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ABSTRACT: Normal vibrational modes are generally delo-
calized over the molecular system, which makes it difficult to
assign certain vibrations to specific fragments or functional
groups. We introduce a new approach, the Generalized
Subsystem Vibrational Analysis (GSVA), to extract the
intrinsic fragmental vibrations of any fragment/subsystem
from the whole system via the evaluation of the corresponding
effective Hessian matrix. The retention of the curvature
information with regard to the potential energy surface for
the effective Hessian matrix endows our approach with a
concrete physical basis and enables the normal vibrational
modes of different molecular systems to be legitimately
comparable. Furthermore, the intrinsic fragmental vibrations
act as a new link between the Konkoli−Cremer local vibrational modes and the normal vibrational modes.

1. INTRODUCTION

Vibrational spectroscopy is a powerful tool for structure
elucidation. Raman and infrared (IR) spectroscopy can be
used not only for the assignment of characteristic peaks to
identify functional groups but also to characterize the electronic
structure of the targeted chemical system. With the rapid
development of quantum chemical methods based on quantum
mechanics (QM), the simulation of vibrational spectra has been
made feasible and becomes a complementary tool in structural
determination. The vibrational frequencies of any chemical
species can be calculated from the normal mode analysis
(NMA) by solving the Wilson equation of vibrational
spectroscopy.1

However, normal modes extend over the whole molecule,
which complicates the analysis and interpretation of vibrations
for large polyatomic molecules and molecules in solution or
other media being described by a multiscale model, i.e., QM/
MM. For example, in the water dimer, if one wants to compare
the normal vibrational modes of either the H-bond donor water
or the acceptor water with the vibrations of a single water
molecule in gas phase in order to characterize the influence of
hydrogen bonding, one has to consider that the normal mode
vectors in the two systems are of different lengths (18 versus 9).
Obtaining normal modes being projected into a targeted

subsystem or fragment would be the natural way to solve the
above problem and allow the normal modes to be intrinsically
comparable among different molecular systems.

Many efforts have been made in this direction. Head
proposed a strategy to calculate the vibrations for adsorbates on
surfaces by diagonalizing the partial Hessian for atoms of
adsorbates.2 His contribution fostered the work of Li and
Jensen, who developed the partial Hessian vibrational analysis
(PHVA) method,3 where a subblock of the Hessian matrix is
diagonalized and all atoms except the subsystem are assigned an
infinitely large atomic mass. This approach has been applied by
Besley and co-workers to calculate CO stretching and C−H
stretching vibrations in organic molecules.4,5 Ghysels and co-
workers proposed the mobile block Hessian (MBH) approach
as an extension to PHVA in order to calculate “localized”
normal vibrational modes for partially optimized molecular
systems.6−10 The MBH method allows one to calculate the
vibrations of a subsystem which has been fully optimized, while
the remaining parts of the system are treated as rigid bodies
being allowed to translate and rotate. Thus, the computational
costs can be reduced because one does not need to calculate
the full Hessian matrix of the whole system. The MBH method
has been implemented in quantum chemical packages including
ADF and Q-Chem. Woodcock and co-workers developed
another method called vibrational subsystem analysis (VSA),11

partitioning a large system into a subsystem and its environ-
ment. The vibrational modes led by the subsystem are
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calculated, and the environment follows the motions of the
subsystem in an adiabatic way. However, we need to note that
VSA was initially developed to couple the global motion to a
local subsystem in a large molecule, e.g., protein, in order to
estimate the free energy contribution from subsystems. Zheng
and cowork applied VSA to obtain approximate low-frequency
normal modes of proteins for conformational sampling.12 VSA
was also used in another work for mapping the full Hessian
matrix onto a coarse-grained scale for macromolecules.13 A
review article by Ghysels and co-workers compares the PHVA,
MBH, and VSA methods.14 Jacob and Reiher developed a
special approach to localize normal modes contributing to
certain bands with the help of a defined criterion.15 Their
method is tailored to polypeptides and proteins. Recently,
Huix-Rotllant and co-worker provided a procedure to localize
normal modes of fragment(s) by taking the submatrices of the
full Hessian as local Hessian matrices.16 The advantage of this
approach is that besides diagonalizing the local Hessian
matrices, the corresponding eigenvectors are used for the
transformation of the full Hessian. Thus, the information on the
full Hessian can be utilized.
However, if one tries to apply the methods mentioned above

in order to obtain intrinsically comparable normal vibrations of
a subsystem, the following problems must be resolved:

• As shown in Figure 1, all methods involve the direct
partitioning of the full Hessian matrix into the red sub-

block for the targeted subsystem or fragment and another
blue sub-block for the remaining part as its environment.
Once the Hessian matrix is partitioned, the information
describing the interaction between the subsystem and the
environment contained in the green sub-block is
damaged or even eliminated. This casts doubt on the
usefulness of these localized normal modes.

• The so-called “local Hessian matrix” or its counterpart
with different names pertinent to the subsystem is not in
a proper form prepared for characterizing the normal
vibrational modes of the subsystem. If the total number
of translations and rotations for the subsystem is k, then
such a local Hessian matrix is expected to have and only
have k eigenvalues of zero.

• As normal modes are delocalized over the whole system,
any attempt to compare the vibrational frequencies of the
localized subsystem modes with the frequencies of the
normal modes of the whole system either from ab initio
calculations or measured vibrational spectra is not
appropriate. This implies that verifying the results of
the localized normal modes with the help of vibrational
frequencies calculated from the full Hessian is problem-

atic. A more reasonable approach for result validation is
thus desired.

• Some methods were tested against selected examples
containing many C−H, N−H, and CO bonds. The
stretching modes of these bonds are in nature localized
to these fragments, and they can contribute to more
significant infrared intensities than other types of
vibrational motions due to large dipole changes. This
will give the illusion that the localized normal modes
have been accurately determined.

• Some approaches partition the complete system
according to certain rules, e.g., containing the peptide
bond unit in the subsystem. However, a generally
applicable approach is expected to allow arbitrary
partitioning of the whole system into the subsystem
and its environment.

• The purpose of localizing of normal vibrational modes
should be re-evaluated. While theoretical chemists have
developed various kinds of localized properties or models
including localized orbitals,17−21 localized atomic
charges,22−27 and even localized electron densities28,29

in order for simplification, comparison, and analysis, we
expect that localized normal modes should be able to
serve for similar tasks instead of assisting the assignment
of the absorption peaks from vibrational spectra for
different functional groups.

We start from a different ansatz in order to obtain
intrinsically comparable normal vibrations of a subsystem or
fragment. When calculating the normal modes of any chemical
system, three ingredients are required by the Wilson equation:
Cartesian coordinates R, atomic masses M, and the Hessian
matrix in Cartesian coordinates fx. As long as this system is at a
stationary point on the potential energy surface with all three
ingredients available, the Wilson equation can be solved
accordingly. If one is interested in obtaining the normal
vibrational modes for a subsystem/fragment, it is obvious that
the Cartesian coordinates R and atomic masses M of this part
should stay the same. The problem to be solved is then how to
obtain the “effective Hessian matrix” that is reasonable and
physically sound for the subsystem. Only on this basis, the
resulting localized normal vibrational modes of the subsystem
can be then obtained from solving the Wilson equation of
vibrational spectroscopy using the effective Hessian matrix.
In this work, we introduce a new approach called

Generalized Subsystem Vibrational Analysis (GSVA) that is
based on a physically solid “effective Hessian matrix” which
preserves the information on the curvature of the potential
energy surface for the subsystem/fragment as it is in the whole
system with a full Hessian matrix. The normal vibrational
modes calculated by this approach are therefore called “intrinsic
fragmental vibrations”. These vibrations are not constructed
from an arbitrary model, instead they are recovered specifically
for the subsystem from the full Hessian matrix. Noteworthy is
that a distinction should be made between the GSVA method
introduced in this work and the VSA method11 developed by
Woodcock. This paper is structured in the following way: The
theory of the GSVA is derived and described first. After
summarizing the Computational Details section, in the Results
and Discussion section, six different examples for calculating
the intrinsic fragmental vibrations of their subsystems are
discussed. The conclusions, along with some notes of applying
and implementing GSVA, are given in the last section.

Figure 1. Schematic diagram of partitioning of the Hessian matrix.
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2. METHODOLOGY
The normal vibrational modes of a molecular system can be
calculated from the solution of the Wilson equation of
vibrational spectroscopy1 based on the Hessian matrix fx in
Cartesian coordinates collecting the second-order derivatives of
the energy with regard to the displacement of atomic nuclei.
The dimension of fx is 3N × 3N, where N is the number of
atoms in the system.
As the translation and rotation of the system render no

change to the potential energy, matrix fx is singular and has K
zero eigenvalues, K takes the value of 5 for linear molecules or 6
for nonlinear molecules. We are, in general, only interested in
the nonzero eigenvalues λμ (collected in the diagonal matrix Λ)
as well as their eigenvectors cμ (collected in matrix C), as
shown in eq 1. The dimensions of C and Λ are 3N × (3N − K)
and (3N − K) × (3N − K), respectively.

Λ=f C Cx (1)

As each eigenvector cμ in C is orthonormalized,
= −C C IT

N K3 , eq 1 can be rewritten into

Λ=C f CT x (2)

and

Λ= =CC f CC C C fT x T T x (3)

W e d e fi n e a n e w m a t r i x =Q CCT . A s
= = = =Q CC CC CIC CC QT T T T2 , Q is thus a projection

matrix in the dimension of 3N × 3N. An interesting equation
results as follows:

=Qf Q fx x
(4)

The 3N − K eigenvectors collected in matrix C span the full
internal vibration space; thus, when projection operator Q
multiplies fx from the left to the right of fx, fx is not changed.
This special property of the Hessian matrix fx can be

extended to any other projection matrix, as long as this
projection matrix can span the full internal vibration space. We
choose to use the internal coordinates to span the same space,
as translations and rotations can be simply excluded.
For a molecule system being composed of N atoms, we can

use 3N − K internal coordinates to specify its geometry. The
internal coordinates are related to the Cartesian coordinates via
the Wilson B matrix1

=
∂
∂

B
q
x (5)

where x are the Cartesian coordinates and q are the internal
coordinates. For the above nonredundant set of 3N − K
internal coordinates, the corresponding Wilson B matrix B has
the dimension of (3N − K) × 3N. As matrix B is rectangular, its
Moore−Penrose inverse matrix B+ is calculated by

=+ −B B BB( )T T 1
(6)

so that

=+
−BB I N K3 (7)

where the trace of the identity matrix I3N−K as 3N − K.
We define a matrix A

= +A B B (8)

as A2 = B+BB+B = B+IB = B+B = A; matrix A is also a
projection matrix having the similar properties as matrix Q in
eq 4, leading to the following equations:

=f Af Ax x (9)

= + +f B B f B B( ) ( )x x
(10)

According to the properties of pseudoinverse B+, we have

=+ +B B B B( )T
(11)

Equation 10 can be rewritten into

= + +f B B f B B( ) ( )x T x
(12)

= + +f B B f B B( )x T T x
(13)

= + +f B B f B B( )x T T x
(14)

then

= + −f B B f B B( ( ) )x T x T 1
(15)

Noteworthy is that eq 15 is a more general form of the
equations for fx above. Furthermore, this equation offers an
opportunity to obtain the effective Hessian matrix for a
fragment or subsystem within the whole system.
Suppose that within the molecular system with N atoms, a

subsystem has n atoms (n < N). The geometry of this
subsystem can be specified by 3n − k internal coordinates (k =
5 or 6 depending on whether its geometry is linear or
nonlinear). The Wilson B matrix for these 3n − k internal
coordinates in the complete system can be calculated as B′ with
the dimension of (3n − k) × 3N. In the subsystem, the
corresponding Wilson B matrix for the same set of internal
coordinates is calculated as Bsub′ with the dimension of (3n − k)
× 3n. In order to simplify the analysis, we rearrange the labels
of n atoms of the subsystem within the whole system, so that
the first n atoms denote the subsystem. It is obvious that matrix
Bsub′ corresponds to the first 3n columns of matrix B′, while the
elements of the rest 3(N − n) columns in B′ are simply zero.
We define an effective Hessian matrix fsub

x for the subsystem
with the help of eq 15

= ′ ′ ′ ′+ −f B B f B B( ( ) )sub
x

sub
T x T

sub
1

(16)

where (fx)+ is the Moore−Penrose inverse of fx. Here, fsub
x is a

symmetric matrix in the dimension of 3n × 3n, and more
importantly, it has exactly k zero eigenvalues.
However, we need to note that eqs 9, 10, and 12−14 cannot

be used for this purpose, namely

≠ ′ ′ ′ ′+ +f B B f B B( ) ( )sub
x

sub
T x

sub (17)

because the Wilson B matrix and related pseudoinverse in these
equations can no longer span the full vibration space for the
whole system, only for the subsystem.
The effective Hessian matrix fsub

x for the subsystem can be
directly used for normal mode analysis by solving the Wilson
equation of vibrational spectroscopy given its Cartesian
coordinates and atomic masses as it can be done for the
whole system based on full Hessian matrix fx. Noteworthy is
that in the process of obtaining fsub

x no partitioning/sub-
blocking of the original Hessian matrix fx is introduced. Instead,
the full Hessian matrix fx is projected into the unique internal
vibrational space of the subsystem in eq 16, which strikingly
differentiates our approach from others.2,3,6,15,16
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Furthermore, it is necessary to evaluate the physical basis and
correctness of the effective Hessian matrix derived in this work,
if intrinsically comparable normal vibrations are desired on the
basis of such an effective Hessian matrix. The seemingly most
straightforward approach to validate our model is to compare
the normal mode frequencies of the subsystem based on
effective Hessian matrix fsub

x and those based on the original
Hessian matrix fx for the whole system. However, one needs to
be careful that normal modes are delocalized over the system in
question, and it is not appropriate to compare the normal
modes within the subsystem and those modes beyond it.30 In
this work, we choose to calculate and compare the local
vibrational modes31−35 proposed by Konkoli and Cremer for
fsub
x and fx because these local modes have been proved as the
only and unique local equivalents of normal vibrational modes
in terms of internal coordinates30 which can be directly
compared among different molecular systems, and they have
been used to quantify the intrinsic strength of chemical
bonding36−42 as well as to characterize the local properties of
the electronic structure.43,44 The characterization of local
vibrational modes including related local mode force constants
and local mode frequencies is called local mode analysis. For
each local vibrational mode driven by a specific internal
coordinate as the “leading parameter”, we can calculate the
corresponding local force constant or its synonym as adiabatic
force constant kn

a as well as the local vibrational frequency ωn
a.

These two quantities can be related with the help of the Wilson
G matrix1,45

ω
π

=
c

k G( )
1

4n
a

n
a

nn
2

2 2 (18)

For the purpose of validating the effective Hessian matrix,
calculating the local force constants kn

a is sufficient.
In this work, we take a simplified form30,46 of calculating the

adiabatic force constant kn
a by

= +

k
b f b

1
( )

n
a

x T

(19)

where fx is the Hessian matrix for the whole system in Cartesian
coordinates, and its Moore−Penrose inverse is denoted as (fx)+.
Row vector b is the Wilson B matrix for an internal coordinate
parameter qn (e.g., bond stretching, angle bending, dihedral
torsion, etc.) within the subsystem leading this local mode.
Here, b is in the dimension of 1 × 3N.
Based on the effective Hessian matrix fsub

x of the subsystem,
its adiabatic force constant kn,sub

a of the local mode led by the
same internal coordinate qn is calculated by

= +

k
b f b

1
( )

n
a sub sub

x
sub
T

,sub (20)

where bsub is the first 3n elements of b in eq 19, and (fsub
x )+ is the

Moore−Penrose inverse of fsub
x . Equation 20 can be expanded

by substituting fsub
x using eq 16

= ′ ′ ′ ′+ − +

k
b B B f B B b

1
( ( ( ) ) )

n
a sub sub

T x T
sub sub

T

,sub

1

(21)

According to the properties of the pseudoinverse, eq 21 can be
rewritten as

= ′ ′ ′ ′+ + − +

k
b B B B f B b

1
( ( ( ) ) )

n
a sub sub sub

T x T
sub
T

,sub

1

(22)

= ′ ′ ′ ′+ + +

k
b B B f B B b

1
( ) ( )

n
a sub sub

x T
sub
T

sub
T

,sub (23)

= ′ ′ ′ ′+ + +

k
b B B f B B b

1
( ) ( )

n
a sub sub

x T
sub

T
sub
T

,sub (24)

then

= ′ ′ ′ ′+ + +

k
b B B f b B B

1
( )( ) ( )

n
a sub sub

x
sub sub

T

,sub (25)

The calculation of the matrix product of bsubBsub′+B′ is visualized
by the Falk diagram shown in Figure 2.

In matrix B′, the block of the first 3n columns is matrix Bsub′ ,
while the elements in the remaining 3(N − n) columns are
zeros. The multiplication of Bsub′+ with B′ leads to a projection
matrix Bsub′+Bsub′ in the first 3n columns of Bsub′+B′ and zeros in the
remaining 3(N − n) columns.
As the Wilson B matrix Bsub′ (or B′) collects the

nonredundant set of 3n − k internal coordinate parameters
describing the geometry of the subsystem, the projection matrix
Bsub′+Bsub′ spans the complete internal coordinate space and also
the internal vibration space of the subsystem. The Wilson B
matrix row vector bsub for any internal coordinate parameter
(no matter whether it is included in the set of the 3n − k
parameters or not) in the subsystem can be expressed as a
linear combination of 3n − k row vectors in Bsub′ . So we get

′ ′ =+b B B bsub sub sub sub (26)

which constitutes the first 3n elements of the row vector
bsubBsub′+B′, and the rest of the 3(N − n) elements are zeros.
Also, we have

′ ′ =+b B B bsub sub (27)

where b is from eq 19. Then, eq 25 can be simplified as

= +

k
b f b

1
( )

n
a

x T

,sub (28)

Also interesting is that

=k kn
a

n
a

,sub (29)

which means the local mode analysis with regard to any internal
coordinate in the subsystem based on the effective Hessian
matrix fsub

x is equivalent to the local mode analysis for the same
internal coordinate based on the full Hessian matrix fx.

Figure 2. Falk diagram of matrix multiplication for bsubBsub′+B′.
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Furthermore, as the adiabatic force constant kn
a characterizes the

curvature of the Born−Oppenheimer potential energy surface
(PES) given in a specific direction defined by the internal
coordinate as the leading parameter,41 the curvature of the PES
driven by any one of the internal coordinates in the subsystem
within the whole system is retained in the effective Hessian
matrix. In other words, the standalone subsystem with effective
Hessian matrix “feels” exactly the same curvature of the PES
with regard to the internal local vibrations as it is within the
whole system based on the full Hessian matrix. In this way, the
underlying physical nature of the vibrations of the subsystem
calculated based on fsub

x is kept invariant, and this gives our
approach the capability and advantage to characterize the
intrinsically comparable normal vibrations of subsystems or
fragments in any molecular system. We call these intrinsically
comparable normal vibrations the intrinsic fragmental vibra-
tions.

3. COMPUTATIONAL DETAILS

In this work, all ab initio calculations including geometry
optimization and Hessian evaluation were performed using the
Gaussian 09 package.47 The dimers, trimers, and monomers of
water and ammonia molecules were calculated at the ωB97X-
D/6-311++G(d,p) level;48−51 The hydrogen disulfide molecule
and the hydrogen disulfide-water cluster were calculated at the
B3LYP/6-31G(d,p) level of theory;52−55 The methane
molecule and methane-C60 complex were calculated using the
Minnesota hybrid functional M06-2X with Pople’s 6-31G(d,p)
basis set.56 Grimme’s empirical D3 dispersion correction was
added to the nuclear repulsion force.57 The formaldehyde
molecule and formaldehyde-nanotube complex were calculated
at the B3LYP/6-31G(d,p) level with Grimme’s empirical D3
dispersion correction with Becke−Johnson (BJ) damping.58

The propane molecule along with a reference methane
molecule were calculated with Hartree−Fock theory59 using
6-31G(d,p) basis set. For the above density functional theory
(DFT) calculations, the UltraFine integration grid was used,
and all systems were optimized to local minima with tight
convergence criteria.
The calculations of the effective Hessian matrices, local mode

analysis, and normal mode analysis were carried out with the
program package COLOGNE2017.60

4. RESULTS AND DISCUSSION

In the following section, we discuss the results of the intrinsic
fragmental vibrations in six different molecular systems. For
each subsystem or fragment having n atoms, we calculated its
3n − k intrinsic fragmental vibrational frequencies based on the
effective Hessian matrix fsub

x in the dimension of 3n × 3n.
Then, we calculated the frequencies of normal vibrational

modes or intrinsic fragmental vibrations of the same subsystem
in the gas phase or other chemical systems, respectively, for all
six examples in order to demonstrate that the intrinsic
fragmental vibrations have the advantage of being directly
compared and analyzed laterally among different systems.
We have also calculated the local mode force constants of the

leading internal coordinate parameters qn within the fragment/
subsystem based on both the full Hessian fx and the effective
Hessian fsub

x in order to verify the physical relevance of these
intrinsic fragmental normal vibrations.
4.1. Water Dimer (H2O)2. The first example is the water

dimer which has a hydrogen bond between two water

molecules, one serving as the H-bond donor and the other as
the H-bond acceptor (Figure 3). One water molecule has three

normal vibrational modes, including the H−O−H angle
bending, symmetric O−H stretching, and asymmetric O−H
stretching with increasing vibrational frequencies (Table 1).

The introduction of another water molecule in a dimer
structure brings in an addition nine vibrational modes. These
nine vibrational modes include the three internal vibrations of
the second water molecule, three relative rotations, and three
relative translations between these two water molecules.
However, these nine new vibrations will mix with each other.
Furthermore, the original three vibrations of the first water
molecule are also mixed in, which potentially hinders the
analysis of normal vibrational modes of either water molecule in
the dimer.
Within the framework of GSVA, the donor/acceptor water is

taken as a subsystem. Its effective Hessian matrix fsub
x can be

extracted by choosing a nonredundant set of three internal
coordinate parameters according to eq 16. In a water molecule,
we can choose two O−H distances and the H−O−H angle as a
complete nonredundant parameter set. Therefore, matrix B′
takes the dimension of 3 × 18, while matrix Bsub′ is in the 3 × 9
dimension. Or we can use two O−H distances and the H−H
distance to construct another parameter set, although the H−H
distance does not imply H−H bonding in a water molecule.
These two sets of parameters give two identical effective
Hessian matrices, which reveals the flexibility and robustness of
the GSVA approach; namely, this approach does not depend on
the choice of the nonredundant internal parameter set. As long
as the chosen set of parameters can unambiguously specify the
geometry of the subsystem, GSVA will work.
Table 1 lists the three normal vibrational frequencies

calculated by solving the Wilson equation1 based on the
effective Hessian matrices for the donor and acceptor waters.
The resulting three normal modes calculated by GSVA are the
unique counterparts of the normal modes of the water molecule
in the gas phase. Correlating the intrinsic fragmental vibrational
modes with those of the water molecule in the gas phase leads
to the normal vibrational frequency ordering shown in Table 1.
The acceptor water shows smaller deviations from the reference

Figure 3. Water dimer structure in Cs symmetry. Red balls represent
oxygen atoms, and gray balls represent hydrogen atoms.

Table 1. Comparison of Normal Mode Frequencies of Water
Monomers

No. Donora (cm−1) Acceptora (cm−1) H2O
b (cm−1)

1 1531 1607 1609
2 3775 3891 3903
3 3976 3997 4012

aColumns “Donor” and “Acceptor” denote the intrinsic fragmental
vibrational frequencies of donor and acceptor water molecules based
on their effective Hessian matrices, respectively. bColumn “H2O”
collects the normal mode frequencies of a water molecule in gas phase
as the reference.
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frequencies compared to the donor water. In the acceptor
water, the first normal mode dominated by the H−O−H angle
bending has the deviation of only 2 cm−1, while the donor
water’s deviation is 78 cm−1. This can be explained by the fact
that the angle bending mode of the acceptor water is not
affected by the formation of a hydrogen bond, while the angle
bending of the donor water is hindered by this hydrogen bond.
The larger deviations for the symmetric and asymmetric O−H
stretching modes for the donor water are also caused by the
hydrogen bonding which weakens the donor O−H covalent
bond.40,42

For the purpose of validating the intrinsic fragmental
vibrational modes and their frequencies, we calculated the
local mode force constants of the O−H bond stretching and
H−O−H angle bending modes in the donor and acceptor
waters based on the effective Hessian matrix and the full
Hessian matrix using eqs 19 and 20. The comparison of the
local mode force constants in Table 2 shows that the values of
kn,sub
a and kn

a for local mode parameters within the subsystem are
the same.

This clearly reveals that the effective Hessian matrices fsub
x

calculated for the donor/acceptor water molecules have
retained the curvature of the PES of the whole system with
regard to any internal coordinate in donor or acceptor water,
respectively. Accordingly, these fragmental vibrational modes
based on fsub

x are thus intrinsic.
4.2. Ammonia Trimer (NH3)3. The ammonia trimer ring

shown in Figure 4 has C3h symmetry. All three ammonia
molecules connected via hydrogen bonds are identical with
regard to geometry as well as electronic structure. In this

example, we want to take one ammonia molecule as the
subsystem and obtain its intrinsic fragmental vibrations.
For each ammonia molecule having four atoms, we need six

internal coordinates to determine its geometry. The set of three
N−H bonds and three H−N−H angles is the easiest option.
But we can also use three N−H bonds and three H−H
distances as a valid set for GSVA. Therefore, matrix B′ has the
dimension of 6 × 36, and matrix Bsub′ has the dimension of 6 ×
12.
Table 3 lists the intrinsic fragmental vibrational frequencies

of ammonia in comparison with the normal mode frequencies

of an ammonia molecule in the gas phase. While the symmetry
of ammonia in the gas phase is reduced from C3v to Cs for the
ammonia in the trimer system shown in Figure 4, normal
modes Nos. 2−3 and Nos. 5−6 lose their 2-fold degeneracy
leading to the splitting in the vibrational frequency values. We
find vibrations Nos. 2 and 4 of ammonia in the trimer have
their frequency differences larger than 100 cm−1 when
compared with the reference ammonia in the gas phase.
Normal mode No. 2 is dominated by the rocking of the H3
atom, and normal mode No. 4 is basically the symmetric
stretching of all three N−H bonds. As bond N1−H3 directly
participates in the hydrogen bonding, the above two vibrational
modes will be affected accordingly. However, the smallest
difference in the vibrational frequency is found for No. 6 as 13
cm−1. This vibration mode is dominated by the asymmetric
stretching of bonds N1−H2 and N1−H4, which are not
directly involved in hydrogen bonding.
The verification of the results from GSVA is carried out in

Table 4.
4.3. Hydrogen Disulfide in a Water Cluster. Besides the

small molecular clusters of water and ammonia, we built a
cluster of hydrogen disulfide surrounded by 22 water molecules
to simulate the solvation of hydrogen disulfide in liquid water
(Figure 5). In this example, we want to calculate the intrinsic
fragmental vibrations of the hydrogen disulfide molecule.

Table 2. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Water Molecules

No.a qn
b kn,sub

a kn
a

D-1 R(4−5) 8.691 8.691
D-2 R(4−6) 7.984 7.984
D-3 α(5−4−6) 0.596 0.596
A-1 R(1−2) 8.624 8.624
A-2 R(1−3) 8.624 8.624
A-3 α(2−1−3) 0.652 0.652

aIn the “No.” column, “D” denotes donor water, while “A” denotes
acceptor water. bFor internal coordinate qn, parameter “R” stands for
bond stretching. Unit for local mode force constant is mdyn/Å, while
“α” is for angle bending and corresponding unit for local mode force
constant is mdyn×Å/rad2.

Figure 4. Ammonia trimer ring structure with C3h symmetry. Blue
balls represent nitrogen atoms, and gray balls represent hydrogen
atoms.

Table 3. Comparison of Normal Mode Frequencies of
Ammonia Monomers

No. NH3 in trimer (cm−1) NH3 in gas phase (cm−1)

1 1044 1003
2 1544 1672
3 1648 1672
4 3410 3523
5 3588 3658
6 3645 3658

Table 4. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Ammonia Molecule

No. qn
a kn,sub

a kn
a

1 R(1−3) 6.480 6.480
2 R(1−2) 7.056 7.056
3 R(1−4) 7.056 7.056
4 α(2−1−4) 0.606 0.606
5 α(2−1−3) 0.541 0.541
6 α(3−1−4) 0.541 0.541

aParameter “R” stands for bond stretching, while “α” is for angle
bending. Unit of local mode force constant for bond stretchings and
angles is mdyn/Å and mdyn×Å/rad2, respectively.
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As for a complete nonredundant set of internal coordinate
parameters required by GSVA, we choose two S−H bonds, the
S−S bond, two S−S−H angles, and the H−S−S−H dihedral
angle to obtain the effective Hessian matrix fsub

x for the H2S2
molecule as the subsystem. These six internal coordinates
construct corresponding matrices B′ and Bsub′ in the dimensions
of 6 × 210 and 6 × 12, respectively.
The fragmental vibrations of the H2S2 molecule in the cluster

calculated by GSVA (Table 5) show a shift of at least 30 cm−1

with regard to the reference H2S2 in the gas phase. Vibrations
Nos. 5 and 6 have the largest deviations, and they are
dominated by the S3−H4 and S1−H2 bond stretching,
respectively. As these two S−H bonds donate S−H···OH2
hydrogen bonds to surrounding water molecules, they are
weakened in their bond strength leading to corresponding red
shifts. However, vibration No. 2 has only a shift of 5 cm−1. This
vibration is dominated by the S−S bond stretching, which is
hardly affected by the surrounding water molecules.
The local mode force constants of H2S2 within the cluster

were calculated based on both the effective Hessian fsub
x and the

full Hessian fx as shown in Table 6.
4.4. Methane (CH4) in C60. The methane-intercalated C60

structure was synthesized by Kwei and co-workers in 199761

(Figure 6). While the fullerene molecule has Ih symmetry and

methane has Td symmetry, the complex has T symmetry.
However, the methane encapsulated within the C60 molecule
has still the Td symmetry. It would be of interest to obtain the
intrinsic fragmental vibrations of the methane inside the C60 in
order to characterize this encapsulation effect.
As a complete nonredundant set of internal coordinates for

the methane molecule, four C−H bonds and five H−C−H
angles were chosen, although in total six H−C−H angles are
available. Therefore, corresponding matrices of B′ and Bsub′ have
the dimensions of 9 × 195 and 9 × 15, respectively.
In Table 7, the fragmental vibrational frequencies of methane

within C60 calculated by GSVA are compared with normal
mode frequencies of methane in the gas phase. All 2-fold and 3-
fold degeneracies are kept as a result of the retention of Td
symmetry. The largest deviation is found for vibration No. 6 as
a blue shift of 70 cm−1. This vibration is dominated by the
symmetric stretching of the four C−H bonds, which is largely
affected by the C60 cage.
Table 8 lists the local mode force constants of the methane

molecule in C60 calculated based on both the effective Hessian
fsub
x and the full Hessian fx. The data in Table 8 reveals that
these two sets of local mode force constants are identical.
Besides the nine parameters (Nos. 1−9) we used to obtain fsub

x ,
we have also calculated the local mode force constant of the
sixth angle which was not included in the parameter set, and we
obtained the same value as for the other five angles. This clearly
shows that the local mode analysis can still work for the internal

Figure 5. Structure of the hydrogen disulfide molecule in a water
cluster of (H2O)22. Yellow balls are sulfur atoms, red are oxygens, and
gray are hydrogens. Dashed lines represent noncovalent interactions,
i.e., hydrogen bonds.

Table 5. Comparison of Normal Mode Frequencies of
Hydrogen Disulfide Molecule

No. H2S2 in water cluster (cm−1) H2S2 in gas phase (cm−1)

1 383 434
2 500 495
3 861 894
4 936 895
5 2452 2637
6 2355 2639

Table 6. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Hydrogen Disulfide Molecule

No. qn
a kn,sub

a kn
a

1 R(1−2) 3.332 3.332
2 R(1−3) 2.172 2.172
3 R(3−4) 3.197 3.197
4 α(2−1−3) 0.809 0.809
5 α(4−3−1) 0.790 0.790
6 τ(2−1−3−4) 0.082 0.082

aParameter “R” stands for bond stretching, “α” is for angle bending,
and “τ” is for dihedral torsion. Unit of local mode force constant for
bond stretchings and angles is mdyn/Å and mdyn×Å/rad2,
respectively.

Figure 6. Structure of methane encapsulated in fullerene (C60). Large
balls represent carbon atoms, and small balls represent hydrogens.
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coordinate parameters that are not included in the matrices of
B′ or Bsub′ used for the extraction of fsub

x , and it is an evidence for
the fact that the effective Hessian matrix fsub

x retains the
complete information in curvature of potential energy surface
with regard to any possible internal coordinate within the
subsystem.
4.5. Formaldehyde (CH2O) in Carbon Nanotube (CNT).

Recently, there has been an increasing number of studies
focused on the design of CNTs as sensors for detecting
formaldehyde.62−64 For this purpose, a formaldehyde molecule
was placed and stabilized within the model of a single-wall
carbon nanotube (SWCNT) (Figure 7). Therefore, we check
the vibrational modes of the formaldehyde molecule in the
nanotube with GSVA.
In order to extract the effective Hessian matrix for the

formaldehyde molecule, we choose a complete nonredundant
set of parameters being composed of the three covalent bonds,
two O−C−H angles, and one out-of-plane pyramidalization
angle. Matrices B′ and Bsub′ used to recover fsub

x have the
dimensions of 6 × 252 and 6 × 12, respectively. The intrinsic
fragmental vibrational frequencies are shown in Table 9.
Comparing the fragmental vibrational frequencies for the
formaldehyde molecule in the CNT with the normal vibrational
frequencies of the reference formaldehyde in the gas phase, it is
interesting that vibrations Nos. 1−3 have small frequency
differences less than 4 cm−1. Vibration No. 1 is dominated by
the out-of-plane pyramidalization of the carbon atom with
regard to the O−H−H plane. Vibration No. 2 is basically the
in-plane rocking of two hydrogen atoms, while vibration No. 3

is dominated by the in-plane scissoring of the H−C−H angle.
Vibration No. 4 corresponds to the CO bond stretching, and
vibration No. 5 is associated with the symmetric C−H bond
stretching mode. The largest deviation is found for vibration
No. 6 which is dominated by the asymmetric stretching of two
C−H bonds. This is a result of the confinement imposed on the
formaldehyde molecule by the nanotube structure.
The validation of the intrinsic fragmental vibrational

frequencies via the local mode analysis (Table 10) shows that
the local mode properties for the subsystem based on the
effective Hessian fsub

x and full Hessian fx are identical.
4.6. CH2 and CH3 Fragments in Propane. So far, we have

applied GSVA to molecular subsystems under the perturbation
of different chemical environments. However, we can also use
GSVA to analyze the vibrations of fragments within a molecule
and even compare the intrinsic fragmental vibrations of the
same fragment in two different molecular systems.
As an example, we analyze the intrinsic fragmental vibrations

in propane (Figure 8). By breaking all three C−C bonds, three
fragments result, including two identical CH3 fragments and
one CH2 fragment in the middle.
First, we applied GSVA to the CH2 fragment. In analogy to

H2O, we chose two C−H bonds and the H−C−H angle as the
internal coordinate set for constructing the effective Hessian
matrix fsub

x . Therefore, the B′ and Bsub′ matrices have the
dimensions of 3 × 33 and 3 × 9, respectively. The resulting
fragmental vibrational modes are similar to the normal modes
of H2O. Vibration No. 1 is the H−C−H angle bending, and
vibration No. 2 is the symmetric stretching of two C−H bonds.

Table 7. Comparison of Normal Mode Frequencies of
Methane Molecule

No. CH4 in C60 (cm
−1) CH4 in gas phase (cm−1)

1 1328 1356
2 1328 1356
3 1328 1356
4 1583 1584
5 1583 1584
6 3150 3080
7 3250 3205
8 3250 3205
9 3250 3205

Table 8. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Methane Molecule

No.a qn
b kn,sub

a kn
a

1 R(1−2) 5.675 5.675
2 R(1−3) 5.675 5.675
3 R(1−4) 5.675 5.675
4 R(1−5) 5.675 5.675
5 α(2−1−3) 0.647 0.647
6 α(2−1−4) 0.647 0.647
7 α(2−1−5) 0.647 0.647
8 α(3−1−4) 0.647 0.647
9 α(3−1−5) 0.647 0.647
10* α(4−1−5) 0.647 0.647

aParameter labeled with * indicates this internal coordinate is not used
as part of the complete nonredundant set to obtain effective Hessian
matrix fsub

x . bParameter “R” stands for bond stretching, and “α” is for
angle bending. Unit of local mode force constant for bond stretchings
and angles is mdyn/Å and mdyn×Å/rad2 respectively.

Figure 7. Structure of formaldehyde molecule contained in a carbon
nanotube. Total number of atoms is 84.

Table 9. Comparison of Normal Mode Frequencies of
Formaldehyde Molecule

No. CH2O in CNT (cm−1) CH2O in gas phase (cm−1)

1 1201 1201
2 1278 1275
3 1554 1555
4 1823 1847
5 2976 2897
6 3024 2954
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Vibration No. 3 is the asymmetric stretching of the same C−H
bonds.
For the CH3 fragment, we chose an analogy to the NH3

molecule including three C−H bonds and three H−C−H
angles as the complete nonredundant set to calculate its
effective Hessian matrix fsub

x . Matrices B′ and Bsub′ in this regard
are in the dimensions of 6 × 33 and 6 × 12, respectively. The
mode characters of these six intrinsic fragmental vibrations are
almost the same as the normal modes of ammonia due to their
similar geometries. However, we need to note that the NH3
molecule has C3v symmetry, while the CH3 fragment in
propane has only Cs symmetry. Thus, vibrations Nos. 2−3 and
Nos. 5−6 are no longer 2-fold degenerate, but they are still very
close in pairs with regard to the frequency values.
Also, we take the intrinsic fragmental vibrations of CH2 and

CH3 fragments in the methane (CH4) molecule as the
reference. In this way, the comparison of two intrinsic
fragmental vibrational frequencies for the same CHn fragment
in propane and methane can be carried out as in Table 11.
The CH3 fragments in methane molecule have 2-fold

degenerate vibration pairs for vibrations Nos. 2−3 and Nos.
5−6 because the high symmetry is retained in both its geometry
and corresponding effective Hessian matrix fsub

x . Noteworthy is
that intrinsic fragmental vibrations associated with C−H
stretching including Nos. 2 and 3 in the CH2 fragment and
Nos. 4−6 in the CH3 fragment have larger frequency values in
the reference methane molecule than in the propane molecule;
this suggests that the C−H bonds in the methane molecule are

stronger than those in either the CH2 or CH3 fragments within
propane.
Furthermore, the verification for the physical nature of the

effective Hessian matrices fsub
x for the CH2 and CH3 fragments

in propane is shown in Table 12.

5. CONCLUSIONS
In this work, we have presented a new method to extract the
intrinsic fragmental vibrations of a subsystem/fragment from an
entire polyatomic molecular system. This method is different
from its predecessors2,3,6−11,14−16 which were designed or/and
can be used for the same purpose in that our method is based
on an effective Hessian matrix from which the curvature of the
overall potential energy surface with regard to any internal
coordinate parameter qn within the subsystem is retained. The
underlying solid physical foundation makes our method unique
and able to characterize fragmental normal mode vibrations
which are intrinsic to the subsystem/fragment in question.
Therefore, our method is named the Generalized Subsystem
Vibrational Analysis (GSVA), emphasizing its general applic-
ability for any subsystem or fragment within a molecular system
and concrete physical basis.
In the examples presented in this work, we compared the

intrinsic fragmental vibrations of a subsystem with the normal
vibrational modes of the isolated subsystem in gas phase to
show the changes in the electronic structure caused by the
presence of the environment. Although a more straightforward
approach is to compare the corresponding properties of the
local vibrational modes of the subsystem, the intrinsic
fragmental vibrations can be regarded as a key intermediate

Table 10. Comparison of Local Mode Force Constants
Based on Effective Hessian Matrix fsub

x and Full Hessian
Matrix fx for Formaldehyde Molecule

No.a qn
b kn,sub

a kn
a

1 R(1−2) 13.306 13.306
2 R(1−3) 4.924 4.924
3 R(1−4) 4.918 4.918
4 α(2−1−3) 1.109 1.109
5 α(2−1−4) 1.110 1.110
6 (1′-2−3−4) 3.496 3.496

7* α(3−1−4) 0.833 0.833
aParameter labeled with * indicates this internal coordinate is not used
as part of the complete nonredundant set to obtain effective Hessian
matrix fsub

x . bParameter “R” stands for bond stretching, and “α” is for
angle bending. “ ” is for out-of-plane pyramidalization, where the
atom followed by a prime symbol moves with regard to the plane
constructed by the other three atoms. Unit of local mode force
constant for bond stretchings and angles is mdyn/Å and mdyn×Å/
rad2, respectively.

Figure 8. Structure of propane molecule in which the CH2 and CH3
fragments are highlighted with green and blue circles, respectively.

Table 11. Normal Mode Frequencies of Fragments in
Propane Molecule and Reference Methane Molecule

No.
CH2 in propane

(cm−1)

CH2 in
methane
(cm−1)

CH3 in propane
(cm−1)

CH3 in
methane
(cm−1)

1 1622 1558 1543 1474
2 3178 3230 1602 1578
3 3209 3280 1605 1578
4 − − 3174 3203
5 − − 3235 3283
6 − − 3242 3283

Table 12. Comparison of Local Mode Force Constants
Based on Effective Hessian Matrix fsub

x and Full Hessian
Matrix fx for Propane Molecule

No.a qn
b kn,sub

a kn
a

A-1 R(1−2) 5.581 5.581
A-2 R(1−3) 5.581 5.581
A-3 α(2−1−3) 0.836 0.836
B-1 R(4−5) 5.649 5.649
B-2 R(4−6) 5.649 5.649
B-3 R(4−7) 5.684 5.684
B-4 α(5−4−6) 0.803 0.803
B-5 α(5−4−7) 0.801 0.801
B-6 α(6−4−7) 0.801 0.801

aIn the “No.” column, “A” denotes the CH2 fragment, while “B”
denotes the CH3 fragment.

bParameter “R” stands for bond stretching,
and “α” is for angle bending. Unit of local mode force constant for
bond stretchings and angles is mdyn/Å and mdyn×Å/rad2,
respectively.
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linking the normal vibrational modes and the local vibrational
modes in two aspects: (i) The intrinsic fragmental vibrations
calculated by GSVA are in nature normal vibrational modes. (ii)
These vibrations are based on the effective Hessian matrix
taking the physical basis from Konkoli and Cremer’s local
vibrational modes,31−34 namely, to retain the potential energy
surface curvature of the whole system. In this regard, this work
can be also considered as a theoretical extension to our
previous work on the local vibrational modes.
A caveat is necessary when applying GSVA in theoretical

chemical studies. The equilibrium geometry R0 for the entire
molecular system including the subsystem to be studied is
required by eq 1. The full Hessian matrix fx describing the
entire system is needed as one of the input data along with the
geometry R0 and atomic masses M. If one set of intrinsic
fragmental vibrations is to be compared with another set of
intrinsic fragmental vibrations for the same subsystem/
fragment, we need to make sure that these two different
molecular systems are being described with the same level of
theory.
Concerning the implementation of GSVA into a computa-

tional chemistry package or as a standalone analysis program,
three inputs are required to start with including the full Hessian
matrix fx, geometry in Cartesian coordinates, and atomic
masses. As the calculation of the effective Hessian matrix fsub

x

uses Wilson B matrices B′ and Bsub′ characterizing the complete
nonredundant set of internal coordinates of the subsystem, a
subroutine is expected for calculating Wilson B matrices for
various internal coordinates, including bond length, bond angle,
dihedral torsion angle, and so forth. Besides, the linear
independence between rows of the B matrix should be checked
and guaranteed in order for a complete and nonredundant set
of 3n − k internal coordinates determining the geometry of the
subsystem. Furthermore, a subroutine for solving the Wilson
equation of vibrational spectroscopy is required to obtain
normal vibrational modes.65 By providing the effective Hessian
matrix fsub

x , geometry, and atomic masses of the subsystem for
the above subroutine, the normal mode vectors and frequencies
can be obtained for the intrinsic fragmental vibrations. The
computational cost of the whole calculation in GSVA is
equivalent to doing the normal mode analysis for the entire
system, and the most expensive part lies in the calculation of
the Moore−Penrose inverse (fx)+ of the full Hessian matrix.
This work provides a new and reliable theoretical tool for

analyzing as well as comparing the molecular vibrations, and we
anticipate our GSVA method to become a routine procedure in
computational chemistry
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