RPD coordinates are collected in the
supplementary material with all possible ϕn angles. Since q4 changes
its sign by the inversion operation of Cartesian coordinates, only
positive q4 values are reported. Table II shows that cyclooctane has
five minima in which BC is the most stable one, being in agreement
with previous studies.
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TABLE II. Stationary points of cyclooctane, MP2/cc-pVTZ calculations.

ΔE Q T R q2 q3 q4 θ2 θ3

No. Form Sym. (kcal/mol) (Å) (Å) (Å) (Å) (Å) (Å) (deg) (deg) Imag. freq. (cm−1)

1 BC Cs 0.00 1.253 0.156 1.743 1.052 0.587 0.345 57.1 120.4 min.
2 TBC C2 1.73 1.123 0.169 1.767 0.720 0.833 0.220 39.9 104.8 min.
3 TCC D2 2.46 0.902 0.157 1.819 0.434 0.000 0.790 28.8 0.0 min.
4 CR D4d 2.52 0.808 0.000 1.853 0.000 0.000 0.808 0.0 0.0 min.
5 NT7 D2 2.53 0.831 0.071 1.845 0.202 0.000 0.806 14.1 0.0 29i (a)
6 S S4 2.83 1.595 0.172 1.660 1.595 0.000 0.000 90.0 90.0 min.
7 WT2 C1 2.95 1.190 0.143 1.761 0.907 0.719 0.276 49.7 111.0 114i (a)
8 BB D2d 3.43 1.518 0.166 1.693 1.518 0.000 0.000 90.0 90.0 63i (a2)
9 CCa C2v 4.07 0.866 0.083 1.859 0.225 0.000 0.836 15.1 0.0 55i (a2)
10 C C2h 9.51 0.944 0.200 1.804 0.000 0.944 0.000 0.0 90.0 148i (au), 28i (ag)
11 TC C2h 9.53 0.953 0.209 1.800 0.000 0.953 0.000 0.0 90.0 20i (bg)
12 WT4 Cs 9.71 1.447 0.183 1.709 1.420 0.243 0.139 78.8 119.7 259i (a′), 41i (a′′)
13 NT2 Cs 10.93 0.974 0.163 1.812 0.385 0.876 0.180 23.3 101.6 181i (a′′), 124i (a′)
14 WT1 C2 11.36 1.254 0.225 1.748 1.138 0.274 0.449 65.2 31.4 169i (a)
15 TB D2 11.83 1.633 0.177 1.657 1.630 0.000 0.107 86.3 0.0 105i (b1)
16 B D2d 12.03 1.648 0.151 1.660 1.648 0.000 0.000 90.0 90.0 185i (a2), 61i (b1)
17 NT6 C2 12.58 1.538 0.208 1.680 1.519 0.125 0.208 80.9 148.9 136i (a)
18 NT5 D2 13.48 1.432 0.228 1.707 1.396 0.000 0.316 77.2 180.0 145i (b3), 140i (a)
19 NT4 Cs 14.77 1.010 0.165 1.819 0.767 0.338 0.562 49.5 31.0 284i (a′), 87i (a′′)
20 NT1 C2 22.74 1.239 0.204 1.768 1.134 0.500 0.000 66.2 90.0 341i (b), 195i (a)
21 NT3 C2v 26.03 1.188 0.167 1.809 1.143 0.000 0.324 74.2 0.0 302i (b1), 266i (a1), 126i (a2)
22 P D8h 88.36 0.000 0.000 2.040 0.000 0.000 0.000 90.0 90.0 489i (b2u), 422i (e3g), 240i (e2u)

aUncertain conformer. Optimized at the MP2/6-311G level of theory.

Traditionally, the conformers of cyclooctane and their equiva-
lent steric configurations are difficult to distinguish by merely using
their energies, bond lengths, bond angles, and dihedral angles. How-
ever, this becomes now much easier by comparing their RPD ampli-
tudes. Furthermore, a large number of equivalent configurations can
be classified by different combinations of RPD phase angles (see
Table S2).

There are only N − 3 = 5 unique types of out-of-plane displace-
ments and 2N − 3 = 13 planar ones in an 8-membered ring, if one
starts with the P conformer as a suitable reference.22,24,28,32 To inves-
tigate the relationship between the 22 conformers, the CES in the
5D puckering space is at first projected onto the 2D {q2, q3} sub-
space, since q2 and q3 are the two most significantly different RPD
coordinates. The PES at the MP2/cc-pVDZ level is plotted in Fig. 3
with different constraints of ϕ2, ϕ3, and q4 to maintain a common
symmetry higher than C1. It should be noted that in Figs. 3(a) and
3(b), the maxima at about {q2 = 0 Å, q3 = 0.5 Å} are not stationary
points since they do not lead to a high symmetry C2h. One can see
in Figs. 3(a) and 3(b) that the PESs around q3 = 0 Å are very flat,
but since a smaller basis set cc-pVDZ being used, TCC and NT7
cannot be located. The situation for CC is similar. Nevertheless, 19
conformers and their relationships can be described by Fig. 3. Three
conformers are still missing, including B, S, and WT2.

The PESs in the {q2, q4} subspace with different constraints
of ϕ2 and q3 are plotted in Fig. 4, and the pure {qn, ϕn} (n = 2
or 3) subspace in Fig. 5, where B and S may be located. The low-
est pseudorotation paths connecting 21 conformers (except P) are,

respectively, projected on q2, q3, ϕ2, and ϕ3, as shown in Fig. 6. WT2
has only C1 symmetry, i.e., no geometric constraint. Thus, as shown
in Fig. 5(a), if all the other coordinate parameters are relaxed except
a given ϕ2, WT2 connecting two known conformers BC and TBC
can be obtained, and the resulting 1D PEC is shown in Fig. 6(h).
For other 2D subspaces (e.g., {ϕ3, ϕ4}) and geometric constraints,
the common symmetry is always C1, so they are the same as those
shown in Fig. 6(h).

In the following, we discuss the relationship between the 22
conformers.

● As shown in Fig. 3(a), NT2 is a transition state between
TC and BC, denoted as TC–NT2–BC. Similarly, there are
BC–WT4–BB, BC–NT4–CC or BC–NT4–CR (depending
on the existence of CC), and BB–NT3–CC or BB–NT3–
CR. In addition, BC may turn into another BC with ϕ3

= 180○ through NT3, i.e., BC–NT3–BC′, being energeti-
cally less favorable than the path BC–WT4–BB–WT4′–BC′.
The BC–WT4–BB path was reported by Wiberg62 and also
by Martin et al.79 Martin et al. further suggested79 that
S (called TB therein) is a transition state between WT4
(called TS4) and BB, which does not seem to be true accord-
ing to our results. It is noteworthy that if CC exists (e.g.,
at the MP2/6-311G level of theory), it will be lower in
energy than CR, so CC will be to a local minimum, whereas
CR a transition state. The lowest pseudorotation paths
connecting these conformers may be found in Figs. 6(a)
and 6(b).
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FIG. 3. PES and stationary points of cyclooctane in the {q2, q3} space with (a)
ϕ2 = ϕ3 = 0○, (b) ϕ2 = 2ϕ3 = 45○, and (c) ϕ2 = 0○, ϕ3 = 45○, and q4 = 0 Å. CC,
TCC, and NT7 cannot be obtained at the MP2/cc-pVDZ level.

FIG. 4. PES and stationary points of cyclooctane in the {q2, q4} space with (a)
ϕ2 = 0○ and q3 = 0 Å and (b) ϕ2 = 45○ and q3 = 0 Å. CC, TCC, and NT7 cannot
be obtained at the MP2/cc-pVDZ level.

● Figure 3(b) shows the CR–NT7–TCC, TCC–NT5–TB,
TBC–WT1–TCC, TBC–NT6–TB, and TBC–C–TBC′
(TBC′: TBC with ϕ2 = 225○) paths. In addition, paths
TBC–NT5–TBC′′, TBC–NT6–TB–NT6′–TBC′′, and TBC
–WT1–TCC–WT1′–TBC′′ (TBC′′: TBC with ϕ3 = 202.5○)
may also be possible, but the required energies are higher.
Among these paths, the TBC (called TS1)–WT1–TCC path
was also reported by Martin et al.,79 whereas the path
TBC–WT1–CR suggested by Wiberg62 is only possible if
TCC and NT7 would not exist. The lowest pseudorotation
paths connecting these conformers are plotted in Figs. 6(a)
and 6(c).

● Figure 3(c) shows only one meaningful path, i.e.,
TC–NT1–BB. In addition, TC and BB may be connected to
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FIG. 5. PES and stationary points of
cyclooctane in the (a) {q2, ϕ2} space in
the S4 common symmetry with q3 = q4

= 0 Å and (b) {q3, ϕ3} space in the Ci

common symmetry with q2 = q4 = 0 Å.

their mirror image conformations through P, but the energy
request would be too high, as seen in Fig. 6(d).

● In Fig. 4(a), there is BB–NT3–CC or BB–NT3–CR depend-
ing on the existence ofCC, which has taken place in Fig. 3(a).

The lowest pseudorotation paths connecting these conform-
ers have been shown in Fig. 6(e).

● In Fig. 4(b) and also in Fig. 6(e), there are three paths,
i.e., TB–B–TB′ (TB′: TB with negative q4), CR–NT7–TCC,
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FIG. 6. One-dimensional PECs of the lowest pseudorotation
path connecting stationary points of cyclooctane. (a) PECs
along q2 in the {q2, q3} space, (b)–(d) PECs along q3 in the
{q2, q3} space, (e) PECs along q2 in the {q2, q4} space, (f)
PEC along ϕ2 in the {q2, ϕ2} space, (g) PEC along ϕ3 in
the {q3, ϕ3} space, and (h) PEC along ϕ2 without geometric
constraints.
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and TCC–NT5–TB, the latter two paths are also shown in
Fig. 3(b).

● In Fig. 5(a), there are S–BB–S′ and S–B–S′′, where the pos-
sible ϕ2 angles of S, S′, and S′′ may be found in Table S2.
The {q2, ϕ2} pair spans the first pseudorotational space in
the S4 common symmetry with the two D2d-symmetrical
basis conformations BB and B at mπ/2 (m = 0, 1, 2, and
3) and (m + 1

2)π/2, and S is a linear combination of BB
and B. As assumed by Hendrickson, there are four BB, 4 B,
and 8 S conformers along the ϕ2 pseudorotation itinerary.
Figure 6(f) shows the lowest pseudorotation path in
detail.

● In Fig. 5(b), the C and TC conformers appear alternately
(cf. Table S2 for possible ϕ3 angles). The second pseudoro-
tational space spanned by {q3, ϕ3} in the Ci common sym-
metry is defined by the C2h-symmetrical C conformer at
(m + 1

2)π/4 (m = 0, . . ., 7) and TC at mπ/4. There are 8
C and 8 TC conformers shown around the cycle. As seen in
Fig. 6(g), the lowest pseudorotation path connecting C and
TC is quite flat.

● As shown in Fig. 6(h), there is a BC–WT2–TBC path, which
was also reported by Martin et al.,79 Rocha et al.,72 and
Wiberg.62

According to Figs. 3–6, some of the paths previously reported
in the literature are energetically and/or topologically not possible.
For example, while the TBC–TC (called WT3 or TS3 therein)–
TBC′ path suggested by Wiberg62 and also by Martin et al.49 can
be considered to be identical with our TBC–C–TBC′ path, although
TC and C are very close in energy, the BC–TB (TS1 therein)–CR
suggested by Rocha et al.72 cannot exist at all according to our
calculations.

Compared to q2, the puckering amplitude is generally more
delocalized (or smaller) in q3. The most delocalized puckering
amplitude is found in q4 for the CR conformer since an equally
delocalized puckering (one atom up, the neighboring atom down)
leads to the best staggering of the CH bonds in a cycloalkane.
Hence, the total puckering amplitude Q has the smallest value for
CR (Q = 0.808 Å, Table II) except P and becomes about 0.14
Å larger for C and TC, whereas it is 1.52–1.65 Å for BB, S,
and B. As an important result, consequently, the way to get to
CR from the {q3, ϕ3}-space is much shorter than that from the
{q2, ϕ2}-space.

C. Results of Cyclo[18]carbon
In experimental46 and advanced theoretical57,85–89 studies,

the planar cyclo[18]carbon molecule has two conformers, i.e.,
the polyyne minimum (P) with alternating weaker and stronger
C–C bonds with D9h symmetry and the cumulene transition
structure (C) with identical C–C bonds with D18h symmetry,
being a good example to demonstrate the use of deformation
coordinates.

An 18-membered ring has N − 2 = 16 pairs of {tn, τn} defor-
mation coordinates. For an arbitrary τn phase angle with a non-zero
tn amplitude, the resulting point group symmetry of the planar ring
can be C1h ≡ Cs (n = 1, 5, 7, 11, and 13), C2h (n = 2, 4, 8, 10, 14, and
16), C3h (n = 3 and 15), C6h (n = 6 and 12), and C9h (n = 9). That
is, m in Cmh is the greatest common divisor of N and n. By the defi-
nition of the deformation coordinates the {tn, τn} modes squeeze an

N-gon to an (N − n)-gon,22 thus the 9-gon-like P form (assuming
that the nine stronger C–C bonds are extremely short) must result
from the {t9, τ9} modes; on the other hand, C9h is the largest com-
mon subgroup of D9h and D18h. Therefore, {t9, τ9} are the dominant
deformation modes. As demonstrated in Fig. 7, two basis forms are
given by τ9 = 90○ (or 270○) and 0○ (or 180○), respectively, where the
former leads to a 9-gon-like configuration and the latter to a two-
layer 9-gon-like one. Their deformation analysis shows that the two
modes may be assigned to the normal vibrations in the b2u and b1u
irreducible representations of D18h, respectively (cf. Table A1 in the
supplementary material of Ref. 22).

The PES calculated in the {t9, τ9} space is plotted in Fig. 8.
During the optimization, all the other RPD amplitudes (except R)
are fixed at zero since they may lead to higher energies with lower
symmetries. At the M06-2X/def2-TZVPP level of theory, the C con-
former is 9.42 kcal/mol higher in energy than the P conformer, being
in good agreement with the results in Ref. 57. One can see in Fig. 8
that there are two orthogonal paths P–C–P′ (P′ is the P conformer
in the 270○ direction). One is in the radial direction with fixed
τ9 = 90○ or 270○ in the D9h common symmetry, corresponding to
the stretching of nine C2 fragments (cf. Fig. 7) as reported in Ref. 57,
which was also called the bond pseudolibration process.40 The other
path as indicated by the dotted blue curve in Fig. 8 corresponds
to the bond pseudorotation process,40 where each carbon atom
β rotates by τn − η(n)γ on a small circle with the orbit radius t9
(cf. Fig. 1 in Ref. 22 as a demonstration of 5-membered ring). In
practice, the configuration of cyclo[18]carbon may be more compli-
cated since it could be driven by a random combination of the two
basic paths.

FIG. 7. Bond pseudorotation cycle in the {t9, τ9} space of a 18-gon with t9 being
extremely large and τ9 increasing in a step of 30○ from 0○ to 360○. The position
of atom 1 is indicated by a black dot (clockwise ordering of ring atoms).
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FIG. 8. PES of C18 spanned by {t9, τ9}. The symmetries are D18h at the center,
D9h in 0○, 90○, 180○, and 270○ directions, and C9h at other positions. The dot-
ted blue curve indicates the lowest pseudorotation path connecting the P and C
conformers.

V. CONCLUSIONS
In this work, we developed analytic gradient and second deriva-

tives through B-matrices and D-tensors in terms of RPD coordi-
nates; so constraint or full geometry optimizations for (poly)cyclic
molecules in terms of RPD coordinates are now possible, particu-
larly important for an optimization at non-stationary points, which
is not feasible with Cartesian or internal coordinates. The appli-
cation of RPD coordinates for the description of Berry pseudoro-
tations, fullerene pseudorotations, etc. will be performed in future
work.

SUPPLEMENTARY MATERIAL

All optimized stationary point geometries of C7H14, C8H16,
and C18 in RPD and Cartesian coordinates are provided in the
supplementary material.
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