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Abstract
Molecular acidity is an important physicochemical property, which is often represented by the pKa value as the measure
of acidity strength. However, the accurate calculation and prediction of pKa values is still an unsolved problem for
computational chemistry. In this work, we present for the first time a direct correlation between pKa values and local
vibrational frequencies for 15 different groups of compounds with various substituents. This correlation was derived from
a quadratic function of two selected local vibrational frequencies as independent variables used to characterize electronic
structure features influencing the molecular acidity. In total, 180 molecules were investigated with this correlation model.
For each group of molecules, we found a strong correlation with root mean squared errors and mean absolute errors of less
than 0.11 and 0.09 pKa units, respectively. The correlation between pKa and local vibrational modes, established in this
work, can be generally applied to all compounds whose pKa values are dominated by electronic substituent effects. In this
regard, the new correlation model constitutes a powerful link between the well-known Hammett equation and vibrational
spectroscopy. Furthermore, it allows a quick prediction of the pKa values for new group members with different substituents.
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Introduction

Molecular acidity, the ability or tendency of an acid to lose
a proton, is one of the most fundamental and important
physiochemical properties of a molecule, which is essential
in many chemical and biological processes [1–17]. Upon
dissociation, an acid releases a proton, making the solution
acidic. This processes is monitored by the equilibrium
constant Ka of the corresponding dissociation reaction. For
an acid HA, which dissociates into A− and H+, the negative
logarithm of Ka is the pKa of the corresponding acid with Ka

= [H+][A−]/[HA]. For a charged acid BH+ that dissociates
to B and H+, the pKa is the negative logarithm of Ka =
[B][H+]/[BH+].

Despite the numerous attempts reported in the litera-
ture [5, 18–36], the accurate prediction of pKa values by
computational means is still an unsolved problem. A com-
mon approach is to use a thermodynamic cycle to calculate
the pKa by utilizing the standard Gibbs free energy change
�G = 2.303 RT pKa [24, 37], applying wave function
or density functional theory (DFT) methodologies [18, 38].
This procedure may suffer from errors caused by (i) the
setup of the thermodynamic cycle and (ii) the way sol-
vent and proton hydration is treated [39, 40]. Continuum
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solvation models based on the quantum mechanical charge
density of a solute molecule interacting with a continuum
description of the solvent [41], introduced in 2009, are
frequently applied for the calculation of pKa values. Sev-
eral modifications to this approach were made [42–51],
allowing to estimate pKa values in same cases within an
accuracy of ca. 1 pKa unit. An alternative approach is based
on ab initio molecular dynamics (AIMD) simulations [52].
AIMD-based pKa calculations require the simulation of the
dissociation process. The challenge is to run the simulation
long enough to capture the final state of the dissociation
to be used for the prediction of the pKa value. Correlat-
ing experimentally determined pKa values with calculated
molecular properties has also attracted attention [53–61], as
it has been successful in special cases leading to a mean
absolute error (MAE) of less than 0.5 pKa units [1, 62].

The pKa value is influenced by several factors such as
solvent, configuration of the molecule, substituents, etc.
Pioneering work by Oszczapowicz and coworkers [62]
verified a Hammett-type correlation for a series of
substituted amidines, which was extended to substituted
benzoic acid by Huang, Liu, and coworkers [63] and
to the benzoxaborole pharmacophore by Benkovic and
coworkers [64], just to name a few examples. Overall,
substituent effects play an important role [65], as they
change the electronic structure of a molecule, even if
the substitution occurs at a distance from the dissociating
proton. Changing the electronic structure of a molecule
via a substituent, the stability of the conjugate base
is changed, and in this way the pKa value. We have
shown in recent work [66, 67] that the local vibrational
modes, introduced by Konkoli and Cremer [68], sensitively
reflect all electronic structure changes in a molecule upon

substitution. Therefore, we expect a correlation between the
local vibrational frequencies of the conjugate base and the
pKa value of a compound as sketched in Fig. 1.

The main objective of this work was to investigate
whether the electronic structure changes resulting from
different substituents are captured by some representative
local vibrational frequencies of the conjugate base, and if
so, a correlation between pKa values and local vibrational
frequencies exists. We tested this hypothesis for 15 different
groups of molecules with different substituents R, (180
molecules in total), shown in Fig. 2. We selected five
different pairs of representative local vibrational modes ω1

and ω2 illustrated in Fig. 3 and as described below. For each
group, the local vibrational frequencies ω1 and ω2 were
quadratically correlated to experimental pKa values.

The correlation model applied in this work is defined in
Eq. 1

pKa = c1×ω1+c2×ω2+c3×ω2
1+c4×ω2

2+c5×ω1ω2+c6

(1)

where ci, i ∈ {1, ..., 5, 6} are the correlation constants for
each group, which were linearly optimized with regard
to experimentally known pKa values. For any new group
member with a different substituent R, the corresponding
pKa can then be calculated via Eq. 1 as long as ω1 and ω2

are available.
The paper is arranged as follows. In Sect. 2 we describe

the computational methods used for the calculation of the
representative local mode frequencies ω1 and ω2 including
a short description of the local vibrational mode analysis.
In Sect. 3 we discuss the results for a total of 180

Fig. 1 Relationship between
pKa values and local vibrational
frequencies for a conjugate base
of an acid

HA                   H+ + A-

pKa   =   [H+][A-] / [HA]
or

BH+                  H+ + B
pKa   =   [B][H+] / [BH+]

The pKa depends on the stability 
of conjugate base A- or B

The stability of conjugate base A- or B  

Changing  R distorts the electronic 
structure  of conjugate base A- or B

Electronic structure changes are captured by 
the local vibrational frequencies 1 and 2 of 

conjugate base A- or B

Prediction of pKa values for similar 
molecules with different R via the local 

vibrational frequencies 1 and 2

pKa  =  f( 1, 2)
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Fig. 2 15 groups (A-O) of
molecules investigated in this
work, different substituents R
are defined in Table 1. The key
atoms that are involved in the
dissociation reaction and that
are used for the definition of the
representative local vibrational
frequency pairs p(ω1,ω2) are
shown in red
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different compounds belonging to one of the groups A-
O, summarized in Table 1. We evaluate the accuracy of
the calculated pKa values via the correlation Eq. 1 and
applying cross-validation and t test (see below) we analyze
the predictive nature of these correlations. In the last section,
we summarize our results and draw conclusions.

Computational details

Local vibrational modes

The basic equation of vibrational spectroscopy [69] is
defined as

fxL = ML� (2)

where fx is the force constant matrix expressed in Cartesian
coordinates.M is the mass matrix. The diagonal eigenvalue
matrix � contains Nvib vibrational eigenvalues 4π2c2ν2μ
(with μ = 1, ..., Nvib and Nvib = 3N − T R; TR = 6 for
nonlinear molecules and 5 for linear molecules) and TR zero
eigenvalues corresponding to translations and rotations of
the molecule. The harmonic vibrational frequencies νμ are
given in cm−1 and c is the speed of light. The (3N x 3N)
dimensional L matrix collects the Nvib normal vibrational
mode vectors Iμ and TR mode vectors corresponding to
translations and rotations.

Expressing Eq. 2 in internal coordinates q leads to the
Wilson GF formalism with [69, 70]:

FqD =G−1D� (3)

Fig. 3 Five different categories
I, II, III, IV, and V of
representative local vibrational
frequency pairs p(ω1,ω2) used in
this work
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Table 1 Substituent R, local vibrational frequencies ω1 and ω2 used in Eq. 1, experimental and predicted pKa values for all molecules of groups
A-O, (180 in total). Diff is the difference between the experimental and predicted pKa value

Group Substituent R ω1 (cm−1) ω2 (cm−1) pKa (Experimental) pKa (Predicted) Diff

Group A (category I)

A-1 H 1560 899 4.20 4.23 0.03

A-2 m-Br 1568 895 3.81 3.80 −0.01

A-3 m-CN 1571 896 3.60 3.59 −0.01

A-4 m-Cl 1567 896 3.84 3.81 −0.03

A-5 m-F 1566 897 3.86 3.90 0.04

A-6 m-Me 1560 899 4.25 4.27 0.02

A-7 m-NO2 1572 895 3.46 3.42 −0.04

A-8 m-OH 1563 898 4.08 4.09 0.01

A-9 m-OMe 1563 898 4.10 4.07 −0.03

A-10 p-Br 1565 898 3.96 3.94 −0.02

A-11 p-CN 1570 896 3.55 3.58 0.03

A-12 p-Cl 1565 898 4.00 3.99 −0.01

A-13 p-F 1562 899 4.15 4.15 0.00

A-14 p-Me 1559 899 4.37 4.39 0.02

A-15 p-NMe2 1555 899 4.98 4.99 0.01

A-16 p-NO2 1572 895 3.43 3.49 0.06

A-17 p-OH 1558 899 4.47 4.45 −0.02

A-18 p-OMe 1558 899 4.50 4.46 −0.04

Group B (category I)

B-1 H 1078 534 2.97 2.96 −0.02

B-2 m-Cl 1087 528 2.26 2.26 0.01

B-3 m-NO2 1084 516 1.67 1.67 0.00

B-4 p-Br 1083 530 2.51 2.44 −0.07

B-5 p-Cl 1082 532 2.51 2.58 0.07

B-6 p-Me 1078 536 3.12 3.13 0.01

B-7 p-NO2 1089 501 1.43 1.43 0.00

B-8 p-OMe 1078 543 3.84 3.83 −0.01

Group C (category II)

C-1 H 819 367 4.79 4.72 −0.07

C-2 m-Br 823 366 4.43 4.45 0.02

C-3 m-Cl 823 366 4.47 4.46 −0.01

C-4 m-F 821 360 4.34 4.30 −0.04

C-5 m-Me 818 367 4.80 4.81 0.01

C-6 m-NO2 827 357 4.07 4.03 −0.04

C-7 m-OMe 819 361 4.65 4.68 0.03

C-8 p-Br 821 366 4.50 4.48 −0.02

C-9 p-Cl 820 367 4.48 4.51 0.03

C-10 p-F 819 369 4.50 4.47 −0.03

C-11 p-Me 818 368 4.88 4.85 −0.03

C-12 p-NO2 824 359 4.00 4.07 0.07

C-13 p-OMe 817 369 4.65 4.73 0.08

Group D (category II)

D-1 ArCH2CH2 1571 616 4.66 4.66 0.00

D-2 CH3 1568 512 4.76 4.74 −0.02

D-3 C2H5 1569 550 4.87 4.84 −0.03

D-4 HC≡CCH2 1591 530 3.32 3.32 0.00

D-5 iPr 1566 595 4.86 4.94 0.08
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Table 1 (continued)

Group Substituent R ω1 (cm−1) ω2 (cm−1) pKa (Experimental) pKa (Predicted) Diff

D-6 n-C4H9 1570 565 4.84 4.84 0.00

D-7 n-C5H11 1570 436 4.88 4.87 −0.01

D-8 n-C6H13 1570 440 4.89 4.91 0.02

D-9 n-C9H19 1570 549 4.89 4.85 −0.04

D-10 n-Pr 1569 546 4.76 4.84 0.08

D-11 tBu 1565 602 5.05 4.99 −0.06

Group E (category III)

E-1 H 1535 731 9.98 10.02 0.04

E-2 m-Br 1556 724 9.03 8.99 −0.04

E-3 m-CH3 1536 730 10.08 9.97 −0.11

E-4 m-CN 1558 721 8.61 8.74 0.13

E-5 m-Cl 1553 727 9.02 9.16 0.14

E-6 m-F 1548 734 9.28 9.31 0.03

E-7 m-NH2 1537 735 9.87 9.84 −0.03

E-8 m-NO2 1559 716 8.40 8.32 −0.08

E-9 m-OCH3 1542 733 9.65 9.64 −0.01

E-10 m-OH 1544 732 9.44 9.57 0.13

E-11 p-Br 1550 726 9.36 9.27 −0.09

E-12 p-CH3 1531 727 10.14 10.11 −0.03

E-13 p-CN 1583 729 7.95 7.81 −0.14

E-14 p-Cl 1546 726 9.38 9.45 0.07

E-15 p-F 1526 724 9.95 10.15 0.20

E-16 p-NH2 1531 726 10.30 10.05 −0.25

E-17 p-NO2 1599 726 7.15 7.21 0.06

E-18 p-OCH3 1519 720 10.21 10.07 −0.14

E-19 p-OH 1514 718 9.96 10.07 0.11

Group F (category V)

F-1 H 1572 1188 8.03 8.09 0.06

F-2 m-Br 1562 1193 6.81 6.77 −0.04

F-3 m-CH3 1574 1187 8.24 8.21 −0.03

F-4 m-Cl 1563 1192 7.01 6.97 −0.04

F-5 m-NO2 1553 1196 5.86 5.88 0.02

F-6 m-OCH3 1571 1187 7.91 7.86 −0.05

F-7 m-OC2H5 1573 1187 7.93 8.11 0.18

F-8 p-Br 1566 1192 7.20 7.27 0.07

F-9 p-CH3 1573 1188 8.43 8.28 −0.15

F-10 p-Cl 1567 1193 7.19 7.24 0.05

F-11 p-I 1566 1193 7.17 7.11 −0.06

F-12 p-NO2 1550 1199 5.18 5.18 0.00

F-13 p-OCH3 1575 1187 8.62 8.56 −0.06

F-14 p-OC2H5 1576 1186 8.63 8.67 0.04

Group G (category V)

G-1 H 1579 1192 8.30 8.19 −0.11

G-2 m-Br 1571 1197 7.13 7.13 0.00

G-3 m-CH3 1581 1190 8.38 8.44 0.06

G-4 m-Cl 1572 1197 7.15 7.21 0.06

G-5 m-NO2 1559 1202 6.06 6.05 −0.01

G-6 m-OCH3 1579 1192 8.13 8.17 0.04
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Table 1 (continued)

Group Substituent R ω1 (cm−1) ω2 (cm−1) pKa (Experimental) pKa (Predicted) Diff

G-7 m-OC2H5 1580 1192 8.16 8.29 0.13

G-8 p-Br 1575 1198 7.43 7.46 0.03

G-9 p-CH3 1580 1190 8.44 8.36 −0.08

G-10 p-Cl 1575 1197 7.55 7.48 −0.07

G-11 p-I 1574 1198 7.36 7.33 −0.03

G-12 p-NO2 1564 1205 5.65 5.66 0.01

G-13 p-OCH3 1579 1186 8.94 9.00 0.06

G-14 p-OC2H5 1580 1187 8.89 8.80 −0.09

Group H (category V)

H-1 H 1578 1187 8.32 8.36 0.04

H-2 m-Br 1568 1194 7.19 7.19 0.00

H-3 m-CH3 1579 1185 8.41 8.56 0.15

H-4 m-Cl 1569 1193 7.25 7.26 0.01

H-5 m-OCH3 1577 1188 8.22 8.13 −0.09

H-6 m-OC2H5 1578 1188 8.26 8.31 0.05

H-7 p-Br 1572 1192 7.55 7.54 −0.01

H-8 p-CH3 1580 1186 8.65 8.53 −0.12

H-9 p-Cl 1573 1192 7.65 7.66 0.01

H-10 p-NO2 1558 1203 5.69 5.69 0.00

H-11 p-OCH3 1580 1183 8.96 8.91 −0.05

H-12 p-OC2H5 1581 1183 8.90 8.91 0.01

Group I (category IV)

I-1 H 1535 567 11.52 11.55 0.03

I-2 m-CH3 1535 564 11.74 11.71 −0.03

I-3 m-Cl 1520 564 10.55 10.52 −0.03

I-4 m-OCH3 1531 564 11.44 11.47 0.03

I-5 m-OC2H5 1537 558 11.38 11.38 0.00

I-6 p-CH3 1538 565 11.94 11.85 −0.09

I-7 p-Cl 1526 564 10.98 11.04 0.06

I-8 p-OCH3 1544 570 12.16 12.16 0.00

I-9 p-OC2H5 1543 565 12.08 12.13 0.05

Group J (category IV)

J-1 H 1620 524 7.45 7.31 −0.14

J-2 m-Br 1614 518 6.45 6.42 −0.03

J-3 m-CH3 1621 528 7.63 7.65 0.02

J-4 m-Cl 1615 521 6.50 6.62 0.12

J-5 m-OCH3 1621 523 7.45 7.51 0.06

J-6 m-OC2H5 1605 600 7.45 7.47 0.02

J-7 p-Br 1614 523 6.69 6.61 −0.08

J-8 p-CH3 1608 598 7.75 7.73 −0.02

J-9 p-Cl 1615 526 6.84 6.88 0.04

J-10 p-NO2 1584 590 5.25 5.25 0.00

J-11 p-OCH3 1621 539 7.91 7.95 0.04

J-12 p-OC2H5 1620 538 7.83 7.78 −0.05

Group K (category IV)

K-1 H 1601 595 8.69 8.60 −0.09

K-2 m-Br 1590 600 7.70 7.70 0.00

K-3 m-CH3 1602 596 8.74 8.83 0.09
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Table 1 (continued)

Group Substituent R ω1 (cm−1) ω2 (cm−1) pKa (Experimental) pKa (Predicted) Diff

K-4 m-Cl 1592 594 7.83 7.84 0.01

K-5 m-OCH3 1599 598 8.47 8.52 0.05

K-6 p-Br 1593 597 7.95 7.95 0.00

K-7 p-CH3 1603 601 9.10 9.10 0.00

K-8 p-Cl 1595 599 8.09 8.06 −0.03

K-9 p-OCH3 1604 597 9.38 9.34 −0.04

K-10 p-OC2H5 1606 592 9.10 9.11 0.01

Group L (category V)

L-1 H 1600 1194 9.31 9.41 0.10

L-2 m-Br 1593 1200 8.46 8.40 −0.06

L-3 m-CH3 1601 1193 9.53 9.56 0.03

L-4 m-Cl 1593 1201 8.52 8.59 0.07

L-5 m-OCH3 1599 1192 9.22 9.22 0.00

L-6 p-Br 1594 1201 8.75 8.76 0.01

L-7 p-CH3 1602 1193 9.75 9.61 −0.14

L-8 p-Cl 1595 1200 8.85 8.82 −0.03

L-9 p-OCH3 1605 1191 9.97 9.98 0.01

L-10 p-OC2H5 1605 1192 9.70 9.71 0.01

Group M (category V)

M-1 H 1564 1189 7.45 7.51 0.06

M-2 m-Br 1552 1195 6.38 6.38 0.00

M-3 m-CH3 1564 1187 7.72 7.66 −0.06

M-4 m-Cl 1554 1195 6.45 6.46 0.01

M-5 m-OCH3 1563 1189 7.35 7.43 0.08

M-6 m-OC2H5 1564 1189 7.58 7.56 −0.02

M-7 p-Br 1557 1195 6.65 6.67 0.02

M-8 p-CH3 1565 1187 7.90 7.83 −0.07

M-9 p-Cl 1558 1194 6.77 6.73 −0.04

M-10 p-OCH3 1567 1185 8.19 8.21 0.02

M-11 p-OC2H5 1567 1185 8.17 8.19 0.02

Group N (category V)

N-1 H 1593 1187 14.65 14.56 −0.09

N-2 m-Br 1596 1186 13.81 13.85 0.04

N-3 m-NO2 1596 1186 13.38 13.37 −0.01

N-4 p-Br 1594 1187 14.05 14.10 0.05

N-5 p-CH3 1591 1187 14.92 14.96 0.04

N-6 p-NO2 1596 1185 13.19 13.17 −0.02

N-7 p-OCH3 1588 1188 15.27 15.27 0.00

Group O (category V)

O-1 H 1594 1173 6.15 6.16 0.01

O-2 m-Br 1591 1178 5.25 5.26 0.01

O-3 m-CH3 1596 1171 6.36 6.51 0.15

O-4 m-Cl 1591 1178 5.23 5.28 0.05

O-5 m-NO2 1589 1184 4.24 4.29 0.05

O-6 m-OCH3 1598 1173 6.04 6.01 −0.03

O-7 p-Br 1590 1178 5.42 5.38 −0.04

O-8 p-CH3 1595 1172 6.52 6.39 −0.13
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Table 1 (continued)

Group Substituent R ω1 (cm−1) ω2 (cm−1) pKa (Experimental) pKa (Predicted) Diff

O-9 p-Cl 1590 1178 5.46 5.46 0.00

O-10 p-F 1591 1174 5.90 6.08 0.18

O-11 p-I 1590 1179 5.43 5.26 −0.17

O-12 p-OCH3 1593 1170 6.78 6.70 −0.08

where

G =BM−1B† (4)

Fq is the force constant matrix expressed in terms of
internal coordinates q. Each normal mode vector dμ

represents a column vector of the (NvibxNvib) dimensional
D matrix, which is defined as the product BL. The
rectangular (Nvibx3N) dimensional B matrix contains the
first derivatives of the internal coordinates with regard to
the Cartesian coordinates, thus connecting both coordinate
systems, and the (NvibxNvib) dimensional matrix G is the
Wilson G matrix. [69, 70].

The normal mode frequencies νμ are coupled caused by
electronic coupling (off-diagonal elements of the Fq matrix,
which can be eliminated via the Wilson GF formalism) and
mass-coupling (caused by the off-diagonal elements of the
Wilson G matrix) [69, 70]. However, for our correlation,
we need local vibrational modes focusing on the influence
of the substituent R on the electronic structure of the
conjugated base. Konkoli and Cremer [68] solved this
problem by introducing the concept of local vibrational
modes. They solved the mass-decoupled Euler–Lagrange
equation by setting all the atomic masses to zero except
those of the molecular fragment (e.g., bond, angle, or
dihedral, etc.) carrying out a localized vibration. As shown
in their original work, the change in the local displacement
of a specific internal coordinate is equivalent to an adiabatic
relaxation of the molecule [68]. For any molecular fragment
associated with an internal coordinate qn, the corresponding
local mode vector an is given by

an = K−1d†n
dnK−1d†n

(5)

where dn contrary to dμ is a row vector of matrix D. Matrix
K is the diagonal matrix of force constants kQ, expressed in
normal coordinates Qμ with

FQ = K = L†fxL (6)

resulting from the Wilson GF formalism shown in Eqs. 3
and 4.

The local mode force constant ka
n corresponding to local

mode an is obtained by

ka
n = a†nKan (7)

The local vibrational frequency ωa
n corresponding to local

mode an is obtained by

(ωa
n)2 = 1

4π2c2
ka
nGnn (8)

in which Gnn is a diagonal element of the Wilson G-matrix
and corresponds to the reduced mass of the local mode
an [68].

Local vibrational modes have successfully been applied
to quantify weak chemical interactions such as hydrogen
bonding [71–76], halogen bonding [77–79], pnicogen
bonding [80–82], chalcogen bonding [83] and tetrel
bonding [84], and to derive new chemical descriptors such
as a new aromaticity index [85–87] or a generalized Tolman
electronic parameter [88–90], as well as for the derivation
of a generalized Badger Rule [91] and several others new
concepts [91–97].

Geometry optimizations and normal mode calculations
for all molecules investigated in this work were performed
in the gas phase with the ωB97XD density functional [98]
using the Gaussian 16 quantum chemistry program [99,
100]. For members of groups B, D, E, F, G, H, I, J, K, L ,M,
N, and O (see Fig. 2) Dunning’s cc-pVTZ basis set [101–
103] was applied, while for members of group A and C (see
Fig. 2) Pople’s 6-31++G(d,p) basis set [104–106] turned
out to be the best choice. Experimental pKa values were
taken from ref [1, 62]. There are no reliable experimental
pKa values for sulphinic acid available. Therefore, we
used computed pKa values instead [107]. The local mode
analysis was performed with the COLOGNE2017 program
package [108].

Results and discussion

Correlation of pKa and local vibrational frequencies

Vibrational frequencies are second-order response proper-
ties [109] and therefore they are sensitive to any changes in
the electronic structure of a molecule. First it was impor-
tant to determine the local vibrational modes that best
reflect the influence of the substituent R on the dissocia-
tion reaction for each molecule investigated in this work.
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Depending on the molecule, there exist two or three vibra-
tional modes near the dissociating proton that will dominate
the pKa value. As there are some redundancies between
stretching, bending, and pyramidalization modes at a spe-
cific molecular site with regard to the electronic structure
change during the vibration, one has to remove either one
in order to obtain a robust model. Testing 3C2 = 3 dif-
ferent combinations, we identified the set of parameters
that performs best and leads to the desired model. This led
to the five different categories of local vibrational mode
pairs p(ω1,ω2) shown in Fig. 3 used in this study. For cat-
egory I molecules, a pair of local bending and stretching
vibrations turned out to be most sensitive; for category II
and category III molecules, a pair of local pyramidaliza-
tion and stretching vibrations; for category IV molecules, a
pair of local bending and stretching vibrations, and for cat-
egory V molecules, two local stretching vibrations. The two
local stretching vibrations for category I and II molecules
were averaged. Only one of the substituent (R or R’ or
R” or R”’) was changed at a time. The 15 groups A-O of
molecules used for the correlation comprise the conjugate
bases of (A) benzoic acid; (B) benzene sulphinic acid; (C)
benzeneselenic acids; (D) alkyl carboxylic acids; (E) phe-
nols; (F) protonated N1,N1-dimethyltertiarybutylamidine;
(G) protonated N1,N1-dimethylethylamidine; (H) proto-
nated N1,N1-dimethylethylamine; (I) protonated N2,-alkyl-
tetramethylguanidine; (J) protonated N1,N1-dimethyl-
formamidine; (K) protonated N1,N1-(pentamethylene-1,5)-
formamidine; (L) protonated N1,N1-(butamethylene-1,4)-
formamidine; (M) protonated N1,N1-(pentamethylene-1,5)-
benzamidine; (N) protonated N,N’-diphenyl-benzamidine;
(O) protonated N,N’-diphenyl-benzamidine, shown in
Fig. 2.

In the following, the results of our investigation are
discussed for each individual group, referring to the data
in Table 1, which includes for each individual compound
the substituent R, the local vibrational mode frequencies
ω1 and ω2 used in Eq. 1, experimental pKa and predicted
pKa values, as well as the difference DIFF between
experimental and predicted pKa values. The correlation
protocol for groups A-O is presented in Table 2 including
for each group the number of molecules, the root mean
square error (RMSE), the mean average error (MAE), the
mean average derivation (MAD), and the R2 value, as a
statistical measure of how close the data are to the fitted
regression line.

Group A consists of 18 different compounds, which
all fall into the category I of local mode frequency
pairs p(ω1,ω2), as shown in Table 1. The substituents
vary from electron donating groups (EDG) to electron
withdrawing groups (EWG), which accordingly change
the electronic structure of the parent compound (R = H)
over a wide range, as such influencing the pKa value by

stabilizing/destabilizing the corresponding conjugate base.
We obtained a strong correlation with R2 greater than 0.99
and a MAE of 0.025 pKa units for this group, reflecting the
fact that the pKa values of group Amolecules are dominated
by substituent effects. It has to be noted that the error of the
experimental data is as high as ±0.09 pKa units as reported
in ref [1], which may amplify the predicted error due to
quadratic fitting (QFE). Group B consists of eight different
compounds and shows a MAD of 0.578. Despite this large
MAD value, we observed a strong correlation with R2 of
1.0 and a MAE of 0.02. A similarly strong correlation was
found for group C and group Dmolecules, again reflecting
that the pKa values of these groups members are dominated
by substituent effects. Group E shows the two largest
deviations between calculated and experimental pKa values
of all molecules investigated in this work, namely for R =
p-F and R = p-NH2. Apart from the QFE, another reason
for these deviations might be the model chemistry used.
The optimal level of theory and basis set for each molecule
varies according to the type of substituent R involved. We
tested different levels of theory and basis sets, which led to
somewhat different outliers, (see supporting information for
a detailed report).

Group F, G and H members are characterized by a
substituent R” at the C atom of the C=N bond with a
decreasing number of C atoms, e.g., group F: -C(CH3)3,
group G: -C2H5 and group H -CH3, respectively. The
number of carbon atoms in R” determine changes in the
electronic structure caused by inductive effects, which
is reflected by the local C=N double bond stretching
frequency. Largest inductive effects were found for groupG
and group Fmolecules, in particular for molecules G-7 and
F-7, substituent m-OC2H5, the outliers of these groups. In
group F also the -CH3 functional group F-9 led to an outlier,
caused by an increased resonance effect, which we also
found for molecule H-8 of Group H. Group I molecules
show a similar deviations as found for group H members,
due to resonance effects. Group J and group K show the
largest outliers for the parent compound (R = H), molecules
J-1 and K-1, respectively. As all other substituents in these
two groups are either strong EDG or EWG functional
groups, R = H deviates from the general group pattern. In
Group L and group M the p-CH3 functional group leads
again to the largest outliers. Due to hyperconjugation, the
p-CH3 substituent increases the electron density at the para
position, and in this way strongly influences the electronic
structure. Group O has several outliers. Nevertheless, we
observe a strong correlation with R2 of almost 0.98. The
outliers in this group can be attributed to both the QFE and
the model chemistry used.

The electronic structure is affected by resonance,
inductive effects or by hyperconjugation. It is remarkable
to see that even changes in substituents at distance from
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Table 2 Correlation protocol for each group A-O

Group Number of molecules RMSEa MAEb MADc R2 d

Group A 18 0.028 0.025 0.311 0.995

Group B 8 0.035 0.022 0.578 0.998

Group C 13 0.044 0.038 0.192 0.970

Group D 11 0.041 0.031 0.261 0.991

Group E 19 0.114 0.096 0.637 0.981

Group F 14 0.077 0.060 0.812 0.994

Group G 12 0.067 0.056 0.779 0.995

Group H 12 0.066 0.045 0.712 0.994

Group I 9 0.043 0.035 0.398 0.992

Group J 12 0.065 0.052 0.628 0.992

Group K 10 0.047 0.033 0.497 0.993

Group L 10 0.062 0.046 0.449 0.985

Group M 11 0.043 0.036 0.557 0.995

Group N 7 0.044 0.035 0.656 0.996

Group O 12 0.098 0.075 0.560 0.979

bMAE = 1
n

∑ |ye
j − y

p
j |, aRMSE =

√
1
n

∑
(ye

j − y
p
j )2, cMAD = 1

n

∑ |ye
j − ȳj

e| y equals the pKa; superscript e denotes experimental, p

predicted; ȳj
e is the mean of the experimental pKa values, j equals the number of molecules in a group.

dR2 is the statistical measure for how close the data points are to the fitted regression line

the protonation center can be captured by the two local
vibrational reference frequencies ω1, and ω2 involving
the protonation center. It is also noteworthy that although
all predicted pKa values were derived from gas phase
calculations, while the experimental pKa values were
measured in solution, the local vibrational modes calculated
in the gas phase capture already the important electronic
structure changes influencing the pKa values. This allows
for a quick check of the pKa values for new group members
with different substituents R.

General trends

As reflected by the data in Table 2, each group shows a very
strong correlation with an R2 value greater than 0.97 and
a MAE of less than 0.09. By inspection of the correlation
constants in Eq. 1 (see supporting information for further
details), one can easily see that there is however no
relation between the different groups, and hence an overall
correlation is not meaningful. For each particular group, the
changes of the electronic structure upon substitution leading
to a change in the molecular acidity are dominated by the
substituent. Since the local vibrational modes can capture
the sensitive changes in the electronic structure of conjugate
base, we obtain a significant correlation between pKa values
and local vibrations. Figure 4 shows the predicted and
experimental pKa values. The results for MAE, RMSE,
and R2, which are 0.05, 0.07, and 0.999, respectively,
confirm our hypothesis that there exists a strong correlation

between pKa and local vibrational frequencies. In order
to check if this correlation results predominantly from
an electronic effect, we also correlated local mode force
constants (Eq. 7) with experimental pKa values, because the
local mode force constants are free from any mass effects.
We observed similar results as for the local vibrational
frequencies, (detailed information can be found in the
supporting information).

Validation of the correlation

In order to test the predictive power of our new corre-
lation model, we performed a k-fold cross-validation for
molecules similar to group E members, including 33 com-
pounds of singly and doubly substituted benzenes, (shown
in the supporting information). Cross-validation is a reli-
able means to check the efficiency of predicting models.
In a k-fold cross-validation, data is randomly distributed to
k splits as shown in Fig. 5. A model is then trained for
k-1 splits and tested for the left out split. Any extra data
point(s) is randomly assigned to one of the splits. This is
repeated k times and the final error (MAE or RMSE) is
averaged to get k-fold cross-validation error. We performed
a four-fold cross-validation for this group and obtained a
cross-validationMAE of 0.05, which equals the actual MAE
for this group. This proves that our model is predictive
in nature and can be used to predict pKa values for any
new group member with a different substituent R for any
group of molecules, provided we have access to sufficient
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Fig. 4 Correlation between
experimental and predicted pKa
values
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experimental pKa values and the representative local mode
pairs p(ω1,ω2) for a variety of substituted molecules of this
group, so that Eq. 1 can be solved.

The t test is a measure of statistical significance between
two different data distributions, which can be computed as

tvalue = x̄1 − x̄2
√

s21
n1

+ s22
n2

(9)

where, x̄, s and n are mean, standard deviation and variance
of the data. Subscript 1 and 2 denotes the first data set and
the second data set, respectively.

We calculated tvalue for all pairs of coefficients (Group X
coefficients (data set 1) with Group Y coefficients (data set
2), where X, Y ∈ [A, B...O]). The degrees of freedom can
be calculated as

df = l1 + l2 − 2 (10)

where, l1, l2 are the number of data points in data set 1 and
data set 2, respectively. With the degrees of freedom of 10
(6+6-2) and 95% confidence, we keep the null hypothesis
(the coefficients are statistically similar) if the tvalue is less
than 2.228 (two tailed t-distribution table). The maximum
tvalue was 1.5465, which confirms the null hypothesis, i.e.,

Fig. 5 k-fold cross-validation. E is the error in each iterations
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there is no statistically significant difference between each
of the two models.

Conclusions and outlook

Our investigation shows that the changes in electronic
structure caused by different substituent R are captured by
local vibrational frequencies related to the conjugate base.
We verified that there exists a relationship between the
local vibrational modes and the pKa of a molecule provided
substituent effects play the major role in determining
the pKa value. Fifteen different groups of molecules
with various substituents (a total of 180 molecules) were
investigated and showed strong correlations. The slopes
and intercepts obtained in the correlation model were
different for each group, which reflects that pKa values are
system dependent. However, within a group, the system
dependency of pKa value is removed and we can predict
the pKa value of any new group members with different
substituents R.

Using cross-validation and t test, we showed that our
model is predictive in nature and offers a lot of potential
for the pKa prediction for other groups of molecules, which
is currently under investigation, including the following
two examples. (i) Huge efforts are devoted to capture
CO and CO2 and to store these gases in an efficient
manner [110–112]. Amine solutions play an important role
in this regard [113–115]. The pKa values of these amines
are important indicators for their adsorption efficiency [116,
117]. A wide range of pKa values have been collected for
amine species [61, 117–120], therefore we can apply our
correlation model to estimate the pKa values of novel amine
substituted amines with a potentially higher adsorption
efficiency. (ii) The ionic form of a weak acid/base
varies across a range of pH values. This is important
in physiological systems, in which the ionization state
affects the rate of diffusion across membranes. The pKa

influences permeability, protein binding, solubility, etc.,
which in turn affects absorption, metabolism, excretion,
etc., of potential drug candidates [121–126]. Due to this
connection, the pKa plays an important role in engineering
optimal pharmacokinetic characteristics. A large number
of drug candidates have already been studied [121, 122]
leading to a wealth of experimental pKa values, serving as
the basis for our correlation model.

In summary, our new correlation model constitutes a
powerful link between the well-known Hammett equation
and vibrational spectroscopy. From a practical perspective,
one needs only to calculate the local vibrational modes
in the gas phase. The correlation with experimental pKa

values removes the system dependency and leads to an
equation that allows a quick check of the pKa value of

a new compound with a different substituent R, avoiding
any extensive pKa calculation. This makes our approach
the perfect tool for the engineering of compounds with a
specific molecular acidity regulated by substituent effects.
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