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Generalization of the Tolman electronic
parameter: the metal–ligand electronic parameter
and the intrinsic strength of the metal–ligand
bond

Dieter Cremer* and Elfi Kraka

The catalytic activity of transition metal complexes (R)nM–L can be predicted utilizing the metal–ligand

electronic parameter (MLEP) that is based on the local stretching force constant of the M-L bond.

Vibrational spectroscopy is an excellent tool to accurately determine vibrational mode properties such as

stretching frequencies. These correspond, because of mode–mode coupling, to delocalized vibrational

modes, which have to be first converted into local vibrational modes, and their properties. Each bond of a

molecule can be uniquely characterized by the local stretching force constant and frequency. The former

is ideally suited to set up a scale of bond strength orders, which identifies weak M–L bonds with promis-

ing catalytic activity. It is shown how the MLEP replaces the TEP (Tolman Electronic Parameter), which is

based on the CO stretching frequencies of a (CO)nM–L complex and which is now exclusively used in

hundreds of investigations. However, the TEP is at best a qualitative parameter that suffers from relatively

large mode–mode coupling errors and the basic deficiency of most indirect descriptors: They cannot

correctly describe the intrinsic M–L bond strength via the CO stretching frequencies.

1. Introduction

Some of the most widely used catalysts in homogeneous cata-
lysis are transition metal complexes.1–11 For example, the
annual Rhodium catalyzed production of aldehydes amounts
to 10 million tons, 6 million of which lead to form-
aldehyde.12,13 There is a continuous scientific enterprise of
finding new, even more efficient transition metal catalysts out
of a huge number of possible combinations involving one of
the 28 transition metals (M) of the first, second, and third
transition metal period (excluding Tc) and a large number of
possible ligands (L). Attempts to find suitable transition metal
complexes for catalysis reach from trial-and-error procedures
to educated guesses, model-based strategies, and quantum
chemical descriptions of potential catalysts.1–7,10,14 In this con-
nection, one has searched for parameters that can be simply
measured and used as suitable descriptors to assess the cata-
lytic activity of a transition metal complex. Clearly, electronic
factors determining the metal–ligand interactions and thereby
the availability of the metal for additional bonding play an
important role. First attempts to describe the catalytic activity

of a transition metal complex in homogeneous catalysis
focused on the determination of bond dissociation energies
(BDEs)15 or molecular geometries to predict, via BDE values
and/or bond lengths, the ease of replacement of a given ligand
or the possibility of enlarging the coordination sphere of the
transition metal during catalysis.

While these attempts have certainly benefited the chemical
understanding of transition metal complexes, one has to
realize that BDE values or bond lengths provide little insight
into the intrinsic strength of a metal–ligand bond. The BDE is
a reaction parameter that includes all changes during the dis-
sociation both with regard to the reactant(s) and the product(s).
Accordingly, it includes any (de)stabilization effect of the
products to be formed. The magnitude of the BDE is deter-
mined by the energy needed for bond breaking, but also con-
tains energy contributions due to rehybridization and electron
density reorganization in the dissociation fragments, spin
decoupling and recoupling energies, energy effects resulting
from avoided crossings (in the case of diatomics) along the
reaction path, Jahn–Teller or pseudo Jahn–Teller effects, conju-
gation possibilities in the fragments, etc. Although chemists
tend to assume that the BDE directly reflects the energy and
thereby the intrinsic strength of the bond to be broken, it
cannot do this as it is strongly affected in non-predictable ways
by the changes in the energies of the dissociation fragments.
Often it cannot even be used in a qualitative manner as a bond
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strength descriptor, so that the use of BDEs has led in many
cases to a misjudgment of bond strength.16–21

To obtain the intrinsic strength of a bond, the process of
bond dissociation must be converted into a hypothetical
process in which bond breaking is faster than the movement
of the atoms in the fragments (10−15 s) but also faster than
that of the fragment electrons (10−18 s) so that the electron
density distribution of the fragments is frozen in the form of
the original reactant and rehybridization effects, electron
density relaxation effects due to conjugation, hyperconjuga-
tion, special 3-electron delocalization effects, etc. do not take
place. Especially, the geometry of the fragments is frozen in
that of the original molecule. Such a hypothetical process
would lead to a much higher BDE value, which, contrary to the
measured BDE values, could exactly reflect the intrinsic
strength of a bond and therefore has been called the intrinsic
BDE (IBDE, see Fig. 1) by Cremer and co-workers.22

Although IBDEs cannot be measured, their introduction as
a model quantity does lead to an alternative approach to the
determination of the intrinsic strength of a bond. The BDE
and IBDE are reactions or dynamic parameters corresponding
to an infinitely large increase of the length of the bond to be
broken. A finite increase of the bond distance during a mole-
cular stretching vibration gets much closer to the ideal situ-
ation of a bond strength measurement without any change in
the electronic structure of a molecule. For this purpose, the
properties of a bond stretching vibration must be used to
assess quantities, which (in)directly lead to the intrinsic
strength of the bond under consideration. The stretching fre-
quency is suited for this purpose only in a limited way as it
depends on the masses of the vibrating bond atoms, which
excludes a direct comparison of the bonds of isotopomers or
in general bonds between atoms with different masses. Of

course, if the same type of bond is compared in different mole-
cules (as for the TEP) a useful comparison in terms of stretch-
ing frequencies might result.

Better suited is the associated stretching force constant as
it does not depend on the masses of the vibrating atoms and
accordingly, directly relates to the electronic structure and
intrinsic strength of a bond. In this connection, it is note-
worthy to remember the definition of the stretching force con-
stant (as well as of any other force constant relating to
bending, internal rotation or torsion, ring puckering or ring
deformation, etc.) as a second order response property being
related to the second derivative of the energy with regard to
the internal coordinate bond length. A second derivative of the
energy reflects the rate of change in the energy for an infini-
tesimal change in the molecular geometry (i.e. the bond
length). In other words, the stretching force constants gives
the curvature of the potential energy surface (PES) in the direc-
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Fig. 1 Difference between the bond dissociation energy (BDE; blue)
and the intrinsic bond dissociation energy (IBDE; dashed red line).
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tion of the infinitesimal change of bond length considered.
This implies that the force constant measures a response of
the electronic structure of the molecule without changing its
electron density exactly as it is required by the IBDE measuring
the intrinsic strength of the bond.23

2. Development of ligand electronic
parameters: the Tolman electronic
parameter

Experimentalists have used vibrational properties to describe
bonding in transition metal catalysts for a long time24–50

despite the fact that the rationalization of the use of
vibrational properties was never derived on a physically or
chemically sound basis. Vibrational force constants, although
independent of the masses, turned out to be dependent of the
coordinates used to describe a molecule, which made spectro-
scopists shy away from them51–55 and instead focused on
vibrational frequencies, which were directly available from
experiment. In the case of the transition metal complexes, M–L
frequencies appear, because of the relatively large mass of
M, in the far infrared or at least in a region difficult to analyze
because bending and other framework frequencies are also
found in this region. Therefore, the idea of a spectator ligand
came up that had a high stretching frequency well-separated
from all other frequencies and therefore easy to measure. The
bond of the spectator ligand, and thereby its stretching fre-
quency, had to be sensitive to the strength of the M–L bond or
to electronic changes in connection with ligand replacements.
Clearly, the spectator ligand had to be common to most tran-
sition metal complexes.

This idea was realized in several investigations in the 60s
where, as suitable spectator and sensor ligands, nitriles, isoni-
triles, nitrosyl and carbonyl groups were tested. The CN, NC,
NO+, or CO stretching frequency are sensitive with regard to
the electronic configuration of a transition metal complex and
a given M–L bond so that a spectroscopic (indirect) description
of the latter seemed to be possible. Strohmeier’s work on chro-
mium, vanadium, manganese, tungsten, and other com-
plexes56,57 made a lead in the field of metal–ligand investi-
gations with contributions from Fischer,58 Horrocks,59,60 and
Cotton;61–64 Strohmeier ordered transition metals according to
their π-donor ability: Cr > W > Mo > Mn > Fe. Apart from this,
a general agreement was achieved concerning the impact of
the ligand (L) on the transition metal (M). L can act as a
σ-donor and a π-acceptor according to which the electron
density is changed at M. This change can be sensed by the
spectator ligand, which provides indirect evidence on the
nature of L and the M–L bond.

Tolman65–67 was the first to provide a quantitative measure
for the M–L bond strength by limiting the investigation to ter-
tiary phosphines (L = PR3) interacting with a nickel–tricarbonyl
rest where the three CO ligands take the role of a spectator
group measuring the interaction of L with Ni. The TEP

(Tolman Electronic Parameter) is based on the A1-symmetrical
CO stretching frequency of a nickel tricarbonyl phosphine
complex where Tolman established the relationship

TEP ¼ ωðCO;Ni;A1Þ ¼ 2056:1þ pL ð1Þ

where PR3 with R = t-Bu was chosen as a suitable reference so
that pL = 0 and ω(CO,A1) = 2056.1 cm−1 results. Tolman con-
sidered P(t-Bu)3 as the most basic phosphine because of its
strong σ-donor and absent π-acceptor ability. This leads to an
increase of the electron density at Ni, which is transferred via
the d-orbitals into the antibonding π*(CO) orbitals (Fig. 2a or b).
The CO bond length is increased and the A1-symmetrical
CO stretching mode decreased to the value of 2056.1 cm−1.
Any other, less basic phosphine leads to a lower electron
density at Ni and thereby a higher CO stretching frequency
ω(L) and the ligand-specific increment pL = ω(L) − 2056.1. In
this way, the basicity of phosphine ligands could be quantified
by simply measuring the vibrational spectra (infrared or
Raman) of the corresponding phosphine–nickel–tricarbonyl.

Fig. 2 Interactions between ligand (L) and the Ni(CO)3 group: (a, b) two
different σ-donation modes from the lone-pair orbital (lp) of a phos-
phine to a 3d(Ni) orbital that transfers density to the π*(CO) orbital; (c, d)
σ-donation of, and π-back donation to a carbene; (e) π-donation from
an occupied pseudo-π orbital of EX3 (E: As, Sb, Bi; X: methyl) to an
empty 3d(Ni)-orbital; (f ) π-back-donation to the pseudo-π* orbital of
PF3; (g) E-symmetrical pseudo-π* orbitals of PF3 with partly π- and
partly σ-character; (h) E-symmetrical pseudo-π orbitals of PF3; (i) the A1-
symmetrical π(PF3)-orbital is clearly different from the pseudo-π orbitals.
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Since the A1-symmetrical CO stretching frequency is separated
from the metal, carbon stretching and bending frequencies, it
can be easily detected and measured. Furthermore, this is the
basis of Tolman’s assumption that the CO-stretching frequen-
cies are local, i.e. they do not couple with any of the other
vibrational modes and therefore the TEP can be directly used
as an electronic parameter, which does not depend on the
technical details of the measurement.

Tolman’s choice of reference was originally meant to obtain
just positive pL values, but since then the t-Bu reference has
turned out to be useful just for phosphines as Arduengo car-
benes, NHCs,68–70 are stronger σ-donors so that a TEP <
2056.1 cm−1 and a negative pL value results. The investigation
of literally hundreds of transition metal carbonyl complexes
has tested the general applicability of the original Tolman
concept. Otto and Roodt71 have fitted the CO frequencies
measured by Strohmeier for trans-[Rh(CO)ClL2] (Rh-Vaska)
complexes with the CO frequencies of Tolman’s nickel–tri-
carbonyl–phosphines and obtained a quadratic relationship,
which suggests that, besides the σ-donor activity of the trialkyl-
phosphines, for other ligands a second M–L bonding mechan-
ism in the form of a strong π-acceptor ability becomes domi-
nant. A series of 14 linear relationships between the TEP and
the CO stretching frequencies of V, Cr, Mo, W, Mn, Fe, and Rh
complexes has been published by Kühl:72

TEP ¼ aωðCO;MÞ þ b ð2Þ

where each new type of a given transition metal complex (with
the same transition metal M) required a different relationship
and the correlation coefficient R2 varied from 0.799 to 0.996.
A significant data scattering suggested that for a given transition
metal M and a given complex RnM(CO)mL (ligands R, L, and
counters m and n vary) different M–L bonding mechanisms
play a role that might be affected by the environment (solvent,
crystal state, etc.). Fig. 3 gives the current use of the TEP in
form of a TEP periodic table where the manifold of transition
metal complexes for a given M can be retrieved from the litera-
ture given in the caption of Fig. 3.

3. The adiabatic vibrational modes as
the local equivalent of the normal
modes

The normal vibrational modes in a molecule always couple.
There are only a few examples for uncoupled, not delocalized,
i.e. local vibrational modes. The bending vibration of the water
molecule is such an example of a local vibration where the fre-
quency is not contaminated by coupling contributions.
Similarly, the Ni–P stretching vibration of (CO)3Ni–PH3 is by
more than 99% uncoupled and local. In general, mode–mode
coupling depends on the orientation of the mode vectors: local
vibrational modes with orthogonal mode vectors do not
couple. Also, the difference in masses can suppress coupling.
For example, for the light–heavy–light arrangement of an
acyclic three-atom molecule, the central atom can function as
a “wall” thus largely suppressing mode–mode coupling.

There are two different coupling mechanisms between
vibrational modes as a consequence of the fact that there is a
kinetic and a potential contribution to the energy of a
vibrational mode. The electronic coupling between modes is
reflected by the off-diagonal elements of the force constant
matrix. By diagonalizing the force constant matrix Fq expressed
in terms of internal coordinates qn, electronic mode–mode
coupling is eliminated.

There have been repeated attempts to derive from measured
vibrational spectra force constants that determine the strength
of a chemical bond. These attempts failed because the normal
mode force constants depend on the internal coordinates
chosen to describe the molecular geometry and, in addition,
are still contaminated by kinematic mode–mode coupling. In
the 60s, Decius54 attempted to solve the force constant
problem by using the inverse force constant matrix Γ = (Fq)−1

and introducing the compliance constants Γnn as bond
strength descriptors. However, the relationship of the compli-
ance constants to the normal or other vibrational modes was
unclear. Hence, the compliance constants remained force con-
stants without a vibrational mode and a frequency, which is a
contradiction in itself as force constants are always associated
with a dynamic process. Also a given Γnn had off-diagonal
elements Γmn (m ≠ n), the physical meaning of which was
unclear. This led to justified criticism and questions about the
usefulness of compliance constants.116 Why were just the Γnn

terms used without considering the role of the Γmn when
chemical bonds were described? What is the physical meaning
of the compliance constants of redundant internal coordi-
nates? Answers to these questions were provided by Cremer
and co-workers117–119 who derived the equations for the local
vibrational modes in form of the local equivalent of the
Wilson equation for vibrational spectroscopy.120 They showed
that the compliance constants are model quantities and
thereby superfluous as they have to be replaced by the phys-
ically well-based properties of the local vibrational modes.

Kinematic coupling or mass coupling leads to mode–mode
coupling even then when the electronic coupling contribution

Fig. 3 Use of the TEP throughout the periodic table. Experimentally
derived TEPs have been discussed for Ni (blue: original scale)65–67,73–78

and correlated for complexes of those transition metals given in maroon
by Kühl.72 For specific references, see Pd,79–83 Pt,82,84 Co,85,86

Rh,75,87–89 Ir,75,81,90–92 Fe,87 Ru,93–98 Os,99 Re,100–102 Mn,56,57,103

Cr,59,104–107 Mo,88,77,104 W,85,108 V,57 Ti,109,110 Zr,111 Mg,57 Cu,112Au,113–115

Zn.80
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is eliminated by determining the normal vibrational modes. In
1998, Konkoli and Cremer117,121 determined for the first time
local vibrational modes directly from normal vibrational
modes by solving the mass-decoupled Euler–Lagrange
equations. Each local mode is associated with an internal co-
ordinate qn (n = 1, …, Nvib with Nvib = 3N − Σ; N: number of
atoms; Σ: number of translations and rotations), which drives
the local mode.117 Konkoli and Cremer also demonstrated that
each normal vibrational mode can be characterized in terms of
local vibrational modes, where their Characterization of
Normal Mode (CNM) method is superior to the potential
energy distribution analysis.119,121 Cremer and co-workers
developed a way of calculating from a complete set of 3N − Σ

measured fundamental frequencies the corresponding local
mode frequencies.118 In this way, one can distinguish between
calculated harmonic local mode frequencies (force constants)
and experimentally-based local mode frequencies (force con-
stants), which differ by anharmonicity effects.122,123 Zou and
co-workers124 proved that the reciprocal of the compliance con-
stant of Decius is identical with the local force constant of
Konkoli and Cremer so that for the first time the physical
meaning of the compliance constants became obvious. Zou
and co-workers proved also that the local vibrational modes of
Konkoli and Cremer are the only modes, which directly relate
to the normal vibrational modes.124

Konkoli and Cremer developed the leading parameter prin-
ciple,117 which says that for any internal, symmetry, curvi-
linear, etc. coordinate a local mode can be defined. This mode
is independent of all other internal coordinates used to
describe the geometry of a molecule, which means that it is
also independent of using redundant or non-redundant coor-
dinate sets. The number of local vibrational modes can be
larger than Nvib and therefore it is important to determine
those local modes, which are essential for the reproduction of
the normal modes. They can be determined with the help of
an Adiabatic Connection Scheme (ACS), which relates local
vibrational frequencies to normal vibrational frequencies by
increasing the scaling factor λ from zero (local frequencies) to
1 (normal frequencies). For a set of redundant internal coordi-
nates and their associated local modes, all those frequencies
converge to zero for λ → 1, which do not contribute to the
normal modes so that a set of Nvib dominant local modes
remains.124,125 In this way, a 1 : 1 relationship between local
(adiabatically relaxed) vibrational modes and normal
vibrational modes is established.124

A local stretching force constant associated with the bond
length qn is related to the second derivative of the molecular
energy with regard to qn, i.e. to the curvature of the Born–
Oppenheimer potential energy surface (PES) E(q) given in a
specific direction defined by internal coordinate qn of the
molecule in question. For an increasing qn, the bond length
becomes the coordinate of bond dissociation. Zou and
Cremer23 demonstrated that by approximating the PES in this
direction by a Morse potential and freezing the electron
density during the dissociation process, the IBDE is directly
related to the local stretching force constant, so that it is justi-

fied to consider the latter as a universal measure of the intrin-
sic strength of a bond. The adjective universal expresses the
fact that the local stretching force constant of H2 can be
directly compared with that of the UO bond in UO2 irrespective
of the type of bonding, the positioning of the bond atoms in
the periodic table, their electron shell structure (size of the
core), electronegativity, or other properties.

A frequently asked question is whether the Konkoli–Cremer
local modes can be measured. The successful measurement of
local mode frequencies is well-documented in the literature.
(i) McKean and co-workers126–128 solved the problem of obtaining
local XH stretching frequencies and force constants by synthe-
sizing isotopomers of a given molecule in such a way that all H
atoms but the target-H were replaced by D. In the corres-
ponding isotopomer, the XH stretching mode is largely
decoupled from all other modes that involve now the much
heavier D atoms. McKean and co-workers126–128 measured
so-called isolated XH stretching frequencies, which reasonably
approximate the local mode frequencies.129

(ii) Henry130 obtained local mode information for the CH
stretching vibrations from overtone spectra. Intracavity dye
laser photoacoustic spectroscopy uses sophisticated tech-
niques to enhance the signal-to-noise ratio in the overtone
spectra130 so that overtones of XH stretching vibrations with
Δv = 5 or 6 can be measured. For overtones with Δv = 5,6, one
observes mostly one band for each unique XH bond, even if
there are several symmetry equivalent XH bonds in the mole-
cule. For fundamental and lower overtone modes, there is
always a splitting of the frequency into symmetry-paired fre-
quencies (e.g., a symmetric and an antisymmetric mode fre-
quency of two symmetry equivalent XH stretching modes), but
this splitting virtually disappears for overtones with Δv ≥ 5. In
general, the different linear combinations of symmetry equi-
valent XH stretchings become effectively degenerate for the
higher overtones so that these provide an insight into the local
mode nature of the corresponding stretching mode. Kraka and
co-workers119 correlated the measured frequencies for the fifth
overtone of CH stretchings of alkanes, alkenes, and aromatic
molecules131–133 with the corresponding calculated harmonic
local modes and found a linear relationship (R2 = 0.99)
between these quantities thus confirming the local mode
nature of Henry’s overtone local modes.130

(iii) The water bending mode and other examples such as
the Ni–P stretching mode and PH3 torsional mode (see below)
seem to be local modes due to a favorable light–heavy–light
combinations of atom masses and/or an orthogonal arrange-
ment of the mode vectors. This happens frequently. However,
for the detection of these modes, one needs the Konkoli–
Cremer CNM method.121

Before discussing the basic equations of the local mode
theory, it is useful to point out that the term local mode has
been used by different authors in different ways. (i) In the
Konkoli–Cremer method, the local vibrational modes are the
unique and only equivalents of the normal modes that are
obtained using the Wilson equation as the basic equation of
vibrational spectroscopy. The Konkoli–Cremer local modes are
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related to the isolated modes of McKean,126 which represent
good approximations of the former.

(ii) Henry and co-workers130,134–137 used the term local
modes in connection with local mode (an)harmonic oscillator
models to describe the overtones of XH stretching modes.
Therefore, microwave spectroscopists and other experimental-
ists refer to local modes in connection with overtone
spectroscopy.

(iii) Reiher and co-workers138–140 calculate unitarily trans-
formed normal modes associated with a given band in the
vibrational spectrum of a polymer where the criteria for the
transformation are inspired by those applied for the localiz-
ation of molecular orbitals. The authors speak in this case of
local vibrational modes because the modes are localized in
just a few units of a polymer. These so-called localized modes
are still delocalized within the polymer units.

(iv) In solid state physics, the vibrational modes of an
impurity in a solid material are called local modes.141,142

4. Theory of local vibrational modes

The Wilson equation of vibrational spectroscopy is given by
eqn (3):120,143,144

FxL̃ ¼ ML̃Λ ð3Þ
where Fx is the force constant matrix expressed in Cartesian
coordinates xi (i = 1, … 3N), M the mass matrix, matrix L̃ col-
lects the vibrational eigenvectors l̃μ in its columns, and Λ is a
diagonal matrix with the eigenvalues λμ, which lead to the
(harmonic) vibrational frequencies ωμ according to λμ =
4π2c2ωμ

2. In eqn (3), the number of vibrational modes is given
by Nvib, i.e. Σ translational and rotational motions of the mole-
cule are already eliminated. The tilde above a vector or matrix
symbol indicates mass weighting. By diagonalizing the force
constant matrix according to L̃†FxL̃ = Λ the normal mode
eigenvectors and eigenvalues are obtained.

Usually, the normal mode vectors l̃μ are re-normalized
according to L = L̃(MR)1/2 where the elements of the mass
matrix MR are given by mμ

R = (l̃†μ l̃μ)
−1 and represent the reduced

mass of mode μ. eqn (3) can be written in different ways. For
example, if one leaves out mass-weighting as in

FxL ¼ MLΛ ð4Þ
one gets L†FxL = K and L†ML = MR, which define the diagonal
normal force constant matrix K and the reduced mass matrix
MR, respectively.

One can express the molecular geometry in terms of
internal coordinates qn rather than Cartesian coordinates xn
and through this way, one gets the Wilson equation in a new
form:120

FqD̃ ¼ G�1D̃Λ ð5Þ
where D̃ collects columnwise the normal mode vectors d̃μ (μ =
1, …, Nvib), and matrix G = BM−1B† (Wilson matrix) gives the

kinetic energy in terms of internal coordinates.120 The eigen-
vector matrix D̃ has the property to diagonalize Fq and to give
D̃†FqD̃ = Λ. If one does not mass-weight the matrix D, and
works with bf FqD = G−1DΛ, diagonalization leads to D†FqD = K.

Properties of a local mode

The local mode vector an associated with the internal coordi-
nate qn (n = 1, …, Npara with Npara being the number of internal
coordinates to specify the molecular geometry), which leads
the mode, is given by117

an ¼ K�1d†n
dnK�1d†n

ð6Þ

where the local mode is expressed in terms of normal coordi-
nates Qμ. K is the diagonal normal mode force constant matrix
(see above) and dn a row vector of the matrix D. The local
mode force constant kan of mode n (superscript a denotes an
adiabatically relaxed, i.e. local mode) is obtained with eqn (7):

kan ¼ a†nKan ¼ ðdnK�1d†
nÞ�1 ð7Þ

Local mode force constants, contrary to normal mode force
constants, have the advantage of being independent of the
choice of the coordinates to describe the molecule in ques-
tion.117,118 In recent work, Zou and co-workers proved that the
compliance constants Γnn of Decius

54 are simply the reciprocal
of the local mode force constants: kan = 1/Γnn.

124,125

The reduced mass of the local mode an is given by the diag-
onal element Gnn of the G-matrix.117 Local mode force constant
and mass are needed to determine the local mode frequency ωa

n

ðωa
nÞ2 ¼

1
4π2c2

kanGnn ð8Þ

Apart from these properties, it is straightforward to deter-
mine the local mode infrared intensity or the Raman
intensity.145

Adiabatic connection scheme (ACS) relating local to normal
mode frequencies.

With the help of the compliance matrix Γq = (Fq)−1, the
vibrational eigenvalue eqn (5) can be expressed as124

ðΓqÞ�1D̃ ¼ G�1D̃Λ ð9Þ

GR̃ ¼ ΓqR̃Λ ð10Þ
where a new eigenvector matrix R̃ is given by

R̃ ¼ ðΓqÞ�1D̃ ¼ FqD̃ ¼ ðD̃�1Þ†K ð11Þ
Zou and co-workers partitioned the matrices Γq and G into

diagonal (Γq
d and Gd) and off-diagonal parts (Γq

od and God):
124

Gd þ λ Godð Þ R̃λ ¼ Γ
q

d þ λ Γq
od

� �
R̃λΛλ ð12Þ

The off-diagonal parts can be successively switched on by
increasing a scaling factor λ from zero to one so that the local
modes given by the diagonal parts (λ = 0) are adiabatically con-
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verted into normal modes defined by λ = 1. Each λ defines a
specific set of eigenvectors and eigenvalues collected in R̃λ and
Λλ, respectively, eqn (12) is the basis for the ACS.

As an example, the 27 normal modes of (CO)3Ni–PH3 are
decomposed into 27 local modes and represented in a bar
diagram where each bar corresponds to a normal mode displa-
cement vector dμ (Fig. 4). The local modes are color-coded
(right side of Fig. 4). Their contribution to a given normal
mode can be determined by the colors and the percentage
numbers given in the bars, the length of which corresponds to
100%. In Fig. 5, the corresponding ACS is shown. For λ = 1, the
normal mode frequencies ωμ and the symmetries of the associ-
ated normal mode vectors are shown. Normal mode frequen-
cies at λ = 1 are connected with local mode frequencies at λ = 0
by colored lines (red: A1; blue: A2; black: E symmetry) where
the changes in the frequencies reflects kinematic coupling.
The coupling of the CO stretching frequencies is significant
and leads to a 53 cm−1 increase. This increase reveals that CO
stretching is no longer local as all three CO stretching modes
couple with each other. Hence, the TEP will be only reliable if
the increase in the A1-mode frequency is constant for all
(CO)3Ni–L complexes.

5. Deficiencies of ligand electronic
parameters

Kalescky and co-workers147 investigated the measured
vibrational frequencies of the three transition metal carbonyls
Ni(CO)4 (Td), Fe(CO)5 (D3h), and Mo(CO)6 (Oh) that have 21, 27,
and 33 vibrational modes. In Table 1, the experimental normal
CO and MC stretching frequencies ωμ are given together with
their symmetries. Also listed are the corresponding CO and

MC local stretching frequencies ωa and associated stretching
force constants ka. The deviation of the ωμ from the ωa defines
the coupling frequencies ωcoup and thereby the degree of
mode–mode coupling. In the highly symmetrical transition
metal carbonyls Ni(CO)4, Fe(CO)5, and Mo(CO)6, Tolman
would have expected zero-coupling for the A1(A′1,A1g)-sym-
metrical CO stretching frequencies. Instead, CO,MC and CO,
CMC-coupling leads to contamination of these frequencies by
69, 74, 24, and 101 cm−1 (Table 1; for Fe(CO)5, both the equa-
torial and axial A′1-symmetrical modes are considered). These
are small deviations in view of the CO stretching frequencies
of 2132, 2121, 2042, and 2121 cm−1 (Table 1; see also Fig. 6).
However, the TEP normally varies by far less than 100 cm−1

(variation of the TEP for phosphines: 31 cm−1)72 and therefore
coupling frequencies of as much as 100 cm−1 are large.
Problematic is also that for each of the three complexes com-
pared in Table 1 a different coupling frequency is obtained,
which makes the TEP highly erratic and thereby questionable.

The TEP and mode–mode coupling

A potential contamination of the CO stretching frequencies
due to coupling was already considered by Crabtree and co-

Fig. 4 Decomposition of the 27 normal vibrational modes of (CO)3Ni–
PH3 into 27 local vibrational modes. Each of the 27 normal mode
vectors dμ is represented by a bar (mode number, symmetry, and calcu-
lated frequencies146 are given at the top or bottom of each bar), which is
decomposed in terms of 27 local mode vectors an. The local mode para-
meters are presented in the form of a color code (right side of diagram;
for numbering of atoms, see diagram in the lower right corner.)
Contributions larger than 5% are given within the partial bars represent-
ing a local mode.

Fig. 5 Adiabatic connections scheme (ACS) of the 27 local vibrational
modes of (CO)3Ni–PH3 as they are converted into 27 normal vibrational
modes by changing the perturbation parameter λ from 0 to 1. The upper
(CO stretching) and lower frequency ranges, respectively, are shown.
The middle part from 600 to 2100 cm−1 of the ACS is not given. It con-
tains local mode frequencies ωa(19,20) (HPH bending transforming into
normal modes ω20,21(E)) and ωa(2,3,4) (NiC stretching transforming into
normal modes ω15,17,18(E)). The A1-symmetrical Ni–P stretching mode at
263 (red color) turns out to have a largely local mode character. For the
decomposition of normal modes into local modes, compare with Fig. 4.

Dalton Transactions Perspective

This journal is © The Royal Society of Chemistry 2017 Dalton Trans., 2017, 46, 8323–8338 | 8329

Pu
bl

is
he

d 
on

 0
7 

M
ar

ch
 2

01
7.

 D
ow

nl
oa

de
d 

by
 S

ou
th

er
n 

M
et

ho
di

st
 U

ni
ve

rs
ity

 o
n 

16
/0

9/
20

17
 2

3:
54

:2
7.

 
View Article Online

http://dx.doi.org/10.1039/C7DT00178A


workers73 who tried to computationally correct the CO stretch-
ing frequencies of 65 nickel-tricarbonyl complexes Ni(CO)3–L.
However, their attempt to eliminate mode–mode coupling by
manipulating the Hessian of calculated energy second deriva-
tives failed to remove the kinematic coupling between the CO
stretching vibrations and other vibrations as was pointed out
by Kalescky and co-workers.147 These authors solved the coup-
ling problem by utilizing the Konkoli–Cremer local vibrational
modes and obtained for the first time decoupled CO stretching
modes. Their TEP results are summarized in Fig. 7 for 65
nickel-tricarbonyl complexes (CO)3Ni–L.

147 If the TEP would be

without any coupling errors, data points would be found along
the dashed line, which defines mode-decoupled, i.e. local TEP
values. Instead data points (experimental: brown color; calcu-
lated: green color, Fig. 7) suggest more positive TEP values
with decreasing local CO stretching frequency. Or in other
words: a lower CO stretching frequency does not necessarily
indicate a stronger Ni–CO π-back-bonding, but a larger mode–
mode coupling. This holds for both measured and calculated
TEP values.

This is confirmed when comparing coupling frequencies
(the errors of the TEP values) directly with local CO stretching

Table 1 CO and MC experimental normal mode frequencies ωμ and the corresponding local mode force constants kan, local mode frequencies ωa
n,

and coupling frequencies ωcoup of Ni(CO)4, Fe(CO)5 and Mo(CO)6
147

Molecule, symmetrya μ Sym.b ωμ [cm
−1] Parameter ka [mdyn Å−1] ωa [cm−1] ωcoup [cm

−1]

Ni(CO)4, Td (21) 21 A1 2132 CO 17.195 2063 69
20 T2 2058 CO 17.195 2063 −5
17 T2 459 NiC 1.900 570 −111
9 A1 371 NiC 1.900 570 −199

Fe(CO)5, D3h (27) 27 A′1 2121 CO 16.924 2047 74
26 A′1 2042 CO 16.456 2018 24
25 A″2 2034 CO 16.924 2047 −13
24 E′ 2013 CO 16.456 2019 −6
22 E′ 645 FeC 2.458 650 −5
20 A″2 619 FeC 2.510 657 −38
14 A′1 443 FeC 2.510 657 −214
11 A′1 413 FeC 2.458 650 −237

Mo(CO)6, Oh (33) 33 A1g 2121 CO 16.482 2020 101
32 Eg 2025 CO 16.482 2020 5
30 T1u 2003 CO 16.482 2020 −17
18 A1g 391 MoC 1.782 532 −141
17 Eg 381 MoC 1.782 532 −151
15 T1u 367 MoC 1.782 532 −165

aNumber of normal modes in parentheses. b Sym. denotes the symmetry of the normal mode.

Fig. 6 ACS diagrams of (a, b) Ni(CO)4, (c, d) Fe(CO)5, and (e, f ) Mo(CO)6. The upper diagrams show exclusively the CO stretching modes, whereas
the lower diagrams show the M–C and other vibrational modes.147

Perspective Dalton Transactions

8330 | Dalton Trans., 2017, 46, 8323–8338 This journal is © The Royal Society of Chemistry 2017

Pu
bl

is
he

d 
on

 0
7 

M
ar

ch
 2

01
7.

 D
ow

nl
oa

de
d 

by
 S

ou
th

er
n 

M
et

ho
di

st
 U

ni
ve

rs
ity

 o
n 

16
/0

9/
20

17
 2

3:
54

:2
7.

 
View Article Online

http://dx.doi.org/10.1039/C7DT00178A


frequencies in Fig. 8. Anionic ligands with strong σ and/or
π-donor capacity lead to the largest errors as Ni–CO π-back
bonding is connected with a change in the Ni–C bond and an
increase of Ni–C,CO coupling. This means that for neutral and
anionic L, TEP errors of 40–100 cm−1 can be expected that
make the use of the uncorrected TEP highly questionable. It
seems that more electronegative ligands lead to higher TEP
errors. Cationic ligands such as NO+ or HC+ give more reliable
TEP values. As becomes obvious from an inspection of Fig. 8,
there is no simple correction of TEP values.

Mode–mode coupling cannot be predicted without using
local vibrational modes because it depends on the nature of
the M–L bond, the mass of L, the symmetry of the complex,
and its geometry. If for a given complex all Nvib vibrational fre-
quencies are known, it is easy to determine the local CO
stretching frequencies from measured normal mode frequen-
cies as in the case of the three complexes of Table 1. For larger
complexes, this becomes more and more difficult where
however missing frequencies can be calculated using the har-

monic approximation and then adding anharmonicity correc-
tions. Such a procedure would guarantee mode-coupling cor-
rected TEP values. However, the following question has to be
considered in such a case: does it makes sense to use the TEP
as an indirect descriptor of the M–L bond? If one is able to get
the local CO stretching frequencies from measured frequen-
cies, one can get, without any extra work, the local M–L stretch-
ing frequency. As frequencies depend on the reduced masses,
one determines together with the local CO and M–L stretching
frequencies ωa also the corresponding local stretching force
constants ka, which can be directly compared. This makes it
possible to assess the usefulness of Tolman’s idea to describe
M–L bonding utilizing the bond properties of the remote CO
ligand.

Is there a relationship between the intrinsic strength of CuO
and M–L bonding in transition metal carbonyl complexes?

This question was investigated by Setiawan and co-workers146

who determined the local mode properties of 181 L–NiCO3

complexes. In this connection, they compared the local Ni–L
and CO stretching force constants, which should be closely
related to justify the use of the TEP. The results of this investi-
gation are summarized in Fig. 9 where the local stretching
force constants ka are compared. Clearly, there is no general
relationship between ka(CO) and ka(NiL) contrary to Tolman’s
assumption. Subsets of data points belonging to a well-defined
type of ligand may be connected by a linear relationship, but

Fig. 7 Mode–mode coupling in nickel-tricarbonyl complexes leads to
an erroneous TEP.147

Fig. 8 CO Mode–mode coupling frequencies compared with the
correct local CO stretching frequencies.147

Fig. 9 There is no general relationship between the local TEP given by
the local CO stretching force constant ka(CO) and the intrinsic Ni–L
bond strength given by the local Ni–L stretching force constant
ka(NiL).146 Some possible relationships are indicated by dashed blue
lines. Each group of ligands is indicated by a colored symbol; NI: nitro-
gen and cyano; N: amines; NS: amines with steric hindrance; P: phos-
phines; PS: phosphines with steric hindrance; As: arsines; AsS: arsines
with steric hindrance; Sb: stilbines; SbS: stilbines with steric hindrance;
Bi: bismuthines; BiS: bismuthines with steric hindrance; B: boron com-
pounds; C: carbonyl, thiocarbonyl; CA: carbenes; CR: Arduengo car-
benes; O: water and ethers; S: thioethers; η: haptic ligands; X: halogens;
BQ: boron anions; CQ: carbanions; CW: carbocations; NQ: nitronium
anions; NW: nitronium cations; OQ: hydroxides; SiQ: silicon anions; SiW:
silicon cations; PQ: phosphonium anions; SQ: thiohydrides.
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these relationships are different for different ligand types as is
indicated in Fig. 9 by the different dashed lines. Some of these
lines suggest an inverse relationship (a stronger Ni–L bond
leads to a weaker CO bond), whereas others predict an increase
of the CO bond strength with increasing NiL bond strength. In
general, data point scattering is too large to derive any reliable
mode of prediction. Even for the phosphines one has to dis-
tinguish between normal trialkyl phosphines (purple filled
dots in Fig. 9), phosphines with electronegative substituents,
and those with bulky substituents (sterically hindered phos-
phines, open green circles).

Since a general relationship between the intrinsic strength
of the Ni–L bond and that of the CO bond is missing, the
basic assumption of the TEP evaporates and the whole concept
collapses. Hence, the TEP can be considered the result of an
oversimplified bonding model. In view of the hundreds of TEP
investigations, this is puzzling because adding more and more
TEP investigations to the existing TEP literature does not make
the deficiencies of Tolman’s model vanish. The answer to this
puzzle is simple. In most investigations the number of ligands
considered was far smaller (often not more than 20) than the
181 ligands of the Setiawan investigation. If ligands have
similar electronic properties (e.g., the halogenides, the trialkyl-
phosphines, etc.) a relationship might result, which for a
larger set of ligands does not exist.

Tolman expected a reverse relationship between the M–L
and CO bond strength. Any increase of the electron density at
the metal atom leads to increased π-back donation, an
increased population of the CO antibonding π-orbital, and a
weakening of the CO bond that can be associated with a lower
CO stretching frequency. According to Tolman, any increase of
the electron density at M would indicate a stronger M–L bond
due to stronger σ- or π-donation of L to M. This bonding
model has to be strongly revised to capture the true electronic
coupling between M–L and CO bond strength. Apart from this,
there is no need to unravel this complicated relationship as
the availability of ka(NiL) provides a direct measure derived
from experimental or calculated frequencies, which is far
better than any indirect measure such as the TEP.

6. Application of the local vibrational
modes: the metal–ligand electronic
parameter MLEP

Tolman chose the A1-symmetrical CO stretching frequency
because it can be easily measured in nearly all cases.
Nowadays, accurate vibrational frequencies can be determined
in the far-infrared utilizing Terahertz spectroscopy or depolar-
ized Raman scattering. In view of the recent advances in
Terahertz spectroscopy,148–150 far infrared absorptions down to
40 cm−1 can be measured, which includes the range where the
measurement of the ML stretching frequencies becomes feas-
ible. The local MC stretching frequencies of Ni(CO)4, Fe(CO)5,
and Mo(CO)6 are 570, 650, 656, and 532 cm−1 and in each case

they are clearly separated from other local frequencies (Fig. 6:
MC stretching frequencies are at the upper left part of (b), (d),
and (f ). This is not the case for the corresponding normal
mode frequencies, which by kinematic coupling mix with the
MCO bending modes (Fig. 6). This is caused by avoided cross-
ings of the T2-symmetrical modes 12–14 and 15–17 of Ni(CO)4,
the A″2- (20 and 15) and T2-symmetrical modes (12–14 and
15–17) of Fe(CO)5, and the A″2- (20 and 15) and E’-symmetrical
modes (21, 22 and 16, 17) of Mo(CO)6 in the range 0.90 < λ <
0.95 (see Fig. 6). This makes a direct use of the normal mode
frequencies for the characterization of the M–C bonds
impossible.

One can apply far infrared spectroscopy in connection with
the local mode analysis of Konkoli and Cremer and determine
the local ML stretching force constants ka utilizing measured
frequencies118,122,123 and use the ka(ML) values (Ni: 1.900;
Fe: 2.458 (e), 2.510 (a); Mo: 1.782 mdyn Å−1, Table 1) rather
than the TEP as a reliable M–L describing electronic parameter
(called by Setiawan and co-workers MLEP146). In this way, it
becomes obvious the Fe–C bonds are the stronger ones and
that the axial bonds in Fe(CO)5 are slightly stronger than the
equatorial ones, which is confirmed by the electron diffraction
results in the gas phase (1.806 (ax) vs. 1.827 Å (eq.)),151 but not
by the X-ray diffraction analysis.152

Alternatively, one can calculate ka(ML) values using accurate
quantum chemical methods. Once the local ML stretching
force constant ka(ML) has been determined, one can simplify
the comparison by deriving bond strength order (BSO) values
n.18,21,153 The basis for this approach was laid by extending the
Badger rule, which predicts for diatomic molecules a power
relationship between stretching force constants and bond
lengths.21,154 By using local stretching force constants and by
replacing bond lengths by BSO values, the Badger relationship
can also be applied to the bonds of polyatomic molecules.
This could lead to a universal power relationship provided its
form would be known. Instead the Badger relationship is used
in an extended form, which says that different bonds between
atoms of the same period found in polyatomic molecules can
be described by one common power relationship relating local
mode stretching force constants to BSO values as suitable
bond strength descriptors. In this way, the range of different
bonds investigated is reduced so that a larger accuracy results.
An even better description in terms of BSO values n is guaran-
teed if just one type of bonding (e.g., CO bonding) is com-
pared. It is convenient to take the CO bond in methanol (n = 1)
and that in formaldehyde (n = 2) as reference bonds to deter-
mine the constants a and b of the power relationship

n ¼ aðk aÞb ð13Þ

As a third condition, it is required that a force constant of
zero leads to an n value of zero. Reference molecules and
target molecules must be described in the same way to guaran-
tee that reasonable BSO values result. For this reason, it is not
useful to mix experimental and calculated frequencies for
obtaining BSO values. Reliable quantum chemical methods
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always lead to the same order of BSO values, i.e. the depen-
dence on method and basis set is reduced. However, if the
quantum chemical method in question is unable to describe
the target and/or reference molecule, questionable BSO values
will result.

There is always the problem of finding suitable reference
bonds for non-covalent or transition metal bonds. In recent
work, this problem was circumvented by using for two suitable
reference molecules Mayer or Wiberg bond orders155,156 (e.g.,
CuCH3 and NiCH2 as molecules being close to a M–C single
and a MvC double bond) and defining the BSO relationship
with the help of these reference values.146

In Fig. 10, the relative BSO values of 181 NiL bonds are
given as a power relationship of the calculated local stretching
force constants ka(NiY).146 The majority of BSO values are rela-
tively weak having 0 < n < 0.75. The number of Ni–L single
bonds (0.75 < n < 1.25) is limited to the group of carbenes
whereas the interactions between ions (NO+, CH+, NS+, NSe+)
and nickel lead to strong bonding with n > 1.25. The latter is
the result of the fact that σ-donor and π-acceptor ability
support each other (Fig. 2c and d).

Setiawan and co-workers146 define the MLEP to be identical
to the BSO values n being calculated with the same quantum
chemical method and the same basis set. For another tran-
sition metal M, a different BSO relationship might be chosen.
However, different power relationships can be easily merged
by merging the reference bonds. In this way, the MLEP is an
electronic parameter that does no longer depend on the
masses of the atoms as the TEP, which cannot be merged with
the results obtained for nitrosyl or nitrile ligands used as spec-
tators as the reduced masses are different. Furthermore, the
MLEP is a parameter that directly provides the intrinsic
strength of M–L bond rather than that of another bond (TEP:
CO bond), which is related to the M–L bond via a complicated
bonding mechanism that cannot be necessarily predicted.

Intrinsic strength of nickel–phosphine bonding

In Fig. 11, the MLEP values of 20 phosphines are compared
where both normal trialkyl phosphines, phosphines with
electronegative substituents, and those with bulky substituents
are included into the comparison. The MLEP values vary from
0.38 to 0.64 thus indicating that nickel–phosphine bonding is
a relative soft bonding, which results primarily from the
σ-donor property of the phosphine that increases the number
of Ni valence electrons to 18.

As the H atoms in phosphine, PH3, are more electronegative
than P, the σ-donor capacity of the phosphine is reduced and
an MLEP value of just 0.431 results. As shown by the bar
diagram in Fig. 4, the Ni–P stretching mode (yellow bar) seems
to not couple with any other vibrational mode, which is most
likely a consequence of the mass ratios that represent a light
(CO)-heavy (NiP)-light(H3) situation. In so far, the A1-symmetri-
cal Ni–P stretching mode frequency seems to be local, which
implies that its associated stretching force constant can be
directly used to determine the MLEP. Closer inspection of the
ACS diagram in Fig. 5 reveals that kinematic coupling leads to
a small change in the Ni–P stretching frequency, which has to
be considered when determining the MLEP.

If the σ-donor capacity of a phosphine ligand is reduced by
electronegative substituents, the MLEP should be reduced.
However, for L = PF3, one of the largest MLEP values (0.604
(ref. 146)) for phosphines is found. Setiawan and co-workers146

determined the MLEP values of the nickel–ligand to increase
in the order: PAt3 < PI3 < PH3 < PBr3 < PCl3 < PF3. This can be
explained by considering that PF3 has low-lying pseudo-π*(PF)
orbitals that can obtain negative charge from the d(Ni) lone
pair orbitals as is shown in Fig. 2f. The Ni–P bond is strength-
ened despite a reduced σ-donor ability of PF3. Delocalization
of a 3d(Ni) electron lone pair into a low-lying pseudo-π*(PX3)
orbital leads to an MLEP decrease with decreasing electro-
negativity of X from F (0.604) to At (0.386). This is in line with
the energy increase of the pseudo-π*(PX3) orbital (X = F, Cl, Br,
I, At) and the reduced overlap between the 3d(Ni)-orbital and

Fig. 10 The BSO value n(NiL) of Ni–L bonds given as a function of the
local Ni–L stretching force constant ka(NiL) using the equation n =
0.480 × (ka)0.984 Regions of very weak, weak, normal, strong, and very
strong Ni–L bonds are indicated by colored shading.146

Fig. 11 Tolman’s phosphines: the BSO value of Ni–P bonds given as a
function of the local Ni–L stretching frequency.146
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the 3pπ(P)-orbitals contributing to the pseudo-π*(PX3)-orbital.
The 3pπ(P)-coefficient of the pseudo-π*(PX3) orbital is large (see
Fig. 2g) if the PX bond polarity is large (as a result of the ortho-
gonality between pseudo-π(PXm) and pseudo-π*(PXm) orbital),
i.e. the larger electronegativity of X causes a larger overlap, stron-
ger back-donation to the ligand and thereby a larger Ni–L bond
strength. Hence, back donation to L must decrease in the series
F, Cl, Br, H ∼ I, At. One has also to consider a possible π-donor
activity of the ligand involving an occupied pseudo-π orbital pro-
vided it has sufficient overlap and the orbital energy is in the
range of that of the d(Ni) orbitals (Fig. 2e and h). This can cer-
tainly happen for E = As, Sb, Bi if the pnicogen substituents are
alkyl groups. Apart from this, a 4e repulsive interaction with the
occupied d(Ni) orbitals has also to be considered.

Since σ-bonding should increase from F(electronegativity χ

= 4.10 (ref. 157 and 158)) to Cl (2.83), Br (2.74), H (2.20) ∼ I
(2.21), and At (1.90), i.e. opposite to the observed trend, π-back
donation to the trihalogenophosphine must be decisive over-
ruling σ-donation. Other electronic effects such as steric bulk
(increasing from PH3 to PAt3 and thereby weakening the Ni–L
bond) or the relativistic contraction of the 5s(I), 5p(I) (or
6s(At), 6p(At)) orbitals, which leads to a smaller 3pπ(P) coeffi-
cient in the pseudo-π*(PX3) orbital and reduced back-donation
from Ni to L, also play a role. These effects cannot be revealed
by the TEP that decreases from 2140 (PF3) to 2135 (PCl3), 2133
(PBr3), 2129 (PI3), and 2127 cm−1 (PAt3) thus suggesting an
increase rather than decrease of the Ni–L bond strength. The
unusually strong Ni–P bond for the PF2H ligand (0.638,
Fig. 11) is the result of a favorable compromise between a
limited weakening of the σ-donation effect ( just two electro-
negative F substituents) and still strong π-back donation into
the pseudo-π*(PHF2) orbitals.

The change in the MLEP quantitatively reflects the intrinsic
strength of the Ni–L bond as it results from electronic and/or
steric effects. There is no need to include another electronic
parameter that measures the steric bulk of a ligand as in the
case of Tolman’s cone angle θ.65,67 The MLEP includes all elec-
tronic effects that influence the intrinsic strength of the M–L
bond and thereby also any steric influence. In the series
PH2Me (0.454) < PHMe2 (0.482) < PMe3 (0.512) ∼ PMe2CF3,
σ-donation increases as a result of the donor-effect of the
methyl group(s) whereas steric effects should play only a
minor role. A phosphine with a CF3 benefits from π-back
donation thus balancing the reduction of σ-donation caused
by the electronegative CF3-substituent.

Steric repulsion between L and the carbonyl ligands plays a
role in the case of PEt3 (MLEP: 0.476; Fig. 11) and PPh3

(0.475). Even lower values of 0.461 for P(NMe2)3 and 0.358 for
P(C6F5)3 are due to steric interactions that weaken the Ni–P
bond. These are documented by close contact between phos-
phine substituents and/or carbonyl atoms. P(C6F5)3: repulsive
interaction between the negatively charged, o-positioned F
atoms at different phenyl groups; repulsion between F and
O(C) atoms; P(NMe2)3: repulsion between positively charged H
atoms of the methyl groups located at different amino groups
and between the negatively charged N atoms. Tolman67 saw

the necessity of complementing the CO stretching frequency
by a cone angle that provides a qualitative measure for the
steric effect of a ligand. However, a quantitative relationship
between a cone angle and the strength of a metal–ligand bond
is difficult to find and becomes superfluous as the MLEP
based on the local Ni–L stretching force constant includes all
electronic and steric factors influencing the ML bond strength.

As shown for the phosphines (Fig. 11), the MLEP can be
easily determined for any other metal–ligand bond. Setiawan
and co-workers146 investigated the nickel-tricarbonyl-phosphines
alongside the corresponding amines, arsines, stibines, and bis-
muthines. Apart from this, carbenes (especially Arduengo car-
benes), dialkylethers and alkylthioethers, haptic ligands, halo-
gens, boron ligands, cations and anions were studied. The
authors showed that the MLEP, in contrast to the TEP, can easily
be extended to any other M (including all those shown in the
TEP periodic table of Fig. 1) and any other ligand L.

7. General use of the MLEP

With a few exceptions, the TEP has been limited to the descrip-
tion of transition metal carbonyl complexes. The MLEP can be
determined for any metal or transition metal complex,
whether it contains CO ligands or not. This is demonstrated in
Fig. 12 for a collection of metal and transition metal
complexes.17

Setiawan and co-workers17 investigated Pb–F and Pb–C
single bonds in methylated lead molecules of the type
(CH3)nPb(II)F(2−n) (n = 0–2, 1–3) and (CH3)nPb(IV)F(4−n) (n = 0–4,
4–7), Ti–P bonds in P(CH3)3, P(OC2H5)3, and PF3 adducts of
open titanocene, Ti(η5-2,4-C7H11)2 (8–11), and Cr–H or Cr⋯π
bonds in chromium(II) hydride (12), chromocene (13), and
cyclopentadienyl hydrides 14–17 (see Fig. 12). These authors
used quantum chemical calculations to calculate the local M–L

Fig. 12 Application of the MLEP to metal and transition metal com-
plexes.17 MLEP values for Pb–C in blue, Pb–F in green, Ti–P in purple,
Cr–H in blue, Ti⋯π in blue, and Cr⋯π in grape color. The corresponding
local stretching frequencies are given in cm−1 and brown color.
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stretching force constants, which makes it possible to deter-
mine the MLEP for each of the M–L bonds utilizing the power
relationship given in Fig. 10. In Fig. 12, selected MLEP values
are given for Pb–F (green) and Pb–C bonds (blue), which nicely
reflect the increase in strength of the Pb–F bond with increas-
ing fluorination and increasing polarity of the Pb–F bond.
Other examples are the Ti–P bonds (purple), which increase
with increasing electronegativity of the phosphine substitu-
ents, or the Cr–H bonds (blue), which depend on the elec-
tronic nature of the other ligands and the steric arrangement
of the cyclopentadienyl anion ligand(s).

Finally, it is important to emphasize that the MLEP also
provides a reliable measurement for the interaction of a metal
atom with an aromatic ligand via the M⋯π stretching force con-
stant. The latter is determined for the shortest distance between
the metal atom and the π-system (Ti or Cr, grape color; Fig. 12).
A strong interaction is determined for 16 where one has to con-
sider that the Cu–C bond in CuCH3 and the NivC bond in
NiCH2 are used as reference bonds.146 Also shown in Fig. 12 are
the local stretching frequencies (brown color) as they provide
evidence for the normal mode frequency that is dominated by
M–L stretching. All local frequency values are in the far infrared,
which makes, in most cases, Terahertz spectroscopy a valuable
source for the experimentally determined MLEP.

8. Conclusions

The idea of inventing a simple spectroscopic means, in the
form of the CO-stretching frequency (TEP), to describe the
metal–ligand bond is appealing, as it could be used to single
out those ligands that can be easily replaced in the course of a
catalytic reaction. However, there are two fundamental pro-
blems that make the TEP a questionable, largely misleading
parameter. First, there is mode–mode coupling between CO
and M–C stretching vibrations that leads to coupling errors,
which are larger (20–200 cm−1)146 than the variation in the
TEP. Second, the relationship between the M–L bond strength
and TEP considered by Tolman as a key electronic feature of
transition metal carbonyl complexes (CO)nMLm is neither
quantitatively nor qualitatively fulfilled for M–L because the
electronic bonding mechanism is more complicated than
described by Tolman67 or in textbooks of inorganic chemistry.

This does not exclude that the basic assumptions of
Tolman was and still is a valuable one. Vibrational spec-
troscopy, in the form of infrared, Raman, or the more modern
Terahertz spectroscopy, provides sensitive tools to describe the
electronic structure of any transition metal complex or any
catalyst in general. There is only the necessity to convert
measured normal mode frequencies into local mode frequen-
cies utilizing the Konkoli–Cremer procedure and then deriving
all other local mode properties needed, especially the local
stretching force constants that reflect, in a universal way, the
intrinsic strength of any bond.

The local stretching force constants ka(M–L) can be easily
converted into relative bond strength orders (BSOs) which

provide a useful ordering of chemical bonds according to their
strength. The MLEP is set equal to the BSO value and can, in
this form, be easily compared from one M–L bond type to the
other. This procedure can be carried out with measured or cal-
culated data where, in the former case, a conversion from the
normal mode into the local mode frequencies has to be
carried out using suitable normal modes.118

Five different electronic effects have been identified, the
interplay of which determines the strength of an M–L bond: (i)
σ-donation of the ligand, (ii) steric interactions of the ligand
with the M(CO)n group, (iii) π-acceptor abilities of the ligand
leading to delocalization of 3d(M) electrons, (iv) π-Donor abil-
ities of the ligand leading to delocalization of the L electrons
into empty M orbitals, and (v) scalar relativistic effects, of M or
L being a “relativistic” element, which reduce the σ-donor
capacity of the ligand besides also changing the π-acceptor
and π-donor abilities.

Destabilizing steric interactions between L and an M(CO)n
group are directly determined by the MLEP and do not require
a second geometric parameter such as a cone angle associated
with L in the case of the TEP. Steric effects (exchange repulsion
effects) of ligands such as triethyl, triphenyl, or triamino phos-
phines, amines, etc. are reflected by low MLEP values. If there
is any need to separate them from other electronic effects, one
can use the local C–M–L bending force constants, which, if
measured relative to a suitable reference, provide a reliable
quantitative measure of the exchange repulsion.

At this point, it is important to point out that the physical
basis and the measurement of local mode properties is well-
defined and does not involve any model of the chemical bond
or molecular orbital theory. Accordingly, the MLEP, contrary to
the TEP, is not a model quantity. However, the comparison of
the MLEP with BDE values requires the IBDE as a model quan-
tity, which so far can not be determined. The MLEP can be
determined for any transition metal complex utilizing either
experimental or computational techniques.

Currently, the MLEP is a static measure, which can be
applied to a multitude of transition metal complexes such as
Au-, Ru-, Rh, Re-, or Ir-complexes to directly reflect the intrin-
sic strength of an M–L bond and any potential catalytic
activity. There have already been attempts to also use the
MLEP as a dynamic measure, i.e. measuring the activity of a
catalyst during a catalyzed, chemical reaction.159,160
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