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The local vibrational mode analysis, originally introduced by Konkoli and Cremer, provides a physically sound
platform for a comprehensive analysis of calculated or measured vibrational spectra and for providing detailed
insights into chemical bonding and other structural features. In this work, we summarize the essentials of the
local vibrational mode theory with a focus on local vibrational force constants and their relationship with
compliance and relaxed force constants. Furthermore, we discuss how local vibrational force constants can be
used (i) to assess the quality of empirically derived force constants, (ii) to disclose bonding features in large

molecules, and (iii) to provide metal ligand force field parameters. Future applications will be suggested.

1. Introduction

The idea of using stretching force constants as bond strength de-
scriptors dates back to the 1930ies, when Badger discovered a force
constant — bond length relationship for diatomic molecules [1]. How-
ever, the extension of the so-called Badger rule to polyatomic molecules
turned out to be difficult, because spectroscopically derived stretching
force constants are not unique. They depend on the internal coordinates
used to describe the molecule and they reflect the coupling between the
vibrational modes [2—4]. In the 1960ies, Decius introduced a solution of
the force constant problem by reverting to the inverse force constant
matrix, which he called compliance matrix [5]. He proved that the
compliance matrix (I') is independent of the choice of the internal co-
ordinates used and that it is valid for redundant and non-redundant
internal coordinate sets [5]. Based on these findings, he then suggested
to use the diagonal elements I},,, (the so-called compliance constants) as
bond strength descriptors. However, Jones and Swanson pointed out
that compliance constants connect a stronger chemical bond with a
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smaller force constant value, opposed to general chemical thinking [6].
Therefore, they introduced the reciprocal compliance constants k,, = 1/
T, as bond strength measure, which they called relaxed force constants,
reflecting that according to Decius’ definition [5] I}, corresponds to the
displacement of coordinate n resulting from a unit force imposed on
coordinate n, while all other coordinates are allowed to relax to the
minimum energy configuration with n being displaced [6]. Although
frequently applied, the relationship between compliance/relaxed force
constants and normal vibrational modes has remained unclear. Fur-
thermore these are force constants without a corresponding mode,
mass, frequency or intensity and they are lacking a physical basis. In
addition, the interpretation of the reciprocal off-diagonal elements of
the compliance matrix is difficult, because they can be either positive or
negative. Absolute values have been used in same cases to describe
strong and/or weak interactions [7].

In 1998, Konkoli and Cremer derived local vibrational modes uti-
lizing a mass-decoupled equivalent of the Wilson equation of vibra-
tional spectroscopy [8,9]. Their approach led to physically sound local
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mode force constants and related local mode properties. Furthermore,
local vibrational modes can be uniquely transformed into the corre-
sponding normal vibrational modes via an adiabatic connection
scheme, thus enabling a detailed analysis of calculated or measured
vibrational spectra via a decomposition of normal modes into local
mode contributions [10,9]. Zou and Cremer demonstrated in a seminal
paper that a local mode stretching force constant is directly related to
the intrinsic strength of a bond, identifying local mode force constants as
a unique measure of bond strength [11].

We summarize in this paper the local vibrational mode theory fo-
cusing on local mode force constants and their connection with com-
pliance/relaxed force constants. We will then demonstrate how local
mode force constants can be used to assess the quality of experimentally
derived force constants, how they can serve as an efficient tool for the
description of bonding in larger biochemical systems, and how they
provide an attractive platform for the development of reliable metal-
ligand force field parameters.

2. Methodology

In the following, the essence of the local vibrational mode theory
will be presented including the definition of the local mode force
constant, mass and vibrational frequency. The connection between
local mode force constants and relaxed force constants will be discussed
for stationary and non-stationary points on the potential energy surface.
Finally, the computational methods used in this work will be sum-
marized.

2.1. Theory of vibrational spectroscopy

For a vibrating molecule with K atoms, the Euler-Lagrange equa-
tions [3] can be written in Cartesian coordinates as

F*L = MLA (€]
and also in internal coordinates
FID = G''DA (2)

respectively, with the following connection between Egs. (1) and 2)

F41 = C'F*C 3
G = BM'Bf ()]
D = BL ()

Generally, each normal mode 1, (a column vector of the L matrix with u
=1, .,Ny=3K—-N,, and N;,, = 5 or 6 for linear and non-linear
molecules) is renormalized leading to the following relationships de-
scribed in Egs. (6) and 7) [12],

L'F*L = D'FID = K (6)
L'ML = D'G™ID = M® @

In Egs. (1)-(7), F* and F? are the force constant (Hessian) matrices in
Cartesian and internal coordinates, respectively, L collects the vibra-
tional eigenvectors 1,, M is the diagonal mass matrix of the molecule in
question, matrix K is the diagonal force constant matrix in normal
coordinates Q and matrices B and G are the Wilson B and G matrices
[3]. Matrix D collects the normal mode vectors d, in internal co-
ordinates g. The eigenvalue matrix A is a diagonal matrix containing
the vibrational eigenvalues

Ay = Ky/ME = amc’w)] ®
where w, represents the (harmonic) vibrational frequency of the u-th
mode and c is the speed of light. The elements of B are defined by the

partial derivatives of internal coordinates with regard to Cartesian co-
ordinates [3], and C is the general-inverse of B defined by

C = WB (BWB")~! (C)]
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where W is an arbitrary nonsingular 3Kx3K square matrix. Since the N;,
translational and rotational eigenvectors are decoupled from the Ny
vibrational eigenvectors at a stationary point (i. e., the energy gradient
is a zero-vector), W does not affect the results [13]. For reasons of
simplicity, one often uses W = Ly (usually for a geometry optimization
in internal coordinates) or W = M. In vibrational spectroscopy, the
latter definition is adopted in most of cases, thus leading to

C = M IBG™! (10)
and then
BC = INvib an

It has to be noted that CB # Ly since B is spanned in the N-di-
mensional vibrational space only.

2.2. Local vibrational modes and related local mode properties

Konkoli and Cremer derived the local vibrational modes a; directly
from the normal vibrational modes bypassing the use of an inverted
Hessian matrix [14,8]. As shown in Eq. (12), all what is needed are the
diagonal force constant matrix K and the normal mode row vector d; to
define the i-th local mode being associated with the coordinate g;

K]
T aKd] 12)

a;

where d; is the i-th row vector of D in Eq. (5)
d; = bL, 13)
The corresponding local force constant k of local mode i (super-

script a denotes an adiabatically relaxed, i.e., local mode) can be ex-
pressed as

ki = a/Ka;. (14)
After some algebra [10], Eq. (14) becomes
B 1 1
k= = —.
dK'd] b(LK'L")b] (15)

In contrast to the procedure of Decius extracting compliance con-
stants directly from ' = (F9)~!, our local vibrational mode method has
several important advantages: (1) the i-th local mode force constant
depends only on the i-th local mode through its B-matrix vector b;, (2)
the condition that the number of local mode parameters must be at least
N, to construct the F? is not necessary, and (3) most important, after
Eq. (1) being solved by a quantum chemistry program, the calculation
of the inverse of F? as well as a diagonalization is not needed (the in-
verse calculation of the diagonal matrix K is easy), which makes our
approach attractive for large molecules. In contrast, the calculation of
compliance/relaxed force constants requires an additional calculation
of either the inverse of F4 in the original definition [6] or the general-
inverse of F*, as discussed below.

It should be noted that the units of the B-matrices for bond lengths
and bond angles are different, and therefore in Eq. (15) the unit of a
force constant for a bond angle is mDyn'A(or mDyn'A/rad?). In early
references, the force constant of a bond angle #ABC was defined by
[3,4]

koapc = koapcTar T (16)

Consequently, the unit of K apc becomes mDyn/A, i.e. the unit of a bond
length. The same is also true for other angles like dihedral angles and
curvilinear phase angles [15].

In addition to the local mode force constant, the local mode mass
has also been derived from the G matrix [14,8],

1

mi“ = l/Gi,i = —7.
b;M'b] 17)

For a chemical bond A-B, Eq. (17) leads to My Mg/(M4 + Mp), being the
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same as the reduced mass of a diatomic molecule AB.
Inspired by Eq. (15), one may consider the following formula for the
local mode mass

1 1

T 4] by L)L b 18)

In fact, Egs. (17) and (18) are equivalent. To prove this, we define the
augmented normal mode matrix L = (L L,) and MR = L) ML,,, where
L, collects N, translational and rotational modes with the corre-
sponding reduced mass matrix MX. L is a non-singular square matrix
which is inversible, thus the denominator of Eq. (17) is

b;M'b/=b,L(L'ML)"'L'b;

(0% L), .
=b,(L Lt,)( 0 (ot ‘1](Lir)bi

=b;[L(MX)'L]b] + b;[L, (M{)~'L; ] b 19

b;L, = 0 since b; and L,, are in the vibrational and translational-rota-
tional spaces, respectively. Therefore the last term in Eq. (19) vanishes,
indicating the equivalence of the two definitions of the local mode
mass. In this work we use Eq. (17) instead of Eq. (18) for reasons of
simplicity.

From the local mode force constant k;* and local mode mass m the
local mode frequency w;* can be calculated

a

k!
(wf)? = 1/[47r2c2)—‘a = 1/[47r2c2)Giia,TKai
m

i

(20)

In addition, the local mode infrared intensity has been defined [12],
which can be related to bond dipole moments [16-18]. In Fig. 1 the
work flow of the local mode analysis is summarized in the form of a
pseudocode.

2.3. Relaxed force constant vs. local mode force constant

It has been proved that k in Eq. (15) equals exactly the reciprocal
of the i-th compliance constant, i.e. the relaxed force constant k", which

1. Read data from a vibrational frequency calculation

¢ Atomic masses and Cartesian coordinates

o Hessian matrix F*

e Normal modes L (optional)

o Other data (optional; not relevant to this work)
2. Vibrational frequencies from experiments (optional)
3. If L is not available

Solve the secular equation F* L = ML A

End if

4. Read internal coordinates provided by the user, or
generate redundant internal coordinates

5. Calculate Wilson’s B-matrix of internal coordinates
from Cartesian coordinates

6. K = L'F*L
7. Do loop: for the i-th internal coordinate
d; = b;L

ke = (d,,-,Ii—lcljy1
me = (loilvrllojyl

wl = \/k&/mé/(2mc)
End do
8. Other analysis

Fig. 1. Pseudocode of the local mode analysis.
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will be outlined in the following [13]. The relaxed force constants can
be expressed in terms of Cartesian coordinates [7] via

I = B(F)Bf (21)

where 1 means the general-inverse of a singular matrix. Based on Eq.
(21) the relaxed force constant of the i-th internal coordinate (k;") can
be calculated by

1

kl =1/ = ———
' Y b (P9, (22)

Using the augmented normal mode matrix L defined above (the
dimension of L is 3K x 3K, i.e. N,; vibrations and N}, rotations, trans-
lations), Eq. (6) becomes
(K 0 ) = L'PL

0 K, (23)

where K,, are the eigenvalues of the translational and rotational modes
(usually zero or small). This leads to

ol — | (-1 K 0 )*—1]i
) [(L >(0 e o
_(K 0\
- L(O Krr) L (25)

Since (K;), = 0 (u = 1, 2,...,N,,) at a stationary point, Egs. (24) and
(25) can be rewritten as

(F) = (L L[,)(K1 °)(LI ) = LKL/

0 O0/\L, (26)
Inserting Eq. (26) into Eq. (22), it can be easily seen that k;" defined by
Eq. (22) is exactly k;* via Eq. (15). Therefore, the relaxed force constant
at a stationary point is equivalent to the adiabatic local mode force
constant, and this is also true for the relaxed and adiabatic coupling
constants between two internal coordinates.

At a non-stationary point (e.g. as caused by an inaccurate geometry
optimization), the relaxed and adiabatic local mode force constants
may differ to some extend. In the former method the gradients of in-
ternal coordinates have to be projected out from Hessian through the
first-order derivatives of the B-matrix [19]. In our method, contribu-
tions from the translational and rotational modes are projected out from
the Hessian when solving Eq. (1), that is, using the Eckart-Sayvetz
conditions to generate Nj, translational and rotational vectors and the
Gram-Schmidt orthogonalization for the rest N,; vectors in the vibra-
tional space [20], which have been implemented in most of the modern
quantum chemistry programs including GaussiaN, GamEss, or morpro. This
procedure is more robust and efficient.

2.4. Computational methods

CCSD(T) (coupled cluster with all single and double excitations and
a perturbative treatment of triple excitations) [21] calculations were
performed with the program package crour [22], which provides ana-
lytic gradients [23] and analytic second derivaties [24]; DFT (Density
Functional Theory) calculations were performed using the caussian16
program package [25], whereas the local mode analysis was done using
the COLOGNE19 program package [26]. All basis sets used in this work
are taken from EMSL Basis Set Exchange [27,28]. The QM/MM calcu-
lations were performed with caussian16 applying the ONIOM metho-
dology [29], and using the AMBER force field [30] for the MM part.

3. Results and discussion
3.1. Assessment of experimentally derived vibrational force constants

The calculation of force constants and associated force fields from
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Table 1
Comparison of local mode force constants by CCSD(T)/aug-cc-pVTZ with the experimental ones.
Molecule Bond k (mDyn/A) Angle % (mDyn/A)
Expt.@ Expt.® ke Expt.©@ Expt.® P
H,0 H-O 7.8 8.43 8.260 H-O-H 0.69 0.77 0.746
H,S H-S 4.3 4.28 4.249 H-S-H 0.43 0.43 0.418
H,Se H—Se 3.3 3.491
NH;3 H—N 6.5 6.798 H-N-H 0.50 0.575
PH; H-P 3.1 3.331 H-P-H 0.33 0.342
AsHj H—As 2.6 3.138
CoHy H-C 5.1 5.541 H-C-H 0.30 0.593
c—C 9.7 9 9.135
CeHg H-C 5.1 5.558
c—C 7.6 6.393
CoHy H-C 5.9 6.337 H-C-C 0.12 0.158
c—C 16.3 ¢ 16.100
SiH4 H-Si 2.9 2.903
F,O0 F-0 5.6 3.987 F-O-F 0.69 0.729
Cl,0 Cl-0 4.9 2.885 Cl-0-Cl 0.41 0.400
CH3F F-C 5.6 5.107 H-C-F 0.57 0.654
CH,Cl Cl-C 3.4 3.068 H-C-Cl 0.36 0.415
CH;3Br Br—C 2.8 2.649 H-C-Br 0.30 0.413
CH3l 1-C 2.3 2.328 H-C-I 0.23 0.321
BF3 F-B 8.8 7.27 7.220 F-B-F 0.37 0.52 0.730
BCl; Cl-B 4.6 4.02 3.610 Cl-B-Cl 0.16 0.18 0.351
BBr3 Br-B 3.7 3.009 Br-B-Br 0.13 0.301
P, PP 2.1 2.06 2.009
SioHeg Si—Si 1.7 1.725
SoH, S-S 2.5 2.469
B3N3Hg B—N 6.3 5.421
N,O N—-N 17.88 17.924 N-N-O 0.49 0.49 0.493
N-O 11.5 11.39 11.686
CH,4 H-C-H 0.46 0.555
CF4 F-C-F 0.71 0.993
CCly Cl-C-Cl 0.33 0.434
CBry Br-C-Br 0.24 0.381
CO, Cc-0 15.5 15.613 0-C-0 0.57 0.57 0.567
CS, C-S 7.5 7.674 S-C-S 0.23 0.23 0.229
HCN H-C 5.7 6.214 H-C-N 0.20 0.20 0.205
C—N 18.6 18.335

@ Experimental values from Tables 8-1 and 8-2 and in Ref. [3]
® Experimental values from Table 8-3 in Ref. [3].
© Averaged experimental value.

experimental frequencies goes back to the early 50ies. For example, in
their famous vibrational spectroscopy book, Wilson, Decius, and Cross
[3] discuss experimentally derived stretching and bending force con-
stants for a selection of small molecules, collected in Tables 8-1,8-2,
page 175 and 176 of Ref. [3] (labelled as Series a in this work), and
Table 8-3, page 178 of Ref. [3] (labeled as Series b in this work). Series a
force constants were obtained via a simple valence force function ap-
proach using a fourth-power potential function [31], whereas for Series
b interactions between force constants were also taken into account
[32]. We used these data as a test set to explore how the local mode
force constants can be used to assess the quality of empirically derived
force constants, in particular to disclose potential shortcomings. For this
purpose we calculated the corresponding local mode force constants for
these compounds at the CCSD(T)/aug-cc-pVTZ level, (for C¢Hg cc-pVTZ
was used). The results are shown in Table 1 and in Fig. 2. Experimental
and calculated normal mode frequencies are provided as supplementary
data. Local bending force constants k’,5- were converted to mDyn/
Aunits to match the unit of the experimentally derived bending force
constants.

As revealed by the data in Table 1 and Fig. 2, the agreement be-
tween local mode and empirical stretching force constants for Series a
molecules is fairly good, (R? = 0.955; standard deviation: 0.74 mDyn/
A) and even better for Series b molecules, (R?> = 0.997; standard de-
viation: 0.25 mDyn/A). This shows that the valence force function
approach, in particular considering interactions terms works well for

estimating stretching force constants for the small molecules in-
vestigated in this work. This is no longer the case for the bending an-
gles. The overall correlation of local mode and empirical bending force
constants for Series a is poor as revealed by Fig. 2 (b) with the general
trend that the empirical bending force constants become too small. If
for Series b the two outliers BF3 (local mode 0.73 vs. empirical 0.52
mDyn/Afor F-B-F) and BCl;(local mode 0.35 vs. empirical 0.18 mDyn/
Afor Cl-B-Cl) are excluded, the correlation between local mode and
empirical force constants becomes significant. However, it has to be
noted that the remaining data set is small and only composed of tria-
tomic molecules. The empirical fitting function does no longer work for
planar BF3; and BCl; with D3, symmetry. The decomposition of normal
modes into local mode contributions can serve in this case as a helpful
tool to retrieve more detailed information. As shown by Zou and co-
workers, local mode frequencies are uniquely connected to their normal
mode counterparts via an adiabatic connection scheme [10], which
forms the fundamental basis for this decomposition, the characteriza-
tion of normal mode (CNM) procedure [9].

CNM decomposes each normal vibrational mode 1, into local mode
contributions for a non-redundant set of N,;, local vibrational modes a,,
based on the overlap between each local mode vector a;; in Cartesian
coordinates and the normal mode vector 1, as S, according to Eq. (27)
[33,9,34]

(ay, L)?

Spp= — 2 K
(a3, ap)y, L) 27)
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Fig. 2. Correlation between local mode force constants k® based on the CCSD
(T)/aug-cc-pVTZ level of theory and experimentally derived force constants
kwuson- Fig. 2 (a) displays stretching force constants. Blue circles (Series a): ex-
perimental stretching force constant values taken from Tables 8-1 and 8-2 of
Ref. [3]; Pink squares (Series b): experimental stretching force constant values
taken from Table 8-3 of Ref. [3]. Fig. 2 (b) displays the corresponding bending
force constants. BF; and BCl; were excluded from the fit.

a; is the local mode vector in Cartesian coordinate space obtained via
afi = La, (28)

where L is the normal mode matrix in Cartesian coordinates. (a, b) is
the short notation for the scalar product two vectors of a and b in-
cluding a metric

(a, b) = Z a,-O,-jbj

ij (29)

Oy is an element of the metric matrix O. We generally use the force
constant matrix F* as metric, namely O = F*, to include the influence of
the electronic structure. As derived by Konkoli and Cremer [33] the
contribution of local mode a, to normal mode 1, is given by

Snu

Cu = e e—
RN S 30)

i.e. a completely localized normal mode 1, has a C,, value of 1 (cor-
responding to 100 % if Cy, is given as percentage)

Fig. 3 (a) shows the CNM analysis for BF3 and Fig. 3 (b) for CoHy,,
respectively. As reflected by Fig. 3 (a), the FBF angles dominate the
degenerate E’ modes at 477 cm ™' with almost 96 %, i.e. these modes
have almost pure bending character. It is interesting to note is that
bending angles also contributes with more than 10% to the degenerate
E’ stretching modes at 1473 cm ™. In the case of C,H, shown in Fig. 3

Chemical Physics Letters 748 (2020) 137337

(b), the HCH bond angles equally contribute to the B;, mode at
1472cm ™' with 50%, identifying this mode as pure HCH bending
mode. In addition the A, mode at 1365cm™" has also 60% HCH
character, whereas 40% results from CC bond stretching, for the A,
mode at 1666 cm ™~ ! the situation is reversed, 60 % CC bond stretching
and 40% HCH bending character. This complex interplay of the
stretching and bending modes can no longer be covered by a simple
valence force function approach.

3.2. Local mode force constants for the characterization of bonding in
proteins

As a pilot study for the characterization of bonding in proteins with
local mode force constants, we investigated the binding of azanone
(HNO) to the heme group of myoglobin. Azanone has recently received
attention because of its novel physiological or pharmacological prop-
erties, in particular when interacting with a metalloprotein [36]. Uti-
lizing NMR, resonance Raman, and X-ray absorption spectroscopy, a
stable complex of HNO and myoglobin was identified, involving the
distal histidine of the heme pocket as proton donor (¢ protonation state,
see Fig. 4 [37,38]. However, quantum chemical calculations suggested
another alternative, i.e. a complex with the distal histidine as proton
acceptor (8 protonation state, see Fig. 4) [39,40]. In order to shed light
into the question which protonation state leads to stronger FeN and H-
bonding, we applied the local mode analysis (implying unconstrained
geometry optimizations and harmonic frequency calculations with
8664 degrees of freedom) for the myoglobin active site with the distal
histidine in the € protonation state, (model 2) and § protonation state,
(model 3) compared with gas phase models 1 and 4 shown in Fig. 4.
The results are summarized in Table 2.

As revealed by the data in Table 2 the iron-azanone bond is shorter
and stronger for the € protonation state than for the  protonation state
(d = 1.754 Aand k* = 3.125 mDyn/Acompared with 1.777 Aand
2.708 mDyn/Arespectively). Also the H-bond in the € protonation state
is stronger than that in the 6 protonation state; (k* = 0.182 mDyn/
Aversus 0.099 mDyn/A). These results strongly favor the € protonation
state in line with the experimental findings. Comparison with gas phase
model 1 reveals that the protein environment has the largest influence
on the azanone ligand in the € protonation state of the distal histidine,
which is further reflected by the azarone NO and NH bonds. In com-
parison with model 1, the FeN bonds between Fe and azanone in model
4a are weakened (k® is reduced from 2.811 to 1.758) by the presence of
the two azanone ligands, whereas in model 4b the FeN bonds between
Fe and histidine are strengthened (k¢ is increased from 1.189 to 1.431)
by the two histidine ligands.

3.3. Metal-ligand local mode force constants to be used as force field
parameters

The local mode analysis can be also used to complement missing
force constants in molecular mechanical force fields. Particularly in-
teresting are metal-ligand force constants which are often difficult to
estimate [41]. For example, in order to investigate the degradation of
toxic organomercuric species catalyzed by the enzyme organomercurial
lyase MerB [EC 4.99.1.2] [42] with QM/MM methodologies such as
ONIOM [29] one needs suited mercury force field parameters for the
molecular mechanics (MM) part. As shown in Fig. 5, the cleavage/
formation of Hg-S and Hg-C bonds play a critical role. We derived local
mode Hg-S and Hg-C stretching and S-Hg-C bending force constants
using methyl(methylthio) mercury as a model compound and de-
termined the corresponding force constants at the NESC/PBEO/def2-
TZVPP level of theory [44,45] and utilizing a SARC basis set [46] for
Hg. The relativistic NESC method guarantees an accurate description of
mercury [47]. The calculated Hg-S and Hg-C bond lengths are 2.335
and 2.083 A, respectively, and the corresponding local mode force
constants are 2.008 and 2.317 mDyn/A. The S-Hg-C part of methl
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combination of local modes F2-B1-F3 with a contribution of ¢; = \/2/_3 , F2-B1-F4 and F3-B1-F4 with a contribution of — ¢,/2; A2 the combination of F2-B1-F4 with a
contribution of ¢, = /1/2 and F3-B1-F4 with — ¢,; D1 the combination of local modes F2-B1-F3-F4, F3-B1-F4-F2, and F4-B1-F2-F3 with a contribution of ¢; = 1/1/3.
Figure (b): Al is the combination of ¢, x C2-C1-H3 and — ¢, x C2-C1-H5; A2 the combination of ¢, x C1-C2-H4 and — ¢, x C1-C2-H6; D1 the combination of C2-C1-

H3-H5 and C1-C2-H4-H6 with an equal contribution of c,. The combination
equivalent local modes in a specific combination).

(methylthio) mercury is almost linear with a bond angle of 178.5 de-
gree and a corresponding local mode force constant value of 0.406
mDyn'A/Rad®. Because of their local nature, these force constants are
transferrable and independent on the coordinate system in contrast the
to force constants derived from the diagonal elements of the force
constant matrix [48] and therefore, are ideally suited as force field
parameters. Work is in progress to investigate the complete mercury
degradation cycle shown in Fig. 5 at the QM/MM level using the Hg-
ligand force constants for the MM part derived in this study, parallel to
the compilation of a library with metal-ligand force constants, which
we have recently coined metal-ligand electronic parameters MLEP
[49,50].

coefficients ¢ are determined by diagonalizing a n X n unit-matrix (n: number of

4. Conclusions

In this work we have summarized the theory of local vibrational
modes in particular focusing on local mode force constants, their re-
lationship with and advantage over compliance/relaxed force con-
stants. We have demonstrated the large application potential of local
mode force constants in three examples. (i) We could unveil the lim-
itation of empirically derived bending force constants by a comparison
with high-accuracy CCSD(T)/aug-cc-pVTZ local mode force constants
and the decomposition of normal modes into local mode contributions.
(ii) We could quantify for the first time the experimental findings that
the complex of HNO and myoglobin involves the distal histidine of the
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Model 1 \ Distal Model 2 TRRAN Model 3
Gas Phase N\ Protein His64¢ N Protein His646
\ e,
H5.
“03 H4

NN
) _ :
N2
( -00C « ) coo.  -0od “ J coo-
\J N N
N Proximal
Model 4a Model 4b
Gas Phase Gas Phase

N1

Fig. 4. HNO coordinated to the heme group in the gas phase, Model 1 and 4 and in myoglobin, Model 2 (His64€) and Model 3 (His646). Gas phase calculations:
PBEO0/6-31G(d,p); Protein calculations: QM/MM with PBE0/6-31G(d,p)/AMBER using the ONIOM method with the electronic embedding [29]. Starting protein
coordinates were based on modified X-ray data of NO complexed to horse heart myoglobin; [PDB entry: 2FRJ] [35].

heme pocket as proton donor contrary to some computational sugges- wide-spread future use of local vibrational force constants.
tions. (iii) We introduced mercury-ligand local force constants as po-
tential mercury-ligand force field parameters. We hope that this work
will inspire the spectroscopic community and will open the avenue for

Table 2
Bond distances d and local mode force constants k¢ for selected bonds® of gas phase models 1, 4a, and 4b (PBE0/6-31G(d,p)) calculations), and myoglobin models 2
and 3, (ONIOM: PBE0/6-31G(d,p)/AMBER calculations.

Model 1 Model 2 Model 3 Model 4a Model 4b
Bond d k? d k? d k* d 'S d k*
A) (mDyn/A) A) (mDyn/A) (A) (mDyn/A) (A) (mDyn/A) A) (mDyn/A)
03 "H5 - - 1.945 0.182 - - - - - -
H4 N6 - - - - 2.069 0.099 - - - -
03—N1 1.215 11.579 1.225 10.944 1.220 11.220 1.206 12.164 - -
N1-H4 1.045 5.444 1.043 5.561 1.049 5.314 1.047 5.417 - -
Fe—N1 1.774 2.811 1.754 3.125 1.777 2.708 1.843 1.758 - -
Fe—N2 2.032 1.189 2.038 1.308 2.053 1.170 - - 1.983 1.431

@ For a number of atoms, see Fig. 4.
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HgC—Hg—SCHj ?Hs
H
+ - SHCH, Y
SH HS S HS
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Hg
/
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MerB

Fig. 5. Left: Methyl(methylthio) mercury substrate inside the active site of the organomercurial lyase MerB based on the X-ray protein structure [43]. Right:
Suggested mercury degradation mechanism involving Cys99 and Cys156 of the organomercurial lyase MerB [42].
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