
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Calculation of contact densities and Mössbauer
isomer shifts utilising the Dirac-exact two-
component normalised elimination of the small
component (2c-NESC) method

Terutaka Yoshizawa, Michael Filatov, Dieter Cremer & Wenli Zou

To cite this article: Terutaka Yoshizawa, Michael Filatov, Dieter Cremer & Wenli Zou (2019)
Calculation of contact densities and Mössbauer isomer shifts utilising the Dirac-exact two-
component normalised elimination of the small component (2c-NESC) method, Molecular Physics,
117:9-12, 1164-1171, DOI: 10.1080/00268976.2018.1530463

To link to this article:  https://doi.org/10.1080/00268976.2018.1530463

Published online: 05 Oct 2018.

Submit your article to this journal 

Article views: 61

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2018.1530463
https://doi.org/10.1080/00268976.2018.1530463
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1530463&domain=pdf&date_stamp=2018-10-05
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1530463&domain=pdf&date_stamp=2018-10-05


MOLECULAR PHYSICS
2019, VOL. 117, NOS. 9–12, 1164–1171
https://doi.org/10.1080/00268976.2018.1530463

DIETER CREMER MEMORIAL

Calculation of contact densities and Mössbauer isomer shifts utilising the
Dirac-exact two-component normalised elimination of the small component
(2c-NESC) method

Terutaka Yoshizawaa,b, Michael Filatova,c, Dieter Cremera and Wenli Zou a,d

aDepartment of Chemistry, Southern Methodist University, Dallas, Texas, USA; bDepartment of Chemistry and Biochemistry, Graduate School of
Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan; cDepartment of Chemistry, Kyungpook National University, Daegu,
South Korea; dInstitute of Modern Physics, Northwest University, Xi’an, Shaanxi, People’s Republic of China

ABSTRACT
Utilizing the analytic derivative formalism for the Mössbauer isomer shift in connection with the
Dirac-exact two-component Normalized Elimination of the Small Component (2c-NESC) method a
new approach to the analytic calculation of the contact densities at the nuclei has been developed
and implemented in the general purpose NESC programme. The new approach is applied to the cal-
culation of the contact densities as well as contact density differences in several iodine-, gold-, and
mercury-containing molecules. Substantial differences between the contact densities obtained by
the spin-free 1c-NESC method and the 2c-NESC method are found, which demonstrate the impor-
tance of spin-orbit coupling. However, the influence of spin-orbit coupling on the contact density
differences between the sample and the reference nuclei is found to bemodest. This result suggests
that a low-cost determination of accurate contact densities at the nuclei can be achieved by combin-
ing the 1c-NESC densities obtained at the correlated wavefunction level of theory with the contact
density differences obtained at the 2c-NESC/DFT level.
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1. Introduction

The contact density is a property which is determined by
the electronic wavefunction in the vicinity of the nucleus
(also called the electronic density at a nuclear position) and
is highly sensitive to relativistic effects primarily caused
by the mass-velocity and spin-orbit coupling (SOC)
terms. Although the absolute value of the contact den-
sity is defined by the core electrons closest to the nucleus,
its tiny variations due to the changes in the valence elec-
tronic shells are amplified through the magnitude of the
electron-nucleus contact interactions; thus making it a
very sensitive probe of the valence electronic structure.
For example, the contact spin-density defines the leading-
order relativistic contributions to the nuclear magnetic
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shielding constants or the nuclear spin-spin coupling
constants through the Fermi contact magnetic interac-
tions [1]. The total (spinless) contact density defines a
shift of the energy of the nuclear γ -transition, the so-
called isomer shift, inMössbauer spectroscopy [2]. There
are various manifestations of the electrostatic interaction
between isotopic nuclei and the contact density, e.g. the
‘anomalous mass effect’ in chemical reactions of heavy
elements [3].

Perhaps the most sensitive method of determining the
contact density variations isMössbauer spectroscopy [2],
where the shift of the nuclear γ -transition, measured in
the units of velocity needed to reach resonance between
the target (A) and the reference (R) nuclei, is assumed to
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depend linearly on the respective effective densities ρeff
A

and ρeff
R , i.e.

�IS = α
(
ρeff
A − ρeff

R

)
(1)

where �IS is the isomer shift and α is a nuclear cali-
bration constant [4]. The calibration constant is typically
determined by a linear regression of the theoretically cal-
culated (effective) contact densities vs. the experimentally
measured isomer shifts (cf. Ref. [5,6] and references cited
therein). The effective densities ρeff

A and ρeff
R are often

replaced by contact densities ρ̄A and ρ̄R, respectively,
which in principle may be calculated analytically (see
below). It has been found that the replacementmay intro-
duce a systematic overestimation to�IS (being about 10%
for some compounds ofHg [7], Pb [8], and Tl [8]) but can
be incorporated into the prefactor α.

As the isomer shift ofMössbauer spectroscopy is a sen-
sitive probe of the chemical environment of the resonat-
ing nucleus, the theoretical determination of the contact
densities and the (element dependent) calibration con-
stants is of the utmost importance for obtaining detailed
information on the electronic structure of inorganic and
biological compounds [5,6,9–14]. The elements which
can be measured by Mössbauer spectroscopy include
iron (57Fe), tin (119Sn), zinc (67Zn), gold (197Au), mer-
cury (199,201Hg), and many rare earth elements such
as 151Eu; altogether more than 40 different transition
elements.

As the contact densities are dominated by the deep
core electrons (1s shell), relativistic effects need to be
taken into account, even for relatively light atoms, such
as iron 57Fe [15,16]. It is also essential to incorporate
electron correlation effects into the calculation of the
contact density [7,17–19]. The two requirements can be
the most elegantly achieved with the use of the analytic
derivative formalism [5,20] where the contact density is
represented in terms of the derivative of the electronic
energy with respect to the nuclear charge radius. The ini-
tial application of this formalism to compounds of Fe,
Sn, and Hg [7,15–17,20,21] proved its accuracy and effi-
ciency; which were improved by the development of fully
analytic computation of the derivatives [19].

In 1997 Dyall [22] derived the normalised elimina-
tion of the small component (NESC)Hamiltonian, which
triggered development of eXact 2-Component (X2C)
[23–27] and Infinite Order Two-Component (IOTC)
Hamiltonians [28] in the following decades. Compared
to the previous approximate quasi-relativistic Hamilto-
nians, e.g. ZORA [29], IORA [30], or DKH [31,32], the
X2C and IOTC Hamiltonians are exact for one-electron
systems, e.g. H-like atomic ions [33], and are free of pic-
ture change errors (PCE) except the two-electron (2e)

PCE [27]; this prompted the use of the ‘Dirac-exact’ pre-
fix in connection with these methods [33,34] instead
of a zoo of peculiar acronyms, see e.g. in Ref. [35].
The Dirac-exact NESC formalism (denoted later on as
NESC, for simplicity) is distinguished from a variety
of alternative Hamiltonians by its conceptual simplic-
ity, which enabled derivation and implementation of
the analytic derivatives formalism for the calculation of
analytic gradients [36,37], vibrational frequencies and
IR intensities [38,39], and other atomic and molecular
properties [40], such as the contact densities and hyper-
fine structure constants [19,41,42], electric field gradi-
ents [43], electric dipole moments and polarisabilities
[44], nuclear magnetic shielding constants [45], and so
on. Some of the properties, e.g. the electric response
properties and the nuclear magnetic shieldings are avail-
able at both the spin-free (sf; or one-component, 1c)
NESC level and the two-component (2c) NESC level
[46] (Note that there is a typo in the screening fac-
tors of mSNSO: Q(p) = 2.34 Erf (34500/αp) should be
Q(p) = 2.34 Erf [(34500/αp)

2]); others only at the 1c-
NESC level. In addition, the analytic derivatives of X2C
(in either the 1c or 2c formalism) have also been devel-
oped in other groups [47–50], mainly by Cheng and
Gauss. Although the NESC Hamiltonian is equivalent
to X2C (e.g. the one-step solution of the NESC equa-
tions was already presented by Dyall in Ref. [22]), which
implies that within the one-electron approximation 1c-
NESC = sf-X2C = X1C and 2c-NESC = X2C, we
prefer to stick to using the name NESC in a series of our
publications for continuity and to underline the contri-
bution of Ken Dyall to the field of relativistic quantum
chemistry [34].

In the present work, the previously available spin-free
approach to the calculation of the contact densities and
Mössbauer isomer shifts [19] will be extended to the 2c-
NESC Hamiltonian. The paper is organised as follows.
In Section 2, the methodology of calculating the contact
density with the use of the analytic derivatives formalism
for 2c-NESCwill be described. Details of the calculations
performed with the new methodology will be described
in Section 3, and the results of the application using the
new theory to a series of compounds containing iodine,
gold, and mercury atoms will be presented in Section 4.
In Section 5, the conclusions will be drawn.

2. Theory

2.1. Contact density andMössbauer isomer shift

Within the analytic derivative formalism [19,20] the con-
tact density ρ̄A of nucleus A with the atomic number ZA
is defined as the derivative of the total electronic energy
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with respect to the nuclear charge radius, i.e.

ρ̄A = 1
2π

1
ZAζ 0

A

∂E(ζA)

∂ζA

∣∣∣∣
ζA=ζ 0A

, (2)

where ζA is the parameter related to the root-mean-
square (RMS) charge radius of the nucleus A as

ζA =
√

2
3 〈R2A〉1/2 (3)

and ζ 0
A is obtained from the experimentally measured or

theoretically estimated RMS charge radius of the nucleus
A [51–54]. The parameter ζA originates from approxi-
mating the nuclear charge distribution by a Gaussian-
type function; for a point-charge nucleus, ζ 0

A = 0. With
the use of the Gaussian-type nuclear charge distribution,
the operator for the electron-nuclear attraction energy V
becomes

V(r − RA, ζA) = − ZA
|r − RA|erf

( |r − RA|
ζA

)
. (4)

Therefore, the energy derivative with respect to ζA in
Equation (2) is given by

∂E(ζA)

∂ζA

∣∣∣∣
ζA=ζ 0A

= trP
(

∂H1e

∂ζA

)
ζA=ζ 0A

, (5)

where P is the density matrix andH1e is the one-electron
core Hamiltonian matrix.

From the contact densities at the absorbing and the
reference nuclei (ρ̄A and ρ̄R), respectively, theMössbauer
isomer shift can be obtained using Equation (1).

2.2. 2c-NESC and its analytic derivatives formalism

Within the commonly used one-electron approximation
to the NESC method [22], the relativistic one-electron
Hamiltonian L̃ renormalised on the non-relativistic
metric

HNESC
1e = G†L̃G (6)

is used in connection with the non-relativistic electron-
electron repulsion terms. The NESCHamiltonian matrix
L̃ [22] and the renormalisationmatrixG [55] are given by

L̃ = TU + U†T − U†(T − W)U + V, (7)

G = S−1/2

[
S1/2

(
S + 1

2c2
U†TU

)−1
S1/2

]1/2
S1/2, (8)

where S is the overlap matrix, T is the kinetic energy
matrix, V is the potential energy matrix,W is the matrix
of the operator (σ · p)V(r)(σ · p)/(4c2) (where p is the
momentum operator, σ is the vector of the three Pauli

spin matrices, and c is the velocity of light), and U
is the matrix which connects the large component CL+
and the small component CS+ of the positive-energy,
i.e. electronic solutions of the Dirac matrix equation,
CS+ = UCL+ [22].

In the case of 2c-NESC, all the matrices in the above
equations are in the 2c form, i.e. X2c = I2 · X1c (I2 is a
2 × 2 unit matrix; X = S, T, or V), W = I2 · Wsf + iσ ·
Wso, and the other matrices can be obtained using these
four matrices. The spin-orbit coupling is incorporated
into the 2c-NESC method using a modified version of
the screened-nuclear-spin-orbit (SNSO) approach [46],
proposed originally by Boettger [56], i.e. the 2e-SOC con-
tributions are not calculated explicitly but simulated by
the nuclear screening factors in the one-electron SOC
integrals. With the SNSO approximation, the W matrix
in Equation (7) is replaced by [37]

WSNSO = I2 · Wsf + iσ · (Wso − QWsoQ)

= W − Q
(
W − I2 · Wsf

)
Q, (9)

whereQ is a diagonal matrix containing the square roots
of the SNSO factors as its diagonal elements.

A derivative of the NESC Hamiltonian (both 1c and
2c) with respect to a general external perturbation λ is
given by [37]

trP
∂HNESC

1e
∂λ

= trPS
∂S
∂λ

+ trPT
∂T
∂λ

+ trPV
∂V
∂λ

+ trPW
∂W
∂λ

, (10)

where PS, PT , PV , and PW are given in Equations
(22)–(23) of Ref. [37]. Within the SNSO approximation,
the last term in Equation (10) becomes [37]

trPW
∂WSNSO

∂λ
= tr (PW − QPWQ)

∂W
∂λ

+ trQPWQ

(
I2 · ∂Wsf

∂λ

)
. (11)

Although the previous study [19] found that, for the
first-order electronic properties, the contributions of the
∂U/∂λ derivatives are insignificant, these contributions
are retained in the present formalism, as their calcu-
lation requires only a few matrix multiplications and
leads to an insignificant computational overhead (c.f.
Ref. [37] and references therein). These contributions are
folded into the PX matrices (X = S, T, V, and W) in
Equation (10) [37].

It is noteworthy that besides SNSO there are also
other ways to include 2e-SO contributions, see e.g. Refs.
[57–59]. If the approximate 2e-SO contributions do not
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depend on the perturbation parameter λ, the general
derivative formula in Equation (10) still works in this
case.

In the case of the contact density calculation, the gen-
eral derivative in Equation (10) simplifies due to the inde-
pendence of the kinetic energy and the overlap matri-
ces on the nuclear charge radius ζA, and Equation (2)
becomes

ρ̄A = 1
2π

1
ZAζ 0A

tr

[
PV

(
∂V
∂ζA

)
ζA=ζ 0

A

+ PW
(

∂W
∂ζA

)
ζA=ζ 0

A

]
.

(12)
The analytic derivatives of V and W (including Wsf

and Wso) are calculated by the quadrature developed by
Taketa et al. [60]. As the 2e-SOC contributions simulated
in this work by SNSO, see Equation (11), do not depend
on the nuclear charge radius, the derivatives ∂W/∂ζA
should be taken without including these factors, i.e. with-
out the Q matrices in Equation (11). This is different
from the general derivatives, such as the analytic gra-
dient, where the simulated 2e-SOC contributions were
dependent on the perturbation.

3. Computational details

The formalism described in Section 2 was implemented
in the COLOGNE2016 suite of programmes [61]. Three
sets of calculations were carried out at the HF, PBE0
[62,63], and CAM-B3LYP [64] levels of theory, respec-
tively, in connection with the non-relativistic (NR), 1c-
NESC, and 2c-NESC Hamiltonians. The density func-
tionals PBE0 and CAM-B3LYP had been successfully
used for the test suite of molecules in our previous papers
[36–39,44], so they were adopted in the present work
without any further testing. The nuclear charge radii
from the compilation by Visscher and Dyall [53] were
used for the nuclear charge distributions. The molecular
geometries were taken from Refs. [19,44]. Uncontracted
all-electron basis sets were used in this work, where the
exponents of primitive Gaussian functions were taken
from Refs. [65–70]

(1) Dyall’s CVQZ basis set [69] for iodine atom in I−,
IX (X = H, F, Cl, and Br), and I2. The original
basis set was augmented by one tight s-function and
one tight p-function (αs = 221179043.7 and αp =
188559790.9).

(2) Dyall’s CVQZ basis set [68,70] for gold atom in Au+
and AuX (X = H, F, Cl, Br, and I). The original basis
set was augmented by two tight s-functions and one
tight p-function (αs = 560256407.3, 165482710.2,
and αp = 232179879.3).

(3) The B5 basis set [44] for X = H, F, Cl, Br, and I in
IX and AuX.

(4) ModifiedDyall’s CVQZbasis set [68,70] proposed by
Knecht et al. [7] for the Hg atom in Hg, HgXn (n=2
and 4; X = H, F, Cl, Br, and I), Hg(SH)4, Hg(CH3)2,
and Hg(H2O)2+6 , and B10 [44] for the other atoms
in these molecules.

Due to the absolute contact density values by DFT
strongly depend on the grids distributed in the core
region, ultrafine grids were always used [7,71].

4. Results and discussion

The results of the calculations are collected in three
tables: Table 1 presents the result for IX (X = H, F, Cl,
Br, and I) molecules, Table 2 for AuX molecules, and
Table 3 for mercury compounds (HgX2, HgX4, Hg(SH)4,
Hg(CH3)2, and Hg(H2O)2+6 ). The absolute contact den-
sities are given for bare I−, Au+, and Hg atoms and the
contact densities for molecules are given by the differ-
ences �ρ̄M = ρ̄

(mol)
M − ρ̄

(atom)
M (M = I, Au, or Hg).

The quality of a theoretical calculation can be judged
by three criteria, i.e. (1) the size of the basis set, (2) the
level of treatment of the electron correlation, and (3) the
level of inclusion of the relativistic effects [72,73]. The
modified CVQZ basis functions used in this work are
sufficiently complete and their further extension does
not significantly result in changing the contact densi-
ties obtained by the analytic derivatives formalism [19].
Hence, the quality of the contact densities obtained in
this work depends on the two remaining criteria, i.e. the
quantum chemical methodology (HF, PBE0, and CAM-
B3LYP) and the relativistic effects (NR, 1c-NESC, and
2c-NESC Hamiltonians).

Table 1. Contact densities (in bohr−3) in the first set of NR, 1c-
NESC, and 2c-NESC calculations. The absolute contact densities
are given for the atom whereas for the molecules the contact
density differences are listed.

Method Molecule NR 1c-NESC 2c-NESC �SF �SO

HF I− 103735.64 237998.24 238372.17
IF 2.61 6.95 7.33 4.34 0.38
ICl 2.31 6.09 6.47 3.78 0.39
IBr 2.19 5.74 6.05 3.55 0.31
I2 1.91 5.03 5.05 3.12 0.01
IH 0.73 2.02 2.01 1.30 −0.01

PBE0 I− 103766.03 238684.89 239059.39
IF 2.40 6.10 6.35 3.70 0.26
ICl 2.13 5.34 5.63 3.21 0.30
IBr 2.03 5.04 5.27 3.01 0.23
I2 1.82 4.53 4.53 2.71 0.00
IH 0.58 1.55 1.55 0.97 0.00

CAM-B3LYP I− 103776.18 239038.74 239417.31
IF 2.63 6.69 6.95 4.07 0.26
ICl 2.31 5.84 6.12 3.52 0.29
IBr 2.20 5.49 5.71 3.30 0.22
I2 1.94 4.87 4.87 2.93 0.00
IH 0.69 1.86 1.85 1.17 −0.01
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Comparing the total atomic contact densities, it can
be seen that ρ̄

(atom)
M is very sensitive to the inclusion of

the scalar-relativistic effects; the contact density of I−,
see Table 1 increases by a factor of two, and the contact
densities of Au+ (Table 2) and Hg (Table 3) increase by
almost an order of magnitude. However, the inclusion of
SOC through the 2c-NESC formalism leads to a minor
increase of ρ̄

(atom)
M , by ca. 0.2–1%. The enhancement of

the contact density in the scalar-relativistic calculations
is caused by contraction of the atomic ns-orbitals, as only
these orbitals have non-vanishing density at the nucleus.
In 2c-NESC, the np1/2-spinors acquire also non-zero
magnitude at the nuclear position due to SOC. The latter
effect however is much less significant than the density
enhancement due to the orbital contraction.

The contact density for IX at the iodine nucleus
increases in the sequence H < I < Br < Cl < F.
Iodine has the valence electronic configuration 5s25p5.
When the electron density is withdrawn from the s-
type valence orbital, the contact density decreases due to
direct depletion of the density at the nucleus (only s-type
orbitals have non-zero density at the nucleus) [15,74].
However, when the density is withdrawn from other
valence orbitals, e.g. p-type or d-type orbitals, the con-
tact density increases due to decrease of the screening
of the nuclear charge by these electrons [15,74]. Hence,
in the IX series, the more electronegative ligands with-
draw more 5p-electrons and this results in an increase of
the contact density at the iodine nucleus. That the den-
sity is withdrawn from the p-type orbitals as illustrated
by Figure 1 which shows the difference density between
the IF molecule and I− atom. The difference density has
mainly p-orbital symmetry.

For the AuX and HgX2 molecules, the contact density
decreases in the sequence H < I < Br < Cl < F, which

Table 2. Contact densities (in bohr−3) in the second set of NR, 1c-
NESC, and 2c-NESC calculations. See the explanations in Table 1.

Method Molecule NR 1c-NESC 2c-NESC �SF �SO

HF Au+ 346185.0 1946896.5 1963140.0
AuF 5.8 84.1 88.8 78.3 4.7
AuCl 7.6 98.0 100.9 90.4 2.9
AuBr 7.7 98.9 101.1 91.2 2.2
AuI 8.4 105.0 107.0 96.6 2.0
AuH 15.2 166.4 167.7 151.2 1.3

PBE0 Au+ 346247.0 1955189.4 1971539.7
AuF 8.5 112.5 118.9 104.0 6.3
AuCl 10.3 124.7 128.3 114.5 3.6
AuBr 10.5 126.8 129.2 116.2 2.4
AuI 11.3 133.1 135.4 121.8 2.3
AuH 18.6 187.1 189.1 168.5 1.9

CAM-B3LYP Au+ 346270.3 1957434.7 1973806.6
AuF 8.1 107.1 112.9 99.0 5.8
AuCl 9.8 120.3 123.5 110.5 3.2
AuBr 10.1 122.7 124.8 112.6 2.1
AuI 10.9 129.7 131.7 118.8 2.0
AuH 18.1 182.9 184.6 164.8 1.7

Table 3. Contact densities (in bohr−3) in the third set of NR, 1c-
NESC, and 2c-NESC calculations. See the explanations in Table 1.

Method Molecule NR 1c-NESC 2c-NESC �SF �SO

HF Hg 359538.5 2103759.7 2122364.4
HgF2 −13.0 −115.2 −112.7 −102.1 2.4
HgCl2 −11.6 −106.5 −104.3 −94.9 2.1
HgBr2 −11.9 −107.8 −105.8 −95.9 2.0
HgI2 −10.5 −96.5 −93.7 −86.0 2.8
HgH2 −3.8 −48.5 −45.4 −44.7 3.1
HgF4 −6.6 −91.9 −87.2 −85.3 4.7
HgCl4 −8.5 −95.1 −90.6 −86.6 4.5
HgBr4 −9.6 −99.9 −96.0 −90.4 4.0
HgI4 −10.3 −103.2 −99.4 −92.8 3.8
HgH4 −1.2 −44.1 −37.8 −42.9 6.3
Hg(SH)4 −7.4 −84.2 −79.5 −76.8 4.7
Hg(CH3)2 −3.5 −46.3 −43.1 −42.9 3.2
Hg(H2O)

2+
6 −22.3 −235.0 −235.8 −212.6 −0.8

PBE0 Hg 359605.8 2112546.8 2131274.5
HgF2 −13.1 −100.7 −98.4 −87.6 2.4
HgCl2 −12.2 −94.2 −92.1 −82.0 2.0
HgBr2 −12.3 −92.8 −91.0 −80.5 1.8
HgI2 −11.1 −83.4 −80.7 −72.2 2.7
HgH2 −4.6 −44.6 −42.1 −40.0 2.6
HgF4 −11.5 −107.8 −103.4 −96.3 4.4
HgCl4 −11.8 −102.4 −98.4 −90.6 3.9
HgBr4 −12.2 −101.7 −98.3 −89.5 3.4
HgI4 −12.6 −99.7 −95.9 −87.0 3.7
HgH4 −4.1 −53.8 −48.4 −49.7 5.4
Hg(SH)4 −10.5 −91.1 −87.1 −80.6 4.0
Hg(CH3)2 −4.9 −46.8 −44.2 −42.0 2.6
Hg(H2O)2+6 −23.9 −220.9 −220.6 −197.0 0.3

CAM-
B3LYP

Hg 359629.7 2113901.8 2132649.4

HgF2 −13.5 −103.4 −101.0 −89.9 2.5
HgCl2 −12.6 −96.3 −94.2 −83.7 2.1
HgBr2 −12.7 −95.0 −93.0 −82.2 2.0
HgI2 −11.5 −85.1 −82.2 −73.6 2.9
HgH2 −5.1 −47.7 −45.0 −42.6 2.7
HgF4 −11.7 −108.8 −104.3 −97.1 4.5
HgCl4 −12.0 −102.8 −98.7 −90.8 4.1
HgBr4 −12.4 −102.2 −98.6 −89.8 3.6
HgI4 −12.8 −100.2 −96.2 −87.4 4.0
HgH4 −4.7 −57.1 −51.5 −52.4 5.6
Hg(SH)4 −10.6 −91.5 −87.3 −80.9 4.2
Hg(CH3)2 −5.3 −48.8 −46.1 −43.6 2.8
Hg(H2O)2+6 −24.2 −222.5 −222.1 −198.2 0.4

suggests that the direct mechanism of the contact density
depletion (due to the densitywithdrawal from the valence
ns-orbitals) is involved. Indeed, both Au and Hg atoms
have the valence 6s-shell occupied with one and two elec-
trons, respectively. Formation of chemical bond with a
more electronegative element results in a density with-
drawal from the valence ns-orbital; e.g. the latter reaches
ca. 1.37 ē for HgF2 by NBO analysis [75,76].

In the HgX4 series, the variation of the contact den-
sity occurs in the opposite directions depending on the
inclusion of relativity and electron correlation. The HF
calculations, with both non-relativistic and relativistic
Hamiltonians, predict that the contact density at Hg
decreases in the sequence I < Br < Cl < F < H.
The same ordering of contact densities is predicted by
the NR DFT calculations. However, the relativistic DFT
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Figure 1. Distributions of electronic density difference by 1c-NESC/HF between molecule and isolated atom along the chemical bonds
in HgF4 and IF. The Hg and I atoms lie at r = 0 Å.

calculations overturn the trend to F < Cl < Br < I
< H. The difference between these sets of calculations
is likely caused by the interplay between the direct and
indirect effects of the ligands on the contact density at
the central atom. To clarify this, MP2 and CCSD with-
out frozen cores, i.e. MP2(full) and CCSD(full), com-
binedwith the 1c-NESCHamiltonian have also been per-
formed for HgF4 and HgCl4, where the basis functions of
F andCl are contracted for the sake of computational effi-
ciency. It is found that�ρ̄Hg is increased by 9.7 (MP2) or
2.6 bohr−3 (CCSD) fromHgF4 to HgCl4, confirming our
relativistic DFT results qualitatively.

Indeed, the Hg atom in HgX4 molecules behaves as
a transition metal atom, i.e. the 5d-orbitals of mercury
take part in the bonding [77]. For the contact density
this means that its variations can be caused by the direct
mechanism (withdrawal from the 6s-orbital) as well as
by the indirect mechanism (withdrawal from the 5d-
orbitals). The involvement of the 5d-orbitals in bonding
depends on the Hg–X bondlength; the shorter the lat-
ter, the greater the former. Apparently, at the NR and
NESC/HF levels, the direct decrease of the contact den-
sity due to the withdrawal from the 6s-orbital is largely
compensated by the indirect increase due to the with-
drawal from the 5d-orbitals. Hydrogen is the least elec-
tronegative atom among the X atoms and withdraws only
a small fraction of density fromHg; which leads to a quite
small �ρ̄ value, see Table 3. Fluorine is the most elec-
tronegative atom and withdraws the greatest amount of

density (QHg = 2.08ē by NBO), however due to a rela-
tively short Hg–F distance (1.882Å) the involvement of
the 5d-orbitals in the HgF bonding is substantial [77].
Hence, the direct and the indirect mechanisms largely
compensate each other and the contact density at Hg
decreases less than for the other halogen ligands. For
heavier halogens, the Hg–X distance increases and the
involvement of the 5d-orbitals of Hg fades away and the
contact density at Hg is mostly influenced by the with-
drawal from the 6s-orbital. Hence, the contact density at
Hg decreases more with I than with F.

Judging from Table 3, this explains the trends in
the NR and NESC/HF calculations. However, for the
NESC/DFT calculations with both density functionals an
opposite trend holds, where the most electronegative lig-
and leads to the greatest decrease of the contact density
at Hg. This suggests the dominance of the direct mech-
anism (withdrawal from the 6s-orbital of Hg) for the
final contact density ρ̄Hg . Analysis of the natural electron
configurations by NBO shows that the electronic density
withdrawal from the 5d-orbitals slightly decreases from
the 1c-NESC/HF to 1c-NESC/PBE0 (the total population
nHF5d = 9.07ē and nPBE05d = 9.26ē), whereas the withrawal
from the 6s-orbitals remains almost unchanged (nHF6s =
0.51ē and nPBE05d = 0.58ē). Hence, the inclusion of relativ-
ity together with electron correlation results in changing
the balance between the direct and the indirect effects on
theHg contact density. The results of Table 3 clearly show
that the relativity and correlation are not additive and
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should always be included together in the calculations
and not by the respective increments.

Comparing the contact densities obtained at the non-
relativistic, scalar-relativistic, and 2c level of theory the
significane of various relativistic effects can be evalu-
ated. The values of increments �SF = �ρ̄(1c−NESC) −
�ρ̄(NR) and �SO = �ρ̄(2c−NESC) − �ρ̄(1c−NESC) of the
contact density due to the scalar-relativistic and SOC
effects, respectively, are listed in Tables 1–3. The scalar-
relativistic effects result in a two-fold increase of the
contact density at iodine �ρ̄I and more than an order of
magnitude increase of �ρ̄Au and �ρ̄Hg . By contrast, the
effects of SOC contribute generally ca. <5% to the con-
tact density differences, as was also previously observed
by Knecht et al. [7], however can be as large as 10% for
HgH4. Similar variations are also observed for Hg(SH)4,
Hg(CH3)2, and Hg(H2O)2+6 . Hence, SOC does not make
a significant contribution to the contact density vari-
ations and �SO � �SF for the elements studied here.
However, for heavier elements, e.g. the superheavy atoms
and their compounds with multiple quasi-degenerate
states and strong state-interactions, the contribution of
SOC to the contact densitymay becomemore significant.
This topic is currently under investigation.

Because the two-component ab initio wavefunction
calculations beyond HF [78–82] are not currently avail-
able in COLOGNE2016, the accurate values of the con-
tact density can be evaluated by the use of an incremental
scheme, where the contact densities calculated by the use
of an advanced ab initio method, e.g. such as CCSD or
similar, in connectionwith the 1c-NESCHamiltonian are
incremented by the SOC contributions obtained by the
use of 2c-NESC/DFT method. The evaluation of such a
composite scheme is currently under way.

5. Conclusions

A fully analytic approach utilising the analytic deriva-
tive formalism for the calculation of the contact den-
sity was derived and implemented in connection with
the Dirac-exact 2c-NESC method. The new method was
tested in the calculation of the contact densities of several
I-, Au-, and Hg-containing compounds, and the results
were compared with the non-relativistic and the scalar-
relativistic 1c-NESC ones to evaluate the impact of the
spin-orbit coupling. It was found that SOC makes gen-
erally only a minor contribution into the total contact
density at the heavy nucleus. This contrasts with the sig-
nificance of the scalar-relativistic effects which may lead
to more than an order of magnitude enhancement of the
contact density. As the scalar-relativistic calculationswith
the 1c-NESC Hamiltonian are available in connection
with the high level wavefunction ab initio methods, an

incremental schemewhere the 1c-NESC/ab initio contact
density is supplemented by the 2c-NESC/DFT contri-
bution can potentially lead to obtaining very accurate
contact densities on the nuclei of heavy and super-heavy
elements. Exploration of this possibility is currently in
progress.
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