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A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms
based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized
Elimination of the Small Component) approach is developed where each term of the diamagnetic and
paramagnetic contribution to the isotropic shielding constant σiso is expressed in terms of analytical
energy derivatives with regard to the magnetic field B and the nuclear magnetic moment µ. The
picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF
(Hartree-Fock) results for theσiso values of 13 atoms with a closed shell ground state reveal a deviation
from 4c-DHF (Dirac-HF) values by 0.01%–0.76%. Since the 2-electron part is effectively calculated
using a modified screened nuclear shielding approach, the calculation is efficient and based on a
series of matrix manipulations scaling with (2M)3 (M: number of basis functions). Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4979499]

I. INTRODUCTION

Nuclear magnetic properties such as the isotropic mag-
netic shielding constant σiso sensitively depend on the spin
density distribution close to the nucleus as its magnetic
moment interacts with the spin density induced by the external
homogeneous magnetic field.1,2 The shielding or deshielding
effects of the induced electronic magnetic fields caused by the
external magnetic field lead to an atom-specific σiso value in
a given electronic environment. The exact nuclear magnetic
resonance (NMR) measurement and analysis of σiso shield-
ings of heavy atoms with atomic numbers larger than 54 (Xe)
are still a challenge, which can be eased by reliable quantum
chemical calculations.3–6

The magnetic shielding constant of a nucleus is a second
order response property and as such requires the calculation
of a mixed Hessian, i.e., the energy derivatives are calculated
with regard to the components of an external magnetic field
B and the nuclear magnetic moments µ. The nuclear mag-
netic shielding constants are sensitive to the degree of electron
correlation included in a calculation and the size of the basis
set being used to describe the electronic wave function. Rel-
ativistic corrections are known to be essential for a correct
calculation of the nuclear shielding constants of relativistic
atoms. There are two major relativistic corrections that have
to be considered, a scalar coupling and a spin-orbit coupling
(SOC), which both increase with the atomic number.

Recently, we have developed an algorithm for the cal-
culation of second order response properties with the help of
analytical energy derivatives for a Dirac-exact two-component
(2c) NESC (Normalized Elimination of the Small Compo-
nent) method.7 This work was based on Dyall’s original work
on NESC.8,9 Furthermore, the development of a generally

applicable 2c-NESC method was already the second part of a
longer research project aimed at developing a general purpose
program for calculating molecular properties for relativistic
Dirac-exact wave functions. In the first part of the project,
the focus was on the spin-free methodology in form of 1c
(one-component)-NESC and the programming of an algorithm
for the rapid execution of NESC calculations.10 After solving
this problem, the applicability of 1c-NESC was systematically
extended to the calculation of first order response proper-
ties (geometries,11 electric dipole moments,12 EPR hyperfine
structure constants,13 contact densities and Mössbauer isomer
shifts,14 and electric field gradients for nuclear quadrupole
coupling constants15) and second order response properties
(vibrational frequencies,12,16 static electric polarizabilities,12

and infrared intensities12). These methods were used to solve
various chemical problems.12,17–19

In the second part of the project, we developed a 2c-
NESC method that is based on a general Hartree-Fock (GHF)
or, alternatively, general density functional theory (GDFT)
wave function.20 Once 2c-NESC was installed, it was possible
to calculate SOC effects, which are essential for the under-
standing of the electronic structure of relativistic atoms and
molecules.2,21 The applicability of 2c-NESC was enlarged in
a similar way as this was done for the 1c-NESC method. The
routine calculation of geometries was made possible by deriv-
ing the analytical 2c-NESC gradient.22 In follow-up work, we
used the energy gradient algorithm to reliably determine SO-
corrected electrical properties such as the molecular electrical
moments7 and to develop the 2c-NESC Hessian with regard to
the components of the electric field for the calculation of the
static electric dipole polarizability,7 which required the use of
coupled perturbed GHF (CPGHF)23 and a coupled perturbed
general Kohn-Sham (CPGKS) approach.24–27
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Our work on NESC has to be seen on the background of
a multi-pronged approach to obtain exact relativistic descrip-
tions, which has involved several research groups. Best known
is the Douglas-Kroll-Hess (DKH) method that has been
worked out for lower orders n28–32 as well as higher orders.33,34

In continuation of this work, arbitrary order DKHn theory
has been developed, which reproduces exact 4c-Dirac ener-
gies.35–39 The DKHn theory suffers from slow convergence to
the Dirac-exact result and difficulties when formulating higher
orders of the DKHn perturbation approach. Arbitrary order
theory offers in this regard an important improvement of DKH.
Second, one has to mention the infinite-order two-component
(IOTC) relativistic Hamiltonian approach of Barysz, Sadlej,
and Snijders,40 which triggered a number of developments
based on this approach.41–46 Iliaš and co-workers47 also used
matrix algebra to derive the IOTC Hamiltonian, which has led
to substantial improvements of IOTC by Iliaš and Saue48 and
Barysz and co-workers46 showing that IOTC can also provide
exact 2c-energies. Kutzelnigg and Liu have classified quasi-
relativistic methods as being operator-based or matrix-based
and pointed out in this connection that the latter lead much
easier to an exact quasi-relativistic presentation of 4c-Dirac
theory.49–51

Filatov and Cremer worked out the prerequisites for cor-
rectly solving the NESC equations by starting with the regular
approximation.52,53 They developed the matrix representa-
tions of the ZORA (zeroth order regular approximation)54

and IORA (infinite order regular approximation) Hamiltoni-
ans,55–59 derived their relationship to an exact quasi-relativistic
Hamiltonian,60 and solved the gauge-dependence problem of
ZORA and IORA.61 Filatov and Cremer also pointed out that
IORA62,63 is a convenient starting point for an iterative solution
of the NESC equations.53

Liu has argued that Dirac-exact relativistic 2c-methods,
which use, in the one-electron part, the transformation from
the Dirac picture to the Schrödinger picture, should be called
X2C methods.64 While such a term is useful to characterize
relativistic methods from a more general point of view, it dis-
guises differences that are essential for the practical realization
of these methods. The term NESC is used in this and previous
work to emphasize two aspects: (i) To honor Dyall’s pioneering
work who employed matrix algebra to reformulate the Dirac
equation and to develop the foundation of NESC at a time
when the major work on relativistic theory was based on oper-
ator algebra. (ii) NESC has been programmed to be generally
applicable. Therefore it is based on an effective combination
of one-step and iterative solutions of the NESC equation, the
“First-Diagonalize-then-Contract” strategy to avoid or control
variational or inverse variational collapse problems,10,65 the
use of the correct renormalization of the NESC wave function
for the correct picture-change,66 the exact calculation of the
matrix U associated with the elimination of the small com-
ponent as well as the exact calculation of its derivatives, the
consequent use of a finite nucleus model, the compact and
efficient programming of NESC response properties in terms
of products of traces of matrices65,67 to provide the possi-
bility of a rapid calculation of first and second order 1c- or
2c-NESC response properties, and a program structure that
makes it possible to run NESC with any (dynamical and/or

non-dynamical) correlation method available. These features
distinguish (partly or in total) the current development of a
Dirac-exact 1c- or 2c-relativistic methodology from other X1C
and X2C methods and therefore it is justified to speak of
NESC/X2C or simply 2c-NESC methods.7

The current work is embedded in the development of
other relativistic methods to calculate magnetic properties.
Komorovský and co-workers68 showed that restricted mag-
netically balanced (RMB) basis sets are optimal for the cal-
culation of the small component and for obtaining reliable
nuclear shielding constants at the 4c-relativistic level. The 4c-
RMB description is important to suppress the strong basis set
dependence, especially when properly describing the diamag-
netic term at the 4c level.68,69 Cheng and co-workers70 as
well as Komorovský and co-workers71 combined the RMB
basis sets with the gauge including atomic orbital (GIAO)
method72–74 to obtain converged NMR values even with rela-
tively small basis sets. In 2012, Olejniczak and co-workers75

proposed an efficient 4c-relativistic method of NMR shield-
ing constants based on RMB and unrestricted kinetic balance
(UKB)76 basis sets in combination with GIAOs. The authors
coined in this connection the term simple magnetic balance
(sMB) method.75 Based on the RMB-GIAO or sMB-GIAO
method, recently, some 4c-relativistic NMR calculations for
relatively large molecules have been reported at the DFT
level.77–79

Already in the 90s, 2c-relativistic NMR calculations of
shielding constants have been carried out using ZORA.54,80

Interestingly, the idea of the RMB was already used in
the ZORA-NMR method80 with the help of the substitu-
tion (p→ π) based on the principle of minimal electromag-
netic coupling.81 In 2012, Sun and co-workers27 developed an
X2C method that included two-electron relativistic correction
terms, which were derived from the Dirac-Fock matrix in the
RMB-GIAO form64,82 and obtained NMR shielding constants
equivalent to the 4c-RMB-GIAO-NMR calculations. In 2013,
Yoshizawa and Hada incorporated the RMB-GIAO method
into the second-order DKH (DKH2) method28–30 and calcu-
lated NMR values with relatively small basis sets.83,84 Also,
Cheng and co-workers85 developed a spin-free X1C method
based on RMB-GIAO to calculate NMR shielding constants in
combination with the coupled-cluster single and double exci-
tations (CCSD) method86 and a perturbational treatment of the
triple excitations leading to CCSD(T).87

In the present work, we extend the spin-free X1C-NMR
method of Cheng and co-workers85 to the 2c-relativistic level
by using the 2c-NESC methodology developed in previous
work.11,12,16,22 To reduce the high cost of previous approaches
including the relativistic two-electron terms,27,88 we use the
non-relativistic two-electron term of the GHF method.7,89 As
a result, we need the renormalization matrix G66 to trans-
form the Dirac picture (with the 4c-relativistic metric) to the
Schrödinger picture (with the 2c-relativistic metric). This has
the disadvantage of calculating first and second derivatives of
G, which are not needed if the full NESC method including all
two-electron terms is used.8,27 However, we will demonstrate
that the effective calculation of the G matrix and its derivatives
combined with a cost-efficient description of the two-electron
part of SOC20 leads to reliable 2c-NESC nuclear magnetic
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shieldings and therefore represents a cost-effective alternative
to already existing methods.

The results of this work are presented in the following
way. In Section II, the 2c-NESC theory in the presence of
magnetic fields and the formulas for the calculation of the 2c-
NESC nuclear magnetic shielding constants are developed.
Section III gives some details on the implementation of the
NMR shielding constant programs and their application. In
Section IV, results of this work are discussed whereas in Sec. V
the conclusions of this work are summarized.

II. THEORY

The one-electron Dirac equation in the matrix form based
on the restricted kinetic balance (RKB)90 is written as(

V T
T W − T

) (
CL
− CL

+
CS
− CS

+

)
=

(
S 0
0 T/(2mc2)

) (
CL
− CL

+
CS
− CS

+

) (
ε− 0
0 ε+

)
, (1)

where T denotes the kinetic energy matrix, V the potential
energy matrix, and S the overlap matrix in the 2c framework
(with dimension 2M × 2M; M: number of basis functions),
whereas W is the matrix of the operator (σ · p)V (r)(σ · p)/
(4m2c2) with p being the momentum operator, σ the vector of
the three Pauli spin matrices, r the position vector of the elec-
tron, and c the speed of light. Matrices CL

− and CS
− correspond

to the large and the small components of the positronic states
with eigenvalues ε− while CL

+ and CS
+ are the components of

the electronic states with energies ε+.
The 2c renormalized NESC one-electron Hamiltonian

matrix H1e is derived from Eq. (1),

H1e = G†L̃G, (2)

where the NESC matrix L̃8,10,49,91,92 and the renormalization
matrix G66 are defined by

L̃ = U†T + TU − U† (T −W) U + V, (3)

G = S−1/2
(
S−1/2S̃S−1/2

)−1/2
S1/2, (4)

and S̃ is given by

S̃ = S +
1

2mc2
U†TU. (5)

The matrix U connects the large component CL
+ and the small

component CS
+ according to CS

+ = UCL
+.8,10

A. 2c-NESC Hamiltonian in the presence
of a magnetic field

The one-electron Dirac equation in the presence of a mag-
netic field is written in matrix form by using the vector potential
A and RMB-based GIAOs(

Vm Π†

Π Wm − Tm

) (
CL
− CL

+
CS
− CS

+

)
=

(
Sm 0
0 Tm/(2mc2)

) (
CL
− CL

+
CS
− CS

+

) (
ε− 0
0 ε+

)
. (6)

Here, the following definitions are used:

Vm =

(
V′m 0

0 V′m

)
, (7)

Sm =

(
S′m 0
0 S′m

)
, (8)

(Π)µν =
1
2

(µ|f ∗µνσ(p + A10
ν )σ(p + Aν)|ν), (9)

(Wm)µν =
1

4m2c2
(µ|f ∗µνσ(p + A10

ν )Vσ(p + A10
ν )|ν), (10)

(Tm)µν =
1
2

(µ|f ∗µνσ(p + A10
ν )σ(p + A10

ν )|ν), (11)

where (
V′m

)
µν = (µ|f ∗µνV |ν), (12)(

S′m
)
µν = (µ|f ∗µν |ν), (13)

f ∗µν = exp

[
i
2

[
B ×

(
Rµ − Rν

)]
· r

]
. (14)

In these definitions, µ and ν are the indices of the non-GIAO-
type basis functions (i.e., field-independent basis functions),
B is the external magnetic field, and Rµ is the position vector
of atomic orbital χµ. The quantity f ∗µν in Eq. (14) results from
the field-dependent phase factor of the GIAO function. Also
note that Π , Π† in Eq. (6). In the present study, the vector
potential Aν includes the vector potential A01 originating from
the nuclear magnetic moment µM of nucleus M as well as A10

ν

originating from the external magnetic field B,

Aν = A10
ν + A01, (15)

A10
ν =

1
2

(B × rν) , rν = r − Rν , (16)

A01 =
1

c2
*
,
µM ×

rM

r3
M

+
-

, rM = r − RM, (17)

where RM is the position vector of nucleus M.
The renormalized 2c-NESC Hamiltonian matrix Hm in

the presence of a magnetic field,

Hm = G†mL̃mGm, (18)

is determined by L̃m and Gm,

L̃m = U†mΠ +Π†Um − U†m (Tm −Wm) Um + Vm, (19)

Gm = S−1/2
m

(
S−1/2

m S̃mS−1/2
m

)−1/2
S1/2

m , (20)

where the relativistic metric

S̃m = Sm +
1

2mc2
U†mTmUm (21)

depends on matrix Um that is obtained from CS
+ = UmCL

+ by
using the eigenvectors CS

+ and CL
+ of Eq. (6). Note that for

B = µM = 0, Π = T, Sm = S, etc.

B. NMR shielding tensor at the GHF level

The formula of the NMR shielding tensor σtu (t, u = x, y,
z) at the GHF level is given by

σtu =
∂2E

∂Bt∂µM,u

�����B=µM=0

= tr

[
P

(
∂2Hm

∂Bt∂µM,u

)]

B=µM=0

+ tr

[
∂P
∂Bt

(
∂Hm

∂µM,u

)]

B=µM=0
, (22)
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where E denotes the total electronic energy, P the zeroth-order
density matrix (P=CnC† with C being the 2c spinor coeffi-
cient matrix), and the first-order density matrix (∂P/∂Bt) is
obtained by solving the GIAO-based CPGHF equations84 for
the perturbation (∂Hm/∂Bt)B= µM = 0. In the following, we use
subscript 0 to denote B= µM = 0 and omit the subscripts t and
u when their use is not important.

C. Deriving the first derivatives of the 2c-NESC
magnetic Hamiltonian matrix

To calculate the NMR shielding constants by using
Eq. (22), the three derivatives of the 2c-NESC magnetic
Hamiltonian matrix of Eq. (18) are needed: (∂Hm/∂B)0,
(∂Hm/∂µM)0, and (∂2Hm/∂B∂µM)0.

The derivative (∂Hm/∂B)0 is given by(
∂Hm

∂B

)
0
= G†

(
∂L̃m

∂B

)
0
G

+ *
,

∂G†m
∂B

+
-0

L̃G + G†L̃
(
∂Gm

∂B

)
0
, (23)

where the derivative of L̃m is determined according to(
∂L̃m

∂B

)
0
=

(
∂Vm

∂B

)
0

+ U†
[(
∂Wm

∂B

)
0
−

(
∂Tm

∂B

)
0

]
U

+

[
U†

(
∂Π

∂B

)
0

+
[
T − U† (T −W)

] (
∂Um

∂B

)
0

]†

+ U†
(
∂Π

∂B

)
0

+
[
T − U† (T −W)

] (
∂Um

∂B

)
0
.

(24)

Hence, the derivatives (∂Gm/∂B)0 and (∂Um/∂B)0 are
required to calculate (∂Hm/∂B)0. Utilizing the relationship
G2

m = S̃−1
m Sm and solving the Sylvester equation GX + XG = Q

(where X = (∂Gm/∂B)0 and Q = (∂S̃−1
m Sm/∂B)0), derivative

(∂Gm/∂B)0 can be written as(
∂Gm

∂B

�����0

)
µν

=
∑
i,j

1
gi + gj

(RG)µi

[
R−1

G

(
∂G2

m

∂B

)
0
RG

]

ij

(
R−1

G

)
jν

, (25)

where RG and g are the eigenvector and eigenvalue of G: GRG

= RGg. By using G2
m = S̃−1

m Sm, the derivative (∂G2
m/∂B)0 is

obtained as(
∂G2

m

∂B

)
0
= S̃−1

(
∂Sm

∂B

)
0
−

[
S̃−1

(
∂S̃m

∂B

)
0
S̃−1

]
S, (26)

where(
∂S̃m

∂B

)
0
=

(
∂Sm

∂B

)
0

+
1

2mc2
U†

(
∂Tm

∂B

)
0
U

+
1

2mc2


*
,

∂U†m
∂B

+
-0

TU + U†T
(
∂Um

∂B

)
0


. (27)

The derivative (∂Um/∂B)0 is required for the calculation of
(∂Gm/∂B)0 (Eq. (25)) and (∂L̃m/∂B)0 (Eq. (24)). Ways to
calculate the derivative of U were already suggested by Cheng
and Gauss93 as well as Filatov and co-workers14 (see Eqs.
(36) and (37) in Ref. 14). In the present study, the derivative
(∂Um/∂B)0 is written as(

∂Um

∂B

)
0
=

(
CS
− − UCL

−

) (
∂O−+

∂B

)
0
CL†

+ S̃, (28)

where (∂O−+/∂B)0 denotes the mixing coefficient matrix for
describing the mixing of the spinors due to the magnetic
perturbation(

∂CL
−/∂B ∂CL

+/∂B
∂CS
−/∂B ∂CS

+/∂B

)
=

(
CL
− CL

+
CS
− CS

+

) (
∂O−−/∂B ∂O−+/∂B
∂O+−/∂B ∂O++/∂B

)
. (29)

By utilizing formulas from Refs. 12 and 14, the mixing
coefficient matrix is given as(

∂O−+

∂B

�����0

)
ij

=
1

ε+
j − ε

−
i

[
CL†
−

(
∂Vm

∂B

)
0
CL

+

+ CL†
−

(
∂Π†

∂B

)
0
CS

+ + CS†
−

(
∂Π

∂B

)
0
CL

+

+ CS†
−

[(
∂Wm

∂B

)
0
−

(
∂Tm

∂B

)
0

]
CS

+

]

ij

−
ε+

j

ε+
j − ε

−
i

[
CL†
−

(
∂Sm

∂B

)
0
CL

+

+
1

2mc2
CS†
−

(
∂Tm

∂B

)
0
CS

+

]

ij

. (30)

The derivative (∂Hm/∂µM)0 can be obtained similarly
where only the terms containing ∂Π/∂µM are kept.

D. Deriving the second derivative of the 2c-NESC
magnetic Hamiltonian matrix

In a previous paper, Zou and co-workers already derived
the second derivatives of the spin-free NESC Hamiltonian.16

According to the formulas given by these authors,16 the second
derivative (∂2Hm/∂B∂µM)0 can be written as

(
∂2Hm

∂B∂µM

)
0
= G†

(
∂2L̃m

∂B∂µM

)
0
G +

{
G†L̃

(
∂2Gm

∂B∂µM

)
0

}†
+ G†L̃

(
∂2Gm

∂B∂µM

)
0

+

{
G†

[(
∂L̃m

∂µM

)
0

(
∂Gm

∂B

)
0

+

(
∂L̃m

∂B

)
0

(
∂Gm

∂µM

)
0

]

+ *
,

∂G†m
∂B

+
-0

L̃
(
∂Gm

∂µM

)
0

}†
+ G†

[(
∂L̃m

∂µM

)
0

(
∂Gm

∂B

)
0

+

(
∂L̃m

∂B

)
0

(
∂Gm

∂µM

)
0

]
+ *

,

∂G†m
∂B

+
-0

L̃
(
∂Gm

∂µM

)
0
, (31)

where the second derivatives of L̃m take the form
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(
∂2L̃m

∂B∂µM

)
0
=

[
U†

(
∂2Π

∂B∂µM

)
0

]†
+ U†

(
∂2Π

∂B∂µM

)
0

+

[ [
T − U† (T −W)

] (
∂2Um

∂B∂µM

)
0

]†
+

[
T − U† (T −W)

] (
∂2Um

∂B∂µM

)
0

+

*
,

∂U†m
∂µM

+
-0

(
∂Π

∂B

)
0

+ *
,

∂U†m
∂B

+
-0

(
∂Π

∂µM

)
0



†

+ *
,

∂U†m
∂µM

+
-0

(
∂Π

∂B

)
0

+ *
,

∂U†m
∂B

+
-0

(
∂Π

∂µM

)
0
−

[
U†

[(
∂Tm

∂B

)
0
−

(
∂Wm

∂B

)
0

] (
∂Um

∂µM

)
0

]†
− U†

[(
∂Tm

∂B

)
0

−

(
∂Wm

∂B

)
0

] (
∂Um

∂µM

)
0
−


*
,

∂U†m
∂µM

+
-0

(T −W)

(
∂Um

∂B

)
0



†

− *
,

∂U†m
∂µM

+
-0

(T −W)

(
∂Um

∂B

)
0
. (32)

Matrices (∂2Gm/∂B∂µM)0 and (∂2Um/∂B∂µM)0 are required
to calculate (∂2Hm/∂B∂µM)0. Solving the Sylvester equation,(

∂2Gm

∂B∂µM

)
0
G + G

(
∂2Gm

∂B∂µM

)
0
= *

,

∂2S̃−1
m Sm

∂B∂µM

+
-0

−

(
∂Gm

∂µM

)
0

(
∂Gm

∂B

)
0
−

(
∂Gm

∂B

)
0

(
∂Gm

∂µM

)
0
, (33)

one obtains the following formula for the second derivatives
of Gm:(
∂2Gm

∂B∂µM

�����0

)
µν

=
∑
i,j

1
gi + gj

(RG)µi

[
R−1

G

(
∂2G2

m

∂B∂µM

)
0
RG

]

ij

(
R−1

G

)
jν

(34)

with(
∂2G2

m

∂B∂µM

)
0
= −S̃−1

{(
∂2S̃m

∂B∂µM

)
0
GG

+

(
∂S̃m

∂B

)
0

[(
∂Gm

∂µM

)
0
G + G

(
∂Gm

∂µM

)
0

]

+

(
∂S̃m

∂µM

)
0

[(
∂Gm

∂B

)
0
G + G

(
∂Gm

∂B

)
0

]}
−

(
∂Gm

∂µM

)
0

(
∂Gm

∂B

)
0
−

(
∂Gm

∂B

)
0

(
∂Gm

∂µM

)
0
,

(35)

where the second derivative of S̃m in Eq. (35) is given by(
∂2S̃m

∂B∂µM

)
0
=

1

2mc2





*
,

∂U†m
∂B

+
-0

T
(
∂Um

∂µM

)
0

+ U†
(
∂Tm

∂B

)
0

(
∂Um

∂µM

)
0

+ U†T
(
∂2Um

∂B∂µM

)
0

]†

+ *
,

∂U†m
∂B

+
-0

T
(
∂Um

∂µM

)
0

+ U†
(
∂Tm

∂B

)
0

(
∂Um

∂µM

)
0

+ U†T
(
∂2Um

∂B∂µM

)
0

}
. (36)

In Eqs. (32) and (36), the second derivate (∂2Um/∂B∂µM)0 is
required, which will be derived in Subsection II E.

E. Derivation of the second derivative of the matrix Um

The second derivative of U (or Um) with respect to
general perturbation parameters (here B and µ) has been
derived in a previous paper by Zou and co-workers (there,
Eq. (B19))16

UBµ =
(
CS
− − UCL

−

) (
OBµ

2 −OB
2 Oµ

4 −Oµ
2 OB

4

−OB
2 CL†

+ S̃CL
−Oµ

2 −Oµ
2 CL†

+ S̃CL
−OB

2

)
CL†

+ S̃. (37)

As shown in Appendix B in Ref. 16, when simplifying the
one-electron Dirac equation of Eq. (6) according to

D̃Φ = M̃Φε (38)

and using the identities Φ†M̃Φ = I and Φ†D̃Φ = ε ,
the first- and second-order mixing coefficient matrices Oλ

(λ =B, µ, Bµ) are determined by the following first-
and second-order coupled-perturbed one-electron Dirac
equations:

[Oλ, ε ] = Nλ − ελ, (39)

where [a, b] = ab�ba, Nλ = Φ†D̃λΦ − Φ†M̃λΦε with λ = B
or µ, and

[OBµ, ε ] = Φ†D̃BµΦ −Φ†M̃BµΦε − εBµ

+ OB[Oµ, ε ] + Oµ[OB, ε ]

+ O†BNµ + NµOB + O†µNB + NBOµ (40)

with the following relations:

Φλ = ΦOλ and ΦBλ = ΦOBλ. (41)

The above Eq. (40) is equivalent to Eq. (B20) in Ref. 16 (how-
ever the last three signs in Eq. (B20) being +, +, and �) by
introducing O†λ = −Φ†M̃λΦ−Oλ, which can be obtained by
deriving the identity Φ†M̃Φ = I.

Since one can write the relationship between the derivative
of 4c-spinor and the mixing coefficient matrix as

Cλ
µq =

MO∑
r

CµrOλ
rq, (42)

the mixing coefficient matrix Oλ has the following structure
in the 4c relativistic framework:
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Oλ =
*.
,

Oλ
−−(p, p) Oλ

−+(p, o) Oλ
−+(p, 3)

Oλ
+−(o, p) Oλ

++(o, o) Oλ
++(o, 3)

Oλ
+−(3, p) Oλ

++(3, o) Oλ
++(3, 3)

+/
-

=
*.
,

Oλ
1 (p, p) Oλ

2 (p, o) Oλ
2 (p, 3)

Oλ
3 (o, p) O4λ(o, o) Oλ

4 (o, 3)
Oλ

3 (3, p) Oλ
4 (3, o) Oλ

4 (3, 3)

+/
-

. (43)

Hereafter p and e denote 4c-spinors of positronic or electronic
states, respectively, and the latter are specified as being an
occupied spinor (o) or a virtual spinor (3). For reasons of sim-
plicity, we use in the following the subscripts of 1, 2, 3, and
4 for ��, �+, +�, and ++, respectively. The first-order mix-
ing coefficient matrix Oλ of Eq. (43) is fully defined by the
following contributions:

Oλ
k (i, i) = −

1
2

(
Φ†M̃λΦ

)
ii

(44)

with i = p for k = 1 and i = o or 3 for k = 4, and

Oλ
k (i, j) =

(
Φ†D̃λΦ

)
ij
−

(
Φ†M̃λΦ

)
ij
ε+

j

ε+
j − ε

−
i

(45)

with (i,j) = (p,e) for k = 2, (i,j) = (e,p) for k = 3, and (i,j) = (3,o)
or (o,3) for k = 4. The second-order mixing coefficient matrix

OBµ
2 in Eq. (37) is obtained by using Eq. (40),

(
OBµ

2

)
pe
=

1
ε+

e − ε
−
p

{(
Φ†D̃BµΦ

)
pe
−

(
Φ†M̃BµΦ

)
pe
ε+

e

+
(
OBOµ + OµOB

)
pe
ε+

e −
(
OBεOµ + OµεOB

)
pe

+
(
O†BNµ + NµOB + O†µNB + NBOµ

)
pe

}
, (46)

which, after some algebraic manipulations, leads to the needed
second derivatives of Um,(

∂2Um

∂B∂µM

)
0
=

(
CS
− − UCL

−

) [(
∂2O2

∂B∂µM

)
0

−

(
∂O2

∂B

)
0

(
∂O4

∂µM

)
0
−

(
∂O2

∂µM

)
0

(
∂O4

∂B

)
0

−

(
∂O2

∂B

)
0
CL†

+ S̃CL
−

(
∂O2

∂µM

)
0

−

(
∂O2

∂µM

)
0
CL†

+ S̃CL
−

(
∂O2

∂B

)
0

]
CL†

+ S̃, (47)

where

(
∂2O2

∂B∂µM

�����0

)
pe

=
1

ε+
e − ε

−
p

{ [
CL†
−

(
∂2Π†

∂B∂µM

)
0
CS

+ + CS†
−

(
∂2Π

∂B∂µM

)
0
CL

+

]

pe

+

[(
∂O1

∂B

)
0

(
∂O2

∂µM

)
0

+

(
∂O2

∂B

)
0

(
∂O4

∂µM

)
0

+

(
∂O2

∂µM

)
0

(
∂O4

∂B

)
0

]

pe

ε+
e −

[(
∂O1

∂B

)
0
ε−p

(
∂O2

∂µM

)
0

+

(
∂O2

∂B

)
0
ε+

e

(
∂O4

∂µM

)
0

+

(
∂O2

∂µM

)
0
ε+

e

(
∂O4

∂B

)
0

]

pe

+


(
∂O3

∂B

)†
0

(
∂d4

∂µM

)
0

+

(
∂d1

∂µM

)
0

(
∂O2

∂B

)
0

+

(
∂O1

∂B

)†
0

(
∂d2

∂µM

)
0

+

(
∂d2

∂µM

)
0

(
∂O4

∂B

)
0
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+


(
∂O3

∂µM

)†
0

((
∂d4

∂B

)
0
−

(
∂m4

∂B

)
0
ε+

e

)
+

((
∂d1

∂B

)
0
−

(
∂m1

∂B

)
0
ε−p
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∂O2

∂µM

)
0

+

((
∂d2

∂B

)
0
−

(
∂m2

∂B

)
0
ε+

e
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∂O4

∂µM

)
0

]

pe




. (48)

In Eq. (48), the derivatives dλn (λ = B and µM) or mB
n (n = 1,

2, 3, 4) are defined as follows:

*
,

dλ1 dλ2
dλ3 dλ4

+
-0

:= Φ†
(
∂D̃
∂λ

)
0
Φ, (49)

*
,

mB
1 mB

2

mB
3 mB

4

+
-0

:= Φ†
(
∂M̃
∂B

)
0
Φ. (50)

Terms for calculating Eqs. (47) and (48) are given in the
supplementary material.

III. COMPUTATIONAL DETAILS

The 2c-NESC formulas derived in Sec. II for calculating
NMR shielding constants were implemented into the NESC
program of the ab initio package COLOGNE2016.94 The
corresponding programs were tested in three different ways:
(i) Both at 1c- and 2c-NESC level, it was verified that for

c→ ∞ non-relativistic NMR shielding values were recovered.
(ii) The 1c-NESC nuclear magnetic shielding constants were
compared with already published values.85 (iii) The cor-
responding 2c-NESC values were compared with 4c-sMB
calculations (see Table I).

Atomic NMR shielding constants were calculated at
the GHF level to compare 1c-NESC and 2c-NESC values
with the corresponding 4c-sMB results. For this purpose,
uncontracted Dyall valence double zeta basis sets95–100 were
used for Kr, Xe, Rn, Cd, Hg, Ca, Sr, Ba, and Ra whereas
for Ne, Ar, Zn, Be, and Mg uncontracted Dunning aug-cc-
pVDZ basis sets101–104 were applied. The modified screened-
nuclear-spin-orbit (mSNSO) approach was employed to
approximate the influence of the two-electron spin-orbit
terms.20,22

The finite (F) model of the nucleus based on a Gaussian
charge distribution105 was used. For reasons of comparison,
calculations with a point (P) charge model of the nucleus were

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-041713
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TABLE I. Calculated atomic NMR shielding constants (ppm) obtained with 1c- and 2c-NESC/HF and 4c-sMB/HF
methods. The finite (F) and point (P) nuclear models were used.a

Nuclear model Atom State 1c-NESC 2c-NESC 4c-sMB ∆(4c-1c) ∆(4c-2c) ∆(4c − 2c)/4c (%)

F Ne 1S0 551.7 557.1 557.3 5.6 0.2 0.03
Ar 1S0 1 239.1 1 271.8 1 270.5 31.4 �1.3 �0.11
Kr 1S0 3 273.4 3 570.0 3 572.6 299.2 2.6 0.07
Xe 1S0 5 774.2 6 968.5 6 993.7 1219.5 25.2 0.36
Rn 1S0 11 549.5 19 447.1 19 595.5 8046.0 148.4 0.76
Zn 1S0 2 536.1 2 701.7 2 709.7 173.6 8.0 0.29
Cd 1S0 4 897.0 5 682.6 5 697.8 800.8 15.2 0.27
Hg 1S0 10 362.4 15 952.7 15 983.7 5621.3 31.0 0.19
Mg 1S0 708.8 718.2 720.5 11.7 2.3 0.32
Ca 1S0 1 425.4 1 471.4 1 471.7 46.3 0.3 0.02
Sr 1S0 3 523.4 3 880.8 3 880.4 357.0 �0.4 �0.01
Ba 1S0 6 071.1 7 428.1 7 456.2 1385.1 28.1 0.38
Ra 1S0 11 967.7 20 620.4 20 766.9 8799.2 146.5 0.71

P Ne 1S0 551.7 557.1 557.3 5.6 0.2 0.03
Ar 1S0 1 239.1 1 271.8 1 270.5 31.4 �1.3 �0.11
Kr 1S0 3 273.4 3 570.5 3 573.1 299.7 2.6 0.07
Xe 1S0 5 774.5 6 985.2 7 002.7 1228.2 17.5 0.25
Rn 1S0 11 554.6 20 048.7 20 194.3 8639.7 145.6 0.72
Zn 1S0 2 536.2 2 701.9 2 709.9 173.7 8.0 0.29
Cd 1S0 4 897.1 5 690.3 5 709.7 812.6 19.4 0.34
Hg 1S0 10 365.2 16 266.0 16 297.8 5932.6 31.8 0.20
Mg 1S0 708.8 718.2 720.5 11.7 2.3 0.32
Ca 1S0 1 425.4 1 471.4 1 471.7 46.3 0.3 0.02
Sr 1S0 3 523.5 3 882.4 3 881.9 358.4 �0.5 �0.01
Ba 1S0 6 071.4 7 450.7 7 479.0 1407.6 28.3 0.38
Ra 1S0 12 010.2 21 353.6 21 491.6 9481.4 138.0 0.64

aSymbols ∆(4c-1c) and ∆(4c-2c) denoted the differences between 4c-sMB and 1c-NESC or 2c-NESC values. ∆(4c-2c)/4c gives
the relative deviation of 2c-NESC values from the 4c-sMB result in percentages.

also performed. A value of 137.035 999 070(98) was used for
the velocity of light c.106 The DIRAC12 program package107

was employed to obtain 4c-sMB NMR shielding constants.

IV. RESULTS AND DISCUSSION

NMR magnetic shieldings obtained in this work at the
1c- or 2c-NESC level are compared in Table I with the corre-
sponding 4c-sMB-values. In Figure 1, two correlations provide

FIG. 1. Comparison of 1c-NESC and 2c-NESC magnetic shieldings with
the corresponding 4c-sMB values for atoms with a closed shell electron
configurations. R2 = 1.000 in both cases.

a graphical comparison of 1c-NESC and 2c-NESC magnetic
shieldings with 4c-sMB results.

The nuclear magnetic shieldings calculated in this work
vary between 557 ppm (Ne, 1S0) and 20 767 ppm (Ra, 1S0,
4c-sMB values, Table I). Both the inspection of individ-
ual values in Table I and the general trends reflected by
Figure 1 reveal that the 1c-NESC magnetic shieldings deviate
for increasing atomic number more and more from the 4c-sMB
values. There is a power relationship, which reflects the gen-
eral trend observed for 1c-NESC magnetic nuclear shieldings
σiso: SOC, which is not included in the spin-free representa-
tion, is of utmost importance for the correct description of the
σiso values as is reflected by errors as large as 42% (Ra, error:
8799 ppm, Table I). Useful 1c-NESC σiso values can only be
obtained for atomic numbers smaller than that of Kr when
errors are reduced to ≤10%. But even for these atoms, SOC
plays a role as it is responsible for deviations as large as 299
ppm (Kr). In the case of Ne, there is a 5.6 ppm deviation, which
results from SOC. Already small SOC effects change the inter-
action mechanism between the nuclear magnetic moment and
the applied external magnetic field, which leads even for non-
relativistic atoms to a sizable change of σiso. For other atomic
properties such as the total energy, SOC comes only into play
for closed shell atoms if high accuracy results are required. In
so far, SOC makes the nuclear shielding a relativistic property.

2c-NESC nuclear magnetic shieldings reasonably agree
with 4c-sMB values as are reflected by the linear relationship
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in Figure 1. Relative errors are all smaller than 0.8%
(Table I). The slope of the linear relationship is 0.993 and
the R2 coefficient is 1.000 ppm. There is a 13.6 ppm deviation
at the origin, which results from a deviation up to 148 ppm for
Rn (0.76%). If the calculated 2c-NESC values are fitted with
the help of a quadratic or even cubic relationship, the value
at the origin decreases to 1 ppm. The values obtained for Ne,
Ar, Ca, and Sr are 0.2, �1.3, 0.3, and �0.4 ppm confirming an
influence of SOC and the ability of 2c-NESC to reproduce the
nuclear magnetic shielding of non-relativistic atoms. Similar
curves as shown in Figure 1 are obtained when using the P
nuclear model.

It is interesting to analyze the effect of using a P nuclear
model or the more realistic F nuclear model. P values of σ
are linearly related to those obtained with the F nuclear model
(R2: 1.000) at the 1c-NESC, 2c-NESC, and 4c-sMB levels of
theory. Inspection of the relative deviation of the 2c-NESC
values from the corresponding 4c-sMB results (last column in
Table I) reveals that there are fine differences, for example,
with regard to the nuclear magnetic shielding of Cd and Xe,
which deviate more or less at the F level whereas at the P level
the differences are reversed but remain ≤0.4% in these cases
(Table I).

The difference between the F and P values of σiso

increases with increasing atomic number. The influence of a
finite nucleus is small for the spin-free 1c-NESC nuclear mag-
netic shielding constants (Hg, P nucleus: 10 362.4 + 2.8 ppm;
Ra, P nucleus: 11 967.7 + 42.5 ppm; the second number gives
the increase inσiso for reverting to the P model; Table I), which
suggests that the scalar relativistic effects are hardly affected
by using the finite size of a nucleus in the formulas for the
nuclear magnetic shielding constant.

By including SOC as in 4c-sMB and 2c-NESC, a distinct
dependence of the calculated σiso values on the nuclear charge
is observed. As in the case of the 1c-NESC shieldings, the P
model always leads to larger values. It is well known that the
finite size of the nucleus affects the Fermi contact term, which
is a result of the interaction of the nuclear magnetic moment
and the spin polarization as induced by SOC.108,109 The Fermi
contact term vanishes if for closed-shell systems the spin-orbit
interaction is switched off. Accordingly, the finite size of the
nucleus has little impact on the nuclear magnetic shielding
constant for a non-relativistic calculation.

V. CONCLUSIONS

A method has been worked out to calculate nuclear mag-
netic shielding constants from analytical second derivatives of
the energy with regard to the perturbation caused by an exter-
nal magnetic field and the nuclear magnetic moment where
the energy is the 2c-NESC energy based on a GHF wave
function. The diamagnetic and paramagnetic contributions to
the nuclear magnetic shielding constant are first developed
at the spin-free level of NESC and then extended to the 2c-
NESC level to include SOC effects. For 13 closed shell atoms,
the σiso value has been calculated and compared with the
corresponding 4c-sMB reference values also determined in
this work. 1c-NESC values show relatively large (up to 42%)
deviations from the reference values. However, the 2c-NESC

nuclear magnetic shieldings are in excellent agreement with
the 4c-sMB values, which is documented by relative errors
<0.8% and a perfect correlation between the two sets of data
(R2 = 1.00, Figure 1). The improvement of the 2c-NESC
nuclear magnetic shielding constants relative to the 1c-NESC
values reflects the strong influence of SOC effects on σiso,
which increases with increasing atomic charge and can be as
large as 8653 ppm (Ra). The necessity of using a finite nucleus
was also demonstrated.

Noteworthy is that the 2c-NESC-based method for calcu-
lating nuclear magnetic shielding constants does not have the
difficulties of the corresponding 2c-BSS (Barysz, Sadlej, and
Snijders)-based or 2c-DKH2-based formulations27,83,84,110

when combining the 2c-approach with the RMB-GIAO
method. Since the BSS or DKH2 operators are calculated in
the momentum (or p2) space, it is difficult for these methods
to derive useful magnetic operator matrices.84 From another
point of view, this difficulty is related to the commutation rela-
tion between p and A because it is not easy to extend the
p2 space to the π2 space. Consequently, the NESC method is
more favorable than the BSS and DKH2 methods for magnetic
property calculations.

SUPPLEMENTARY MATERIAL

See supplementary material for calculating the various
terms of Eqs. (47) and (48) and the one-electron integrals
for determining the second order derivatives of the NESC
Hamiltonian.
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