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ABSTRACT: The local vibrational mode analysis developed
by Konkoli and Cremer has been successfully applied to
characterize the intrinsic bond strength via local bond
stretching force constants in molecular systems. A wealth of
new insights into covalent bonding and weak chemical
interactions ranging from hydrogen, halogen, pnicogen, and
chalcogen to tetrel bonding has been obtained. In this work
we extend the local vibrational mode analysis to periodic
systems, i.e. crystals, allowing for the first time a quantitative
in situ measure of bond strength in the extended systems of
one, two, and three dimensions. We present the study of one-
dimensional polyacetylene and hydrogen fluoride chains and
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two-dimensional layers of graphene, water, and melamine-cyanurate as well as three-dimensional ice I}, and crystalline acetone.
Besides serving as a new powerful tool for the analysis of bonding in crystals, a systematic comparison of the intrinsic bond
strength in periodic systems and that in isolated molecules becomes possible, providing new details into structure and bonding
changes upon crystallization. The potential application for the analysis of solid-state vibrational spectra will be discussed.

1. INTRODUCTION

The chemical bond is one of the most important concepts in
chemistry.'~* Chemists often use the bond dissociation energy
(BDE) as the measure of bond strength.”~” For example, the
BDE of the CC single bond in ethane (H;C—CH,) is 88 kcal/
mol, while that of the CC double bond in ethylene (H,C=
CH,) is 174 kcal/mol, reflecting that a CC double bond is
stronger than a CC single bond because of additional &
bonding. Although the BDE can help chemists to understand
chemical bonding in an intuitive way, its deficiencies are
obvious. The BDE is a reaction parameter, which involves the
overall energy changes of a bond dissociation process. It
includes the electron density reorganization and the geometry
relaxation of the fragments; therefore, it is not suited as a bond
strength descriptor.”® Furthermore, the underlying bond
dissociation process into two fragments is not applicable for
chemical bonds in complex systems, e.g. large water clusters or
metal—organic frameworks (MOFs), in which the dissociation
of one bond will drastically change the overall geometry.
Therefore, a better alternative to the BDE as bond strength
descriptor is desired, that can perform an in situ measure of the
bond strength avoiding bond dissociation. Such a bond
strength descriptor is expected to reflect all electronic structure
factors which are responsible for the bonding mechanism of
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the target bond, ie. it directly relates to the intrinsic bond
strength.s’8

In 2000, Cremer and co-workers proposed the local bond
stretching force constant as a novel measure of intrinsic bond
strength.”” The local bond stretching force constant k% is
derived from the local vibrational modes.'’™"* The local mode
force constant k; of a specific bond is the curvature of the
potential energy surface (PES) in the direction of this bond
with its infinitesimal stretching followed by the relaxation of all
other parts of this molecule.'* The local vibrational mode
theory has been so far successfully applied to characterize the
intrinsic bond strength of both covalent bonds”®*'>'¢ and
noncovalent interactions including hydrogen,17_20 halogen,21
pnicogen,22 chalcogen,23 and tetrel bonding24 as well as
atom---7 interactions.”””° Local stretching force constants were
applied to quantify the intrinsic bond strength of unusual

15,16,25

chemical bonding, to explain interesting physicochem-

ical properties, e.g. the fact that warm water freezes faster than
cold water,"”® and to define new electronic par21r11eter58’27_29
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and rules.’
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Several theoretical tools have been developed to analyze
chemical bonding in periodic systems. Vanderbilt and co-
workers proposed a method based on maximally localized
Wannier functions (MLWF),*"** where the band structure is
transformed into MLWEF-orbitals which are more mathematical
and as such do not provide much chemical insight. Crystal
orbital Hamiltonian population (COHP)? and its predecessor
crystal orbital overlap population (COOP)**** offer a k-point-
dependent characterization of bonding being able to
distinguish bonding from antibonding orbitals. The atoms-in-
molecules (AIM) approach,**™** which is widely used in both
molecular and periodic systems, partitions the electron density
into atomic basins and provides the bond path connecting any
two bonded atoms. From the bond critical points (BCP) and
associated bond paths, various bond properties have been
derived for the characterization of bonding in molecules as well
as in the crystal environment. Alternative topological analysis
methods based on the electrostatic potential were devel-
oped.”™*' Recently, Dunnington and Schmidt succeeded in
generalizing the natural bond orbital (NBO) analysis**** to
periodic systems.** In this way, results for periodic systems
obtained from plane-wave density functional theory (PW
DFT) can now be interpreted with chemically intuitive
localized bonding orbitals, as it has been widely used for
molecules.*>*°

In this work, we extend Konkoli and Cremer’s local mode
theory'™"* from molecules to periodic systems with a
particular focus on deriving a local mode force constant
reflecting the intrinsic strength of a bond/weak chemical
interaction in periodic systems, e.g. a hydrogen bond in an ice
crystal. As a result, a deeper understanding of crystal bonding
will be achieved by a head-to-head comparison of the intrinsic
bond strength of chemical bonds in periodic and molecular
systems.

The paper is structured in the following way: First, the
original local vibrational mode theory is summarized using
three different routes of deriving local mode force constants k;,
for molecules. Based on these routes, the definition of local
vibrational modes in periodic systems is worked out, as well as
the derivation of the corresponding local mode properties with
a focus on the local mode force constant k;. After the
Computational Details section, seven examples with different
dimensions in periodicity (one-, two-, and three-dimensional)
are discussed in the Results and Discussion section. The
conclusions, along with some general remarks on the
calculation of local mode force constants kj, are given in the
last section.

2. METHODOLOGY

2.1. Local Vibrational Modes for Isolated Molecules.
In the following, three different routes for deriving local
vibrational modes and related properties for molecular systems
are summarized, forming the basis for the extension to periodic
systems.

2.1.1. Route |. For any N-atomic molecular system being
located at either a local/global minimum or a saddle point of
first order on the Born—Oppenheimer potential energy surface,
the harmonic normal vibrational modes and frequencies can be
calculated by solving the Wilson equation of vibrational
spectroscopy47

f°L = MLA (1)
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where f* is the (3N X 3N) dimensional force constant matrix in
Cartesian coordinates. The (3N X 3N) dimensional diagonal
mass matrix M contains each atom three times to account for
the motion in x, y, and z directions. The (N, X Ny)
dimensional diagonal matrix A collects the Ny, vibrational
eigenvalues 4, (4 = 1, ..., Ny, with Ny, = 3N — K) where K
equals S for linear and 6 for nonlinear molecules. The (3N X
N,3,) dimensional matrix L collects the corresponding
vibrational eigenvectors 1, (4 = 1, .., Ny, with Ny, = 3N —
K) as orthonormal column vectors. Harmonic vibrational
frequencies w,, in [cm™'] and eigenvalues A, are connected via
A, = 4n*cw}, where ¢ corresponds to the speed of light.*”

Eq 1 can be rewritten in terms of N, normal coordinates Q

f¢=K=LfL (2)

where the (N, X N,;,) dimensional force constant matrix f2 =
K is expressed in terms of normal coordinates Q. The
rectangular matrix L and its transpose L' are applied in eq 2.

The local vibrational mode associated with an internal
coordinate g, can be defined via the Wilson B-matrix,”” which
connects the partial derivatives of ¢, with the Cartesian
coordinates

= aqn
" ox (3)
The 3N-dimensional row vector b, converts the N,
vibrational modes collected in L in Cartesian coordinates

into the internal coordinates, with the contributions of L to the
internal coordinate g, given as

d,=bL

b,

(4)

Row vector d, of length of Ny, is then used to obtain the local
mode vector a, associated with the internal coordinate g,

—14T
_Kd,
d K 'a’

aVl
(%)
where a, is a column vector of length N,. It can be
transformed into Cartesian coordinates via'***

L —
a, = La,

(6)

where the superscript x denotes Cartesian coordinate, and
column vector aj; has the length of 3N.
The local mode force constant k; associated with internal
coordinate g, is obtained from eq 7.
k=a'Ka, = (d K 'd})"

n

(7)

The local mode force constant k{ has also been named
adiabatic force constant, where the superscript a (adiabatic)
means “relaxed” and the subscript n stands for the internal
coordinate g, leading the local vibration."

The corresponding local mode frequency @)} can be derived

via the Wilson G-matrix"”"*’
a\2 1 a
') = ——=k'G
()" = o aCon (3)

where the diagonal element G, , corresponds to the reduced
mass of the local mode a,.*

The local mode force constant kj is in contrast to the local
mode frequency wj; mass-independent, thus reflecting the pure
electronic effects. This has qualified local mode force constants

. L . 8,15-20 .
as unique intrinsic bond strength descriptors. Also in
this work, we will use the local mode force constants k; as the
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targeted local mode property for the description of chemical
bonding and/or weak chemical interactions in periodic
systems.

2.1.2. Route Il. An alternative, simplified approach for the
calculation of local mode force constants k;; was proposed by
Zou, Cremer, and co-workers'® shown in the following
equation

1

— =b,(f)'b,
" )
where (f°)* is the Moore-Penrose inverse of f*. Eq 9 reveals the
fundamental physical nature of the local mode force constant
as the curvature of the PES given in a specific direction,
defined by an internal coordinate g, as the leading
§14 - -
parameter.” " The derivation of eq 9 starts from substituting

d, and K in eq 7 using eqs 4 and 2

ki = (d,K'd,;)" (10)
ki = (bL(L'fL)"'(b,L)" )" (11)
ki = (b,L(L'FL)Y 'LU'bl ) (12)
k& = (b, LL"(£*)"(L")'L'b] )™ (13)

Based on the properties of the Moore-Penrose inverse, it can
be proved that (L7)* = (L*)7, and eq 13 can be rewritten as

ki = (b,LL"(£)" (L") L, )" (14)
then
ki = (bLL"(£)" (b,LL")" )™ (15)

where LL" leads to a projection matrix P in the dimension of
3N X 3N, and P can span the complete internal vibration space
as well as the complete internal coordinate space and the
external translations and rotations are automatically projected
out.

The Wilson B-matrix row vector b, of any internal
coordinate g, can be expressed as a linear combination of
N,i, row vectors in matrix L*, which equals LT, leading to

b, LL = b, (16)
thus eq 15 can be simplified as
ki = (b,(f*)'b, )" (17)

which proves the correctness of eq 9.

Compared with route I, route II has two advantages. (i) The
expensive step of obtaining the normal vibrational modes by
solving the Wilson equation is no longer necessary for
calculating ki. (i) The physical picture of a local mode force
constant is clearly revealed by eq 9.

However, it is important to note that eq 16 contains the
implicit prerequisite that the internal vibration space spanned
by the N, normal vibrational modes and the internal
coordinate space spanned by a complete nonredundant set
of N,;, internal coordinates are mathematically equivalent.'*

2.1.3. Route lll. The third approach to calculate local mode
force constants is based on an unmass-weighted version of
route I, proposed for the first time in this work.

The force constant matrix f* in Cartesian coordinates is
singular and has N, nonzero eigenvalues collected in the
diagonal matrix A’
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f*C = CA’ (18)
where the (3N X N,;)-dimensional matrix C collects
eigenvectors ¢, (4 = 1, .., Ny,) as column vectors. Eq 18
can be rewritten into

A =C'f'C (19)

This leads to the d;, vector associated with internal coordinate
q, via

d,=b,C (20)

and the local mode force constant k;; can be obtained by

ky = (d, (A (@)")! (1)
which leads to the same result as eqs 7 and 17.

2.2. Extension of Local Vibrational Modes to Periodic
Systems. 2.2.1. Definition of Konkoli—Cremer Local Modes
for Periodic Systems. The local vibrational mode theory of
Konkoli and Cremer in 1998 derives a local vibration being led
by an internal coordinate g, e.g. a bond stretching, by
assuming that all atoms of the molecule expect the ones
engaged in the local vibration are a collection of massless
points, which can effortlessly follow the leading vibration.'’~"?
An extended periodic system has an infinite number of
repeating unit cells that are unchanged when translated by the
lattice vectors. Crystallographers define the smallest possible
unit cell containing exactly one lattice point as the primitive
cell.”® Based on the response of all other primitive cells to a
bond stretching within one particular primitive cell, two
different possibilities of defining local vibrational modes in
periodic systems emerge.

1. When a chemical bond in one primitive cell is changed
because of a vibration, the remaining atoms in this cell
and all other primitive cells should relax. This is
equivalent to characterizing the local mode of a chemical
bond in an isolated (nonperiodic) cluster model
containing an infinite number of primitive cells. Such a
treatment of periodic systems was realized in a cyclic
cluster model.”'

. The vibration of the chemical bond in this primitive cell
is synchronized with all other primitive cells, while all
atoms except the atom pairs defining this chemical bond
will be relaxed. This implies that local vibrational modes
in periodic systems are also periodic.

The first definition is more closely related to the physical
picture of local vibrational modes in isolated molecular
systems; however, it overlooks the fact that in periodic
systems, i.e. crystals, any lattice vibration is a collective motion
shared by the atoms of all primitive cells. Besides, in molecular
systems the local vibrational modes are the local equivalent of
the normal vibrational modes in terms of internal coor-
dinates.*® In analogy, the local vibrational modes in periodic
systems should be the local equivalent of the lattice vibrations.
Therefore, possibly 2 is more appropriate and leads to the
following definition of local vibrational modes in periodic
systems: A local vibrational mode in a periodic system is a
vibration initiated by a specific internal coordinate g, in all
primitive cells, obtained after relaxing all other parts in the
periodic system. Noteworthy is that a distinction should be
made between (a) Konkoli—Cremer local vibrational modes in
periodic systems and (b) the vibrational modes of an impurity
in solids also often termed local modes.** >

DOI: 10.1021/acs.jctc.8b01279
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2.2.2. Local Mode Frequencies and Force Constants in
Periodic Systems. One major difference between the vibra-
tional frequencies in isolated and periodic systems is that
periodic systems may have multiple sets of frequencies
depending on the k point being investigated, while there is
one and only one set of vibrational frequencies for a molecular
system.”>” However, there exists only one set of vibrations in
periodic systems that can be measured by infrared (IR) and
Raman spectroscopy, and this set of vibrations corresponds to
the one taken at the I" point (q = 0).”%’

In order to obtain a smooth transition from molecular to
periodic systems, one has to relate the molecular vibrations to
the periodic vibrations at the I' point (q = 0). A benefit of
doing so is that the force constant matrix can be calculated in a
primitive cell model with sufficient sampling of the Brillouin
zone instead of using supercells.

If the primitive cell of a periodic system has N atoms, the
corresponding force constant matrix f5 is of dimension of 3N X
3N. In any one-dimensional (1D) periodic system, the force
constant matrix fj has four zero eigenvalues. Three of them are
related to the overall translations in the Cartesian coordinate
space, while the fourth eigenvector describes the overall
rotation of the system around the principal axis parallel to the
basis vector. For a two- or three-dimensional (2D/3D)
periodic system, the force constant matrix f; has and only
has three zero eigenvalues corresponding to the three overall
translations of the primitive cell.

In the following, it will be discussed which of the three
available routes for the calculation of local mode force
constants in isolated systems can be applied for the calculation
of local force constants in periodic systems.

e Route I relies on the precalculated normal vibrational
modes. If this scheme is to be used for periodic systems,
one issue concerning the 1D periodic systems should be
resolved, which is to derive the Eckart—Sayvetz
conditions®~®* for that rotational mode associated
with the fourth zero eigenvalue. However, no solutions
in this direction have been reported in the literature so
far.

The underlying prerequisite of route II that the internal
vibration space spanned by the N,;, normal vibrational
modes and the internal coordinate space spanned by a
complete nonredundant set of Ny, internal coordinates
are mathematically equivalent is no longer valid for
periodic systems, as the internal vibration space spanned
by 3N — 4 or 3N — 3 vibrations cannot be completely
spanned by 3N — 6 internal coordinates. Therefore,
route II cannot be applied to obtain the local mode force
constants in periodic systems either.

Route III has a more general form compared with the
other two routes and therefore can be adapted to
calculate the local mode force constants in periodic
systems as follows.

The force constant matrix fj of the primitive cell in Cartesian
coordinates has Ny, nonzero eigenvalues collected as diagonal
elements in matrix A’.

£5C = CA’ (22)

However, in contrast to a molecular system, N, takes the
value of (3N — 4) for 1D periodic systems or (3N — 3) for 2/
3-D periodic systems. Matrix C collects N, eigenvectors c,
columnwise.
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Eq 22 can be rewritten as

A = C'fiC (23)
For a specific internal coordinate g, within the unit cell, the d,
vector can be calculated with

d, =b,C (24)

Thus, the local mode force constant of internal coordinate g,
within the unit cell can be calculated using eq 25 in analogy to
the molecular system.

ki = (d,(A) (@)

The local mode frequency w;, in periodic systems can be
calculated with eq 8 with the help of k.

It is worth noting that the local mode force constants k;, in
periodic systems are independent of the choice of primitive
cell. As long as the model chosen for the calculation is the
smallest unit cell with translational symmetry, the local mode
force constant k; for a specific internal coordinate g, within
such a unit cell can be unambiguously determined.

In Figure 1, a one-dimensional periodic model system is
shown with four atoms in the primitive cell. There are two

A

Figure 1. A one-dimensional periodic system with two different
choices of primitive cell specified by two rectangles in (I) and (II).
Colored circles with labels represent atoms, while black solid and
dashed lines indicate chemical bonding.

(25)

different possibilities of setting up the primitive cell, labeled
with (I) and (II). The boundaries of primitive cell (I) cut
through the A—B bond, the boundaries of primitive cell (II)
cut through the C—D bond, and both cells contain the B—C
bond, which is not broken by any boundary. The force
constant matrices calculated for cells (I) and (II) should lead
to exactly the same local mode force constants k;, for the B—C
bond. This independence of the choice of unit cell for local
mode force constants equally applies also to a 2D or 3D
periodic system.

If the chemical bond or noncovalent interaction in question
is broken by the cell boundaries and not contained within the
cell, it is possible to calculate the corresponding local mode
force constant kj, utilizing translational symmetry. For example,
in the 1D periodic system shown in Figure 2, the cell cuts
through the A—B bond on boundaries. As a consequence,
there is no A—B bond defined within this primitive cell, and it
seems impossible to calculate the corresponding local mode
force constant k;. However, based on eqs 24 and 25, the
specification of an internal coordinate g, e.g. defining a bond,
is decided by the Wilson B-vector b,. The translational
symmetry of the primitive cell allows for obtaining the b,
vector for this A—B bond by assuming that atom A within the
cell is shifted into another position at A’, which is actually the
position of atom A of the neighboring cell. b, for bond A'—B

DOI: 10.1021/acs.jctc.8b01279
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Figure 2. Schematic representation of a one-dimensional periodic
system with the primitive cell shown in (I) and the same primitive cell
with the atom A’ from the neighboring primitive cell shown in (I').

can be directly used as the b, for the bond A—B cut through by
the cell boundaries, i.e. b, = b,. As the Wilson-B vector b’, for
a bond describes the direction of stretching of two bonded
atoms, the stretching direction of atom A’ in bond A’—B can
be translated to atom A with the help of translational
symmetry. In this way, broken bonds cut through by the cell
boundaries can still be characterized by local vibrational modes
without any extra calculations for a different primitive cell that
contains the bond in question. This important property of local
mode force constants concerning the primitive cell boundaries
also holds for 2D and 3D periodic systems.

One may argue that the local mode force constant k;, for a
chemical bond in a periodic system may not be directly
compared with the local mode force constant of the same type
of bond in an isolated molecule, because molecules have five or
six translational and rotational modes while periodic systems
have only three or four. This argument can be easily refuted as
eq 22 reveals that local vibrational modes involve only the
vibrational space,'* and it is physically sound comparing the
local mode force constants k;; from the vibrational spaces of
two systems with a different number of rotations and/or
translations, e.g. different periodicity (0—3D).

3. COMPUTATIONAL DETAILS

Geometry optimization including cell relaxation and Hessian
evaluation was performed using the Gaussian 16 package®® for
isolated molecules including hydrogen fluoride dimer/
hexamer, ethane, ethylene, 1,3,5-hexatriene, benzene, and the
melamine—cyanuric acid complex. Periodic boundary con-
ditions (PBC) were employed for periodic systems including a
1D hydrogen fluoride chain, 1D polymers of polyacetylenes
(PAs), a 2D monolayer of melamine—cyanuric acid, a 2D
graphene layer, and a 3D diamond. The polyacetylenes and
their reference molecules were modeled at the B3LYP/6-
31G(d,p) level of theory,”*””" while the hydrogen-bonded
systems were calculated with the Minnesota hybrid functional
MO06-2X with Pople’s 6-31+G(d,2p) basis set.””~”" Due to self-
consistent field (SCF) convergence problems arising from the
B3LYP hybrid functional, the pure meta-GGA functional of
TPSS’>”* was employed to model 2D graphene, 3D diamond,
and their reference molecules using Pople’s 6-31G(d,p) basis
set.
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For the Gaussian 16 calculations, an UltraFine (99,590)
integration grid was employed for density functional theory
(DFT) calculations, and a tight convergence criteria was
achieved for the geometry optimizations. As analytical energy
derivatives with regard to Cartesian coordinates are supported
only up to the first order in Gaussian 16 for PBC calculations,
the Hessian matrix was calculated numerically using four
displacements (£As, +2-As) for each degree of freedom using
analytical gradients, where the step-size As of displacement was
set to 0.001 A.

The calculations for the water dimer/hexamer, 2D water
monolayer, 3D ice I, acetone molecule, and two different
forms of acetone crzstqls were carried out with the
CRYSTAL17 program.”*”> The hydrogen-bonded systems
involving water (H,0) were also modeled with the M06-2X/6-
31+G(d,2p) level of theory. The molecule and crystals of
acetone were calculated with the same hybrid density
functional with Pople’s 6-31G(d,p) basis set. In order to
achieve optimal accuracy, a pruned XXLGRID (99,1454)
integration grid was used, and the two-electron integrals were
calculated with the accuracy of 107°—107'2,

As the CRYSTAL17 program provides analytical energy
derivatives with regard to nuclear coordinates and cell
parameters only up to the first order (gradients), the Hessian
matrices of optimized systems were calculated via numerical
differentiation of gradients according to a central-difference
formula’® with a step-size of 0.001 A.

Noteworthy is that all Hessian matrices used in this work for
periodic systems were all evaluated at the I point (q = 0)
instead of other k-points. This precondition guarantees that the
crystal lattice vibrations based on these Hessian matrices are
directly measurable by IR or Raman spectroscopy, providing a
smooth transition from molecules to periodic systems, e.g.
crystals, and an important prerequisite for the discussion of the
intrinsic bond strength derived from local vibrational modes.

The local mode analysis including the calculation of
adiabatic force constants were carried out with the program
package COLOGNE2017.”” Graphics in Figures 8 were
generated by the VESTA3 package.”®

4. RESULTS AND DISCUSSION

In this section, we discuss local mode force constants kj of
chemical bonds and noncovalent interactions in different
periodic systems including (i) 1D polymers, (ii) 2D layers, and
(iii) 3D crystals.

We also demonstrate how local mode force constants k;
used as bond strength descriptors can be directly compared
between a periodic and a molecular system or among periodic
systems with a different dimension of periodicity gaining
deeper insights into chemical bonding.

4.1. 1D Polymers. 4.1.1. Polyacetylene (PA). Polyacety-
lene (PA) adopts several different isomers (shown in Figure 3)
depending on how the CC double bonds are arranged with
regard to each other. The frans-PA system was chosen as an
ideal model system, often used in modern organic chemistry
textbooks when introducing conjugation and 7 electron
delocalization extrapolating stepwise from ethylene, trans-1,3-
butadiene, etc.””*" With an increasing number of C,H, units
connected by CC single bonds in a linear chain, the 7 electron
delocalization is expected to enhance and cover more carbon
atoms. While various theoretical tools including electron
localization function (ELF),®' localized-orbital locator
(LOL),*” and Mayer bond order® have been utilized to
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Figure 3. Schematic representation of polyacetylene (PA) isomers
including trans-PA, cis-PA, and meta-PA. Brackets colored in red
define the primitive cells for calculation. Ethane, ethylene, and 1,3,5-
hexatriene are used as references. Single and double carbon—carbon
bonds are labeled as (s0)—(s4) and (d0)—(dS), respectively.
Symmetry-equivalent single and double bonds are colored in blue
and purple.

study the alternating single—double bonds in conjugated
alkenes as isolated molecules, there have been only some
scattered investigations on the single and double bond strength
in PAs as 1D polymers.**™"" Therefore, we performed a
rigorous local mode analysis.

Three PA isomers were calculated including trans-, cis-, and
meta-PA with different primitive cells. Ethane, ethylene, and
1,3,5-hexatriene were calculated as references (shown in Figure
3).

Table 1 lists the bond lengths and local mode force
constants for the labeled CC single and double bonds in

Table 1. Comparison of Different CC Bonds in Bond
Lengths and Local Mode Force Constants for PAs and
Reference Molecules

no. r ki< no. r ko<
Single Bond
s0 1.530 4.149 sl 1.450 5.279
s2 1.424 5.155 s3 1.436 5.073
s4 1.430 5.374
Double Bond
do 1.330 9912 d1 1.352 8.623
d2 1.369 6.195 d3 1.369 7.895
d4 1.370 7.530 ds 1.366 7.847

“Units for bond length r and local mode force constant k} are A and
mdyn/A, respectively.

isolated molecules and PAs. Ethane and ethylene are the
smallest compounds containing a single and double CC bond,
respectively. The double bond (labeled as d0) in ethylene is
0.2 A shorter than the single bond (s0) in ethane and has a
local mode force constant k% as 9.912 mdyn/A compared with
4.149 mdyn/A for the single bond (s0). In 1,3,5-hexatriene,
the influence arising from the alternating single—double CC
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bonds on both single and double CC bonds can be
characterized. The double bond (d1) in the molecular center
is longer and weaker than the ethylene double bond (d0),
while the single bond (s1) is shorter and stronger than the
ethane single bond (s0). This reveals that due to 7 electron
delocalization, the double bond (d1) has less 7 electron
density concentrated in its bonding region compared with
double bond (d0), while the single bond (s1) takes partial
double bond character and becomes stronger. The analysis on
these three molecular systems confirms that the local mode
force constant k; as bond strength descriptor is suitable to
characterize the influence of 7 electron delocalization on the
strength of CC bonds."® This should also hold for the intrinsic
bond strength of CC bonds in PAs characterized with local
mode force constants kj,.

All four unique double bonds (d2—dS) in the three PA
isomers are longer than the reference double bond (d1) and
are very close to each other covering a range of 1.366—1.370 A.
Their local mode force constants kj are smaller by 0.728—
2.428 mdyn/A compared with that of double bond (dl),
confirming that 7 electron delocalization is more enhanced in
PAs compared to single molecules. The double bond (d2) in
trans-PA has the smallest local mode force constant kj among
three PA isomers. This can be explained by the fact that the
polymer chain of trans-PA provides the easiest route for
electron delocalization in a nearly straight line shape, and
therefore the 7 electrons are more delocalized leading to the
weakest double bond (d2). This is in line with the fact that the
undoped trans-PA has higher electrical conductivity (10—
107* S-cm™") as a semiconductor than undoped cis-PA (107'°—
107 S-em™') as an insulator.***® The three unique single
bonds (s2-s4) in PAs have smaller bond lengths than the
reference single bond (s1). The local mode force constants k;
in PAs are larger compared with the ethane single bond (s0),
but only the ki of single bond (s4) in meta-PA is larger than
that of the reference single bond (s1).

Quantifying the intrinsic bond strength in polymer systems
with local mode force constants kj, provides deeper insights on
how the repeating units are connected with each other. This
knowledge forms an important ingredient for the future
rational design of polymer materials with desired physico-
chemical properties.

4.1.2. Hydrogen Fluoride (HF) Chain. In solid-state
hydrogen fluoride,* the hydrogen fluoride molecules are
connected by intermolecular F---H hydrogen bonds forming a
linear zigzag chain as shown in Figure 4. Focusing on a specific
F---H hydrogen bond, the hydrogen bond donor accepts one
extra hydrogen bond from the left side, and simultaneously the
hydrogen bond acceptor donates one hydrogen bond to the
right side. This cooperativity found in intermolecular hydrogen
bonding known as the “push—pull” effect’® strengthens the

H ¢
¢
4
\
—

Figure 4. One-dimensional chain of hydrogen fluoride connected by
hydrogen bonds. Atoms in the primitive cells are drawn with balls and
sticks, where the fluorine and hydrogen atoms are colored in cyan and
white, respectively. The covalent F—H bond is labeled with 1, and two
symmetry-equivalent F---H hydrogen bonds are labeled with I and I'.
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target hydrogen bond via enhanced charge transfer of lone pair
electrons. Therefore, we investigated to what extent this push—
pull effect in the solid hydrogen fluoride can make the
hydrogen bond stronger.

We characterized the strength of the covalent F—H and F---
H hydrogen bonds via the corresponding local mode force
constants kj. As references, we used hydrogen fluoride dimer
with C, symmetry containing only one hydrogen bond and a
hexamer ring structure with S¢ symmetry containing six
equivalent push—pull hydrogen bonds.*

Table 2 collects the bond lengths and local mode force
constants of FH bonds. In the case of the two molecular

Table 2. Comparison of Different FH Bonds in Bond
Lengths and Local Mode Force Constants for 1D Hydrogen
Fluoride Chain and Molecular Hydrogen Fluoride Dimer
(HF), and Hexamer (HF)4

9n re K
1D Chain
F--H 1.372 0.400
F-H 0.990 2.718
Molecular Dimer (C,)
F--H 1.798 0.209
F—Huonor 0.930 9.094
F_Haccepmr 0.927 9.398
Molecular Hexamer (Sg)
F--H 1.402 0.337
F-H 0.983 3.193

“Units for bond length r and local mode force constant k% are A and
mdyn/A, respectively.

reference systems, the push—pull effect shortens the F---H
hydrogen bond by 0.396 A, and the local mode force constant
increases by 0.128 mdyn/A; at the same time, the F—H
covalent donor bond is elongated by 0.053 A, and the local
mode force constant ki drops by 6.205 mdyn/A, reflecting a
large bond strength decrease. The fluoride atom in the HF
molecule has three lone pairs, and the push—pull effect
amplifies the delocalization of these lone pair electrons into the
o* antibonding orbital of the donor F—H bond.

The F--H hydrogen bond in the 1D HF chain is even
shorter than that in the (HF)4 hexamer ring by 0.03 A and
stronger by 0.063 mdyn/A as revealed by the local mode force
constant. The F—H covalent bond is longer and weaker than
that in the hexamer by 0.007 A and 0.474 mdyn/A,
respectively. Therefore, the push—pull strengthening effect
arising from the linear arrangement in the 1D chain is stronger
compared with the push—pull effect in the hexamer ring.

This example demonstrated that the “push—pull” effect®® is
not a hypothetical model derived from calculations for
understanding H-bonds in small molecular clusters which
only exist in gas phase, it is a real and important effect, also
present in solids.

4.2. 2D Layers. 4.2.1. Graphene. Graphene is a single
atomic 2D layer of 3D graphite. Due to many uncommon
properties stemming from its unique honeycomb lattice
structure shown in Figure S, graphene has attracted the
attention of material scientists since it was isolated for the first
time more than a decade ago.”’””’ Each carbon atom in
graphene is sp* hybridized. In addition to three ¢ bonds with
neighboring carbons, it has one electron in its p orbital
perpendicular to the 2D plane, forming an extented #-bond
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Figure S. Single layer of graphene where carbon atoms are arranged in

a hexagonal lattice structure. Two carbon atoms in the primitive cell
are shown as balls and sticks.

over the whole plane. It can be easily deduced that the CC
bond strength in graphene is between that of the C—C single
bond in ethane and that of the C=C double bond in
ethylene.”* However, it would be helpful to rigorously quantify
its intrinsic bond strength in terms of local stretching force
constants to be compared with those of other CC bonds.
Bond lengths and local mode force constants for the CC
bonds in graphene and reference systems are collected in Table
3. As the B3LYP hybrid functional caused SCF convergence

Table 3. Comparison of Different CC Bonds in Bond
Lengths and Local Mode Force Constants for a 2D
Graphene Layer and Reference Systems Including
Molecular Hydrocarbons and 3D Diamond

system" r ke
graphene 1.429 S5.182
ethane 1.535 4.011
1,3,5-hexatriene” 1.449 5.200
benzene 1.402 6.446
ethylene 1.336 9.527
diamond® 1.552 3.554

“Units for bond length r and local mode force constant k¢ are A and
mdyn/A, respectively. bc—c single bonds in 1,3,5-hexatriene are used
in this table for comparison. “A primitive cell (a=b=c=2.522 4, a =
f =y = 60°) containing two carbon atoms converted from a cubic
unit cell” was used as the starting geometry for the 3D diamond
system. “Systems listed in this table were all modeled at the TPSS/6-
31G(d,p) level of theory.

problems, we switched to the TPSS functional for this example.
Compared with the CC bonds in ethane and ethylene, the CC
bonds in graphene are in between those two references with
regard to both the bond length and local mode force constant.
It is noteworthy that the graphene CC bond is longer and
weaker than the aromatic CC bond in benzene by 0.027 A and
1.264 mdyn/A. Although both benzene and graphene share the
hexagonal structure of a Cy ring, the 7 electrons in graphene
delocalize over a larger space, thus leading to weaker CC
bonds. The CC bond strength in graphene is close to that of
the single bond in 1,3,5-hexatriene, where the single—double
bond alternation renders the single bond with double bond
character.

We also included the 3D solid of diamond as a reference
system. Diamond has the largest hardness among all natural
materials;”® however, our local mode analysis counter-

DOI: 10.1021/acs.jctc.8b01279
J. Chem. Theory Comput. 2019, 15, 1761-1776


http://dx.doi.org/10.1021/acs.jctc.8b01279

Journal of Chemical Theory and Computation

/

+ )

£

g/
+ “\z/ 7 1

y |

_J-JI—‘—"‘\) \IL_

A

- — / -

/
/

B

fa— .

Figure 6. Hydrogen bonding network in a 2D layer formed by water molecules. Two equivalent primitive cells are shown as (A) and (B) in two
panels, where the atoms within the primitive cells are shown as balls and sticks. Covalent O—H bonds are labeled with 1, 1, and 1”, and the O---H

hydrogen bond is labeled with I.

intuitively shows that the C—C bond in diamond is the
weakest in Table 3. The diamond C—C bond is longer than the
ethane C—C bond, and its local stretching force constant is
smaller by 0.457 mdyn/A. A single carbon atom in either
diamond or ethane adopts sp® hybridization leading to a
tetrahedral configuration.”” The major difference is that the
hydrogen atoms in ethane have a weaker capability to attract
the bonding electrons in the C—C region compared with the
carbon atoms in diamond. This could explain the C—C bond
strength differences in these two systems.

In this example, we have quantified the intrinsic bond
strengths of CC bonds in 2D graphene as well as 3D diamond
for the first time and their ranking among a series of
hydrocarbons. Such an analysis could also be applied to
another allotrope of carbon, the carbon nanotubes (CNTs).”
As CNTs can be made with a variety of different structures, the
characterization of the CC bond strength in CNTs will be
another interesting direction to proceed.

4.2.2. Water. We constructed a model system of water
molecules connected with each other in a two-dimensional
network as shown in Figure 6. The primitive cell of this system
contains only one water molecule, which accepts two hydrogen
bonds and donates two hydrogen bonds at the same time to its
neighboring water molecules. Noteworthy is that the water
molecules are not contained within the plane constructed by
the basis vectors, instead the molecule is a little bit tilted with
one hydrogen atom above the plane while the other is below
the plane for optimal hydrogen bonding configuration. It is
interesting that all O—H covalent bonds in this system are
equivalent, and all O---H hydrogen bonds have the same bond
length as well as local mode force constant due to symmetry.

As references, we used the hydrogen bonding situation in a
water dimer structure with C; symmetry and the push—pull
hydrogen bonds in a hexamer water ring with Sg symmetry,*
to be compared with the bond strength in the 2D water layer.

Bond lengths and local mode force constants for the three
systems are collected in Table 4. When moving from the water
dimer to the hexamer ring, one hydrogen bond has its donor
water accepting another hydrogen bond and its acceptor water
donating another hydrogen bond. This push—pull effect
shortens the O-H bond by 0.224 A and strengthens it by
0.071 mdyn/A. At the same time, the O—H donor bond is
elongated by 0.018 A, and its local mode force constant
decreases by 2.022 mdyn/A.
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Table 4. Comparison of Different OH Bonds in Bond
Lengths and Local Mode Force Constants for a 2D Water
Layer and Molecular Water Dimer (H,0), and Hexamer
(H,0)s

qn r [
H,O 2D Layer
O--H 1.990 0.681
O-H 0.972 7.748
H,O Dimer (C,)

O--H 1.925 0.202
O—Hyo,, 0.968 8.093
H,0 Hexamer (S4)

O--H 1.701 0.273
O—Huonor 0.986 6.071

“Units for bond length r and local mode force constant ki are A and
mdyn/A, respectively.

For any O-H hydrogen bond in the 2D water layer, its
donor water accepts two external H-bonds and donates one
extra H-bond, while its acceptor water donates two H-bonds
and accepts one H-bond. According to the push—pull effect,
the H-bonds which the donor accepts and the H-bonds the
acceptor donates are expected to strengthen the target H-bond.
However, the extra H-bonds the donor water donates and the
acceptor water accepts are responsible for weakening this
target H-bond in question. The result in Table 4 shows that
the O---H hydrogen bond in the 2D water layer is longer than
that in water dimer but its local mode force constant k” is
larger than the push—pull H-bond in the hexamer ring by
0.408 mdyn/A. The longer H-bond length accompanied by the
larger local mode force constant in the 2D water layer is
attributed to the unusual hydrogen bonding configuration
where the whole H-bonded network lies almost in a plane. In
contrast, common H-bonds in water clusters are almost
perpendicular to the acceptor water plane. This local mode
force constant k;; of 0.681 mdyn/A for the H-bond is unusual,
even larger than the strongest water H-bond with its k;; of 0.45
mdyn/A characterized with a slightly different level of theory
in our previous work on water cluster models."” This reveals
that the strengthening of the H-bond is dominated by the
push—pull effect from the four H-bonds which the acceptor
donates and the donor accepts. The weakening effect from the
other two additional H-bonds which the donor donates and
the acceptor accepts is diminished.
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The 2D water layer in this example is a model system which
has not been observed so far; however, the local mode analysis
can be carried out for other 2D water layer systems which have
been observed,”® "%’ with the overall objective to discover
more unusual H-bonds and in this way to unravel the secrets
and peculiarities of water.

4.2.3. Melamine Cyanurate. Melamine cyanurate is a
hydrogen bonded complex of melamine and cyanuric acid
formed by a 1:1 mixture as solid state.'”’ The crystal of
melamine cyanurate is composed of layers of hydrogen
bonding networks shown in Figure 7. We investigated one

Y
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A hg
PN A
Y
PN

Figure 7. Hydrogen bonding network in a plane formed by a
melamine—cyanuric acid complex. Atoms within the primitive cell are
shown as balls and sticks. Gray, red, blue, and white colors are for
carbon, oxygen, nitrogen, and hydrogen atoms. Covalent bonds are
labeled with Arabic numerals, while hydrogen bonds are labeled with
Roman numerals.

layer in this work. This 2D periodic system has a primitive cell
containing a melamine—cyanuric acid complex connected by
three intermolecular hydrogen bonds. All other hydrogen
bonds in this system are equivalent to these three due to the
Dj;, symmetry of both the melamine molecule and cyanuric
acid molecule. In this 2D hydrogen bond network, hydrogen
bonding is coupled with 7 electron conjugation leading to a
unique type of hydrogen bonding called resonance assisted
hydrogen bond (RAHB),'’”'" which qualifies it as an
interesting target for the local mode analysis.

As a reference, we investigated the molecular melamine—
cyanuric acid complex. The melamine—cyanuric acid complex
in gas phase is no longer planar; it has a small angle tilted
around the central hydrogen bond (labeled with I). Ammonia
dimer (NH;), with C, symmetry was also used as a reference.
As Pople’s 6-31+G(d,2p) basis set fails to give the correct
geometry for the ammonia dimer system, we used 6-
31+G(d,p) instead for the dimer as well as the 2D melamine
cyanurate network and the melamine—cyanuric acid complex.
The results for above systems are listed in Table S.

We first examined the isolated melamine—cyanuric acid
complex in which the melamine and cyanuric acid are
connected by three hydrogen bonds including one N---H H-
bond and two O---H H-bonds. The local mode force constant
value of the O---Hj; bond is close to that of the H-bond in the
water dimer listed in Table 4. The local mode force constant of
its donor bond N—H, is larger than that of the N—H donor
bond in ammonia dimer by 0.275 mdyn/A. However, the N
H; bond is stronger than the N---H hydrogen bond in ammonia
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Table 5. Comparison of Different Bonds in Bond Lengths
and Local Mode Force Constants among the 2D Layer of
Melamine Cyanurate, Its Molecular Complex, and Ammonia
Dimer”

4 r ki 4 r ki’
2D Layer
N-H, 1.057 3692 O-Hy 1.936 0.450
[1.058]  [3.546] [1.927]  [0.458]
N-H, 1.013 7.121 C=0; 1.225 11.810
[1.013] [6964] C=N, 1.349 6.822
N---H; 1.805 0.430 C=N; 1.373 6.428
[1794]  [0.433]
Melamine—Cyanuric Acid Complex (C,)
N-H, 1.072 2.693 0--Hy, 1.940 0211
[1.073]  [2.831] (1.943]  [0212]
N-H, 1.013 7.087 C=0; 1.217 12.335
[1014]  [7007] C=O0, 1.208 13.184
N---H; 1.715 0.227 C=N, 1.352 6.577
[1.702] [0.283] C=N, 1.338 7.028
C=Ny 1.339 7.016
C=N; 1.373 6.297
C=Ny 1.384 6.000
C=Ny, 1.383 6.058
Ammonia Dimer (C,)
N—H,,., 1.020 6.812
N--H 2.199 0.135

“Units for bond length r and local mode force constant ki are A and
mdyn/A, respectively. *Bond length and local mode force constant
values in brackets were obtained with the basis set of 6-31+G(d,2p),
while other values were from calculations with the 6-31+G(d,p) basis
set.

dimer by 0.092 mdyn/A. Its donor bond N—H; is strikingly
weakened by 4.119 mdyn/A compared with the donor bond in
(NH;),. An NBO analysis***’ on the isolated molecular
complex showed that the delocalization energy of lone pair
electrons from the acceptor nitrogen atom of the N---H; bond
into the 0*(N—H,) antibonding orbital is up to 48 kcal/mol,
while the delocalization energy in the ammonia dimer is only 6
kcal/mol. The acceptor nitrogen atom of the N---H; bond is
also within the 7 conjugated system of the melamine molecule.
Therefore, the hydrogen bond N--H; is identified as a
resonance assisted hydrogen bond whose strength is much
larger than traditional H-bonds, as reflected by local mode
force constant k.

The flow of 7 electrons from melamine into cyanuric acid
can be characterized by the local mode force constants of the
C=N bonds of these two molecules in the complex. In the
molecular complex, C=N,, C=N,, and C=N,, are not
symmetry-equivalent. Only the nitrogen atom of C=N,
accepts the N---H; hydrogen bond, and its local mode force
constant is smaller than the other two by 0.451 and 0.439
mdyn/A. On the other hand, the C=N; bond in the cyanuric
acid molecule is stronger than C=Njy and C=Nj. by at least
0.239 mdyn/A. These results confirm the underlying picture
that the z electrons of the C=N, bond move to the C=Nj
bond region, thus weakening C=N, but strengthening C=Nj.

In the primitive cell of the 2D network, either the melamine
or the cyanuric acid molecule has now three neighboring
molecules. The decrease in the local mode force constant of
C=N, and the increase for C=N; shows a more extended 7
electron delocalization from melamine to cyanuric acid. This
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leads to a sharp increase in the local mode force constants of
N--H; and O---Hj; by 0.203 and 0.239 mdyn/A, respectively.
The N—H, local mode force constant increases by 0.999
mdyn/A due to more 7 electrons on the six-membered ring.

In this example, the local mode analysis was applied for the
first time to a resonance assisted H-bond. More systematic
investigations on this topic are in progress utilizing the local
mode force constant as intrinsic H-bond strength complement-
ing and extending other work.'"*'%

4.3. 3D Crystals. 4.3.1. Ice I,. We investigated the ice I,
shown in Figure 8. Ice I, is the most common crystal form of

!

Figure 8. Structure of primitive cell for ice I;. Red and white balls
represent oxygen and hydrogen atoms, respectively. Twelve oxygen
atoms contained within the cell are labeled with numbers from 1 to
12, while the unlabeled oxygen atoms are shown as periodic boundary
conditions (PBC) images from neighboring cells.

frozen water on earth compared with rare ice I, which is
metastable and only occasionally present.'”* In the ice I,
system, all water molecules are four-coordinated, establishing
a hexagonal lattice structure stabilized by H-bonds. While
water itself has various peculiar physicochemical properties, it
was of interest to quantify the intrinsic bond strengths of O---H
hydrogen bonds and O—H covalent donor bonds by the
corresponding local mode force constants kyyy, and ki gonon
respectively.

In the resolved crystal structure of ice I, all O—H covalent
bonds along with the hydrogen bonds they donate can be
classified into three categories according to interatomic
distance,'®'% labeled as A, B, and C in Table 6.

The results show that all three different types of O—H
covalent bonds and corresponding H-bonds are close to each
other in terms of bond lengths and local mode force constants.
The donor bond lengths are literally identical as the difference

in the fourth digit after the decimal point in Angstroms is
largely caused by numerical error from calculation. The
deviation in the local mode force constants of covalent
bonds in type B and C up to 0.02 mdyn/A is caused by the
calculation of Hessian matrix using numerical differentiation of
analytical gradients, and the large size of this primitive cell
containing 36 atoms is also responsible. In contrast, although
the deviation in the O---H hydrogen bond lengths is relatively
larger, their local mode force constants are more close to each
other with the maximum deviation of only 0.002 mdyn/A.

The local mode force constant values of the H-bonds in ice
I, are in the range of 0.252—0.257 mdyn/A; this means they
are stronger than the H-bond in the water dimer (0.202) but
weaker than the push—pull H-bond in the hexamer water ring
(0.273). Similar to the situation in the 2D water layer (see
Figure 6), all water molecules in ice I, are four-coordinated,
namely either the H-bond donor or acceptor donates and
accepts two H-bonds at the same time, however, the H-bonds
in ice I, are much weaker compared with those in the 2D layer
(0.681). This large difference is caused by different topologies
in these two systems. While neighboring water molecules in ice
I, do not have the same orientation, the unique orientation in
the 2D water layer facilitates the lone pair charge transfer in a
highly directed way, which strengthens the hydrogen bonding.

4.3.2. Acetone. So far, we have discussed several molecular
crystals stabilized by intermolecular hydrogen bonding. In the
acetone crystal, no hydrogen bonding exists.'”” The dominant
driving force to stabilize the lattice structure is the interaction
between the dipole moments of acetone molecules.

Acetone (C,, symmetry) has a polar C=0 bond where the
oxygen atom is more electronegative and accumulates more
electron density than the carbon atom.'”® The dipole moment
points from the oxygen to the carbon atom. This leads to a
special property of acetone, namely if it is placed in an electric
field, its C=0 bond will always align to the direction of this
field and then reorganize its electronic structure. In 1995,
Chattopadhyay and Boxer have characterized this phenomen-
on termed as a vibrational stark effect (VSE) using vibrational
spectroscopy.'” As the C=O bond stretching mode is an
intrinsically localized mode, this mode has been then utilized
as a probe to measure the strength of vicinal electric field by
checking the blue or red shift in vibrational frequency.'"’

In the crystalline structures of acetone shown in Figure 9,
the dipole moments of acetones are either parallel or
antiparallel to each other. A specific acetone molecule is
situated in an effective electric field formed by all other acetone
molecules. We determined the intrinsic bond strength of the
C=0 bond in acetone crystals and characterized the influence
from dipole—dipole interactions.

Apart from the X-ray crystal structure* shown in Figure
9B, we constructed a metastable crystal model shown in Figure
9A. While the primitive cell of crystal B has two acetone
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Table 6. Properties of OH Bonds within the Primitive Cell of Ice I,

type (no.)” T Wb T s
A(6) 1.7343 + 0.0001 0.255 + 0.002 0.9859 + 0.0000 6.096 + 0.003
B(3) 1.7371 + 0.0004 0.257 + 0.001 0.9858 + 0.0001 6.052 + 0.023
Cc(3) 1.7365 + 0.0010 0.252 + 0.000 0.9860 + 0.0000 6.054 + 0.020

“Units for bond length and local force constant are A and mdyn/A, respectively. ®The first column gives three categories of OH bonds followed by
the number of this OH bonds in parentheses. “r and kj; are bond length and local mode force constant of an OH bond. The subscripts of donor and

Hb denote the donor O—H bond and O---H hydrogen bond, respectively.
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Figure 9. Acetone crystals in two different forms. (A) is a metastable model system, while (B) is a resolved X-ray crystal structure. In either system,
the nearby acetone molecules surrounding a target acetone molecule in the center are shown with ball-and-stick models in solid colors. All other
acetone molecules are shown with transparent gray color. The dipole moments are represented by arrows in different colors. The target acetone

molecule is shown with a green arrow labeled with I

molecules in an antiparallel orientation, the primitive cell of
crystal A contains only one acetone molecule. Therefore, the
dipole moments in crystal A are all parallel to each other.
Table 7 lists the bond lengths and local mode force
constants of the C=O0 bonds in the two crystal structures as

Table 7. Comparison of Bond Length r and Local Force
Constant k| for the C=0 Bond of Acetone in Different
Systems

model r ko<
crystal A 1.222 12.542
crystal B 1.224 12.456
molecule 1.209 13.806

“Units for bond length r and local mode force constant ki are A and
mdyn/A, respectively.

well as in the isolated molecule. Acetone has the shortest and
strongest C=0 bond, while the C=0 bond in crystal A is
shorter than that in B by 0.002 A and stronger by 0.086 mdyn/
A

The reason for the difference in the local mode force
constant values is elaborated in the following. In an acetone
molecule, excessive electrons are located around the oxygen
atom. If an electric field or dipole—dipole interaction polarizes
the electrons on the C=0 bond toward the oxygen atom, the
C=O0 bond becomes weaker, leading to decreased local mode
force constant or the vibrational frequency. If the external
electric field polarizes this bond in the other direction, the C=
O bond will be stronger.

In the two crystal structures shown in Figure 9, there are in
total four different dipole—dipole interactions as shown in
Figure 10.

o The first type of dipole—dipole interaction (Figure 10A)
denoted as I-II is that the second acetone molecule is
located to the front or back of the target acetone and the
C=O0 bonds are in the same plane. This dipole—dipole
interaction is found in four surrounding acetones in both
crystals. These four molecules with regard to the target
acetone are arranged in a staggered manner, leading to
the polarization of electrons toward the oxygen atom.
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Figure 10. Schematic representation of four different ways of dipole—
dipole interaction between acetone molecules.

Therefore, it poses a weakening effect on the C=0
bond strength.

e The second type of dipole—dipole interaction (Figure
10B) denoted as I-III is based on the stacking of the
second acetone molecule on top of the target acetone or
vice versa. This leads to a strong polarization of the
excess electrons of the C=O bond toward the oxygen
atom because both acetone molecules have their dipole
moments in the same line. The C=0 bond strength of
the target acetone is then reduced.

Noteworthy is that the arrangement of the acetone
molecules resulting in the above two different types of
dipole—dipole interaction is the same in both crystals,
and these six surrounding molecules are the nearest
neighbors of the target acetone in the center. All six
molecules weaken the target C=O bond, explaining
why the local mode force constants of the C=O bonds
in the above two crystals are both smaller than that in
molecular acetone.

e The third type of dipole—dipole interaction (Figure
10C) denoted as I—V exists when two acetone
molecules sit side by side in an antiparallel orientation
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and both molecules have their heavy atoms in the same
plane. Such an interaction has similar polarization effects
and weakens the target C=0O bond.

e The fourth dipole—dipole interaction (Figure 10D)
denoted as I-IV seems similar to the third one;
however, two dipole moments are parallel to each
other. In this configuration, the electron density of the
C=O0 bond is polarized toward the carbon atom. Thus,
this dipole—dipole interaction strengthens the target
C=0 bond.

If we compare the two crystals with regard to the dipole—
dipole interaction, both crystals have I-II and I-III
interactions with the same spatial arrangement. The major
difference is that crystal A has the I-IV interaction, while
crystal B has the I-V interaction instead. All three dipole—
dipole interactions for crystal B weaken the target C=0 bond.
In crystal A there are two dominant weakening dipole—dipole
interactions (I-II and I-III) and one type of strengthening
dipole—dipole interaction (I-IV) which cancels a small
portion of the other two dipole—dipole interactions. This
explains why the C=0 bonds in both crystals are weaker than
that in molecules and why the C=O bond in crystal B is
weaker than that in crystal A.

5. CONCLUSIONS

In this work, we have presented a novel approach to
characterize the intrinsic bond strength of chemical bonding
in periodic systems, ie. crystals, by extendin% Konkoli and
Cremer’s local vibrational mode theory'®™" which was
originally proposed to describe vibrations in isolated molecular
systems. This important extension allows for the quantification
of the strength of chemical bonds as well as noncovalent
interactions in systems of different periodic dimensions (1D,
2D, or 3D) as it has been extensively applied to evaluate the
intrinsic bond strength of different kinds of chemical bonding
covering7 both covalent bonds”*'>'® and noncovalent inter-
actions' ' ~*%?*?% in isolated (0D) molecular systems.

For the seven showcase systems with 1D, 2D, and 3D
periodicity, we demonstrated how the local mode force
constants k; can be used to quantify the intrinsic bond
strength of bonds in these systems. We further elucidated how
the local mode force constant k; of a chemical bond in a
periodic system can be directly compared with the k; of the
same type of bond in a molecular system or another periodic
system to gain deeper chemical insights.

The extended local vibrational mode theory for periodic
systems clearly outperforms other analysis tools for periodic
systems in the following aspects:

e The intrinsic bond strength characterized by local
vibrational modes in periodic systems can be legitimately
compared with chemical bonding in molecular systems;

e The local mode force constant k derived from the
Hessian matrix (second-order derivatives of the energy
with respect to Cartesian coordinates) is a suitable and
sensitive intrinsic bond strength measure in solids;

e The calculation of local mode force constants kj in
periodic systems only requires the optimized lattice
structure of the system and its Hessian matrix for the
primitive cell. While most first-principle DFT codes
based on plane waves (PW)"' 1% and some atomic
orbital (AO)-based packages®”’*''* provide analytical
gradients, the Hessian matrix can be calculated in a
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numerical differentiation approach with sufficient
accuracy for obtainin% local mode force constant kj.
The VASP program''"""*~""7 supports the calculation
of analytical Hessians with density-functional perturba-
tion theory (DFPT)."'® Unlike other analysis tools
based on electronic wave functions’ ~>>** or electron
density,>*” the calculation of local mode force constant
kj is independent from how the wave functions are
obtained using either plane waves or atomic orbitals.
This makes the local vibrational mode theory generally
applicable across different first principle calculation
packages. The pairing of local vibrational mode theory
with other analysis tools, e.g. periodic NBO,** is
expected to give even more abundant information on
chemical bonding.

In this study, we applied the extended local vibrational mode
theory to five molecular crystals and two covalent crystals.
Work is in progress (i) to disclose the bonding properties of
metallic and ionic crystals and (ii) to develop a new protocol
for the analysis of solid-state IR or Raman spectra, i.e. normal
mode decomposition into local mode contributions and the
relation of normal modes to local modes with the help of an
adiabatic connection scheme, which has been successfully
applied to molecular systems.** With the emerging number of
experimental as well as theoretical studies on IR and Raman
spectra of crystalline materials,”®''”~'** this project is more
than timely.

The local vibrational mode theory can now be applied to gas
phase molecules and solids. If one is to extend the local
vibrational mode theory to liquids, a major challenge will be to
extract an effective Hessian matrix from the molecular
dynamics simulation trajectories for a relatively stable molecule
or cluster (without bond breaking/forming) within the whole
system. As a first step in this direction, vibrational frequencies
(i.e., the power spectrum) of liquids are already available via a
Fourier transform of the autocorrelation of the particle
velocities from simulation trajectories.'**~"*

A few points need to be taken care of as a caveat when
applying local vibrational mode theory in periodic systems to
describe bond strength. First, the atomic coordinates as well as
the primitive cell parameters should be optimized to reach a
local minimum on the potential energy surface. Second, local
mode force constants k; should be compared between two
bonds made up of the same atoms. If two bonds from two
different systems are going to be compared with respect to
their local mode force constants, these systems should be
modeled with the same level of theory for consistency. As we
need the primitive cell model for calculating local vibrational
modes, the sampling of the Brillouin zone is expected to be
sufficient. Additional test calculations with an increasing
number of k-points are recommended to make sure that the
local mode force constant ki, values are converged. For specific
programs, the basis set expansion cutoff,''" real-space cutoff,"*’
integral accuracy, or other parameters need to be scrutinized
beforehand.

This work introduces a new and unique theoretical tool for
characterizing the intrinsic bond strength in periodic systems
by extending Konkoli and Cremer’s local vibrational mode
theory originally proposed for isolated molecules. We expect
this contribution can provide a new useful tool for the
community of theoretical chemists as well as experimentalists.
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