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ABSTRACT: Bond anomalies have been investigated for a set of 53
molecules with either N−F, Ti−P, Cr−H, Pb−C, or Pb−F bonds for which
reverse rather than inverse bond length−bond strength relationships have
been previously claimed. The intrinsic strength of each bond investigated
was determined utilizing the associated local stretching force constant
obtained at the CCSD(T)/aug-cc-pVTZ level of theory. For the metal
containing molecules, LC-ωPBE calculations with the aug-cc-pVTZ (Cr,
Pb) and the 6-31++G(d,p) basis set (Ti) were carried out. For bonds
containing a metal atom, any bond anomaly could not be confirmed.
Previously reported results were due to ill-defined bond strength descriptors
or lacking accuracy. In the case of the fluoro amines, methyl fluoro amines,
and the fluoro amine oxides, direct or hidden bond anomalies were detected,
which result from two or more opposing electronic effects: a dominant bond
shortening effect due to electron withdrawal and a bond weakening due to lone pair repulsion or hybridization defects. Bond
anomalies can be disguised by a complex interplay of electronic effects. These hidden bond anomalies could be identified in this
work for the fluoro amine chalcogenides.

1. INTRODUCTION

One of the tenets of structural chemistry is that the shorter
bond is always the stronger bond.1−5 There is no indisputable
theoretical proof for this tenet, which is a reflection of the fact
that the chemical bond is a concept rather than an observable
quantity.6−9 Consequently, bond properties such as bond
length or bond strength can only be defined within a given
model, for example the bond length by considering the nuclei at
rest and claiming the distance between them as bond length.
This leads immediately to questions in view of the molecular
vibrations, the bending of bonds in strained molecules, or the
distance at which bonding interactions convert into non-
bonding interactions.7,10,11 Even if these questions might be
settled via suitable adjustments of the models used, there is an
almost Babylonian confusion if the question of bond strength is
addressed. There are static and dynamic bond strength
measures depending on whether equilibrium properties or, in
a more realistic way, the properties of vibrating molecules are
considered.12,13

The most popular dynamic bond strength measure is the
bond dissociation energy (BDE) or, if experimentally
determined, the corresponding enthalpy at 298 K
(BDH(298)).14 This is a highly unreliable measure, as it
corresponds to a reaction energy (enthalpy), and as such it
depends on the strength of the bond being cleaved and the
stability of the fragments being formed. The latter are stabilized
by an individual relaxation mechanism involving the geometry
and the electron density distribution.8,12

A frequently used static measure of the bond strength is
based on the electron density in the bond region, which should
be proportional to the bond strength provided one can define
the bond region in a unique way. A solution was offered by
Cremer and Gauss15 who used the density N(A,B) of the zero-
flux surface S(A,B) separating bonded atoms A and B to
determine the intrinsic bond energy. Utilizing the theory of
atoms in molecules,16 they could describe the bond strength of
weakly polar bonds. In general, however the intrinsic bond
strength depends also on the polar character of a bond, which
cannot be described via N(A,B). A drastic simplification of the
Cremer−Gauss approach is achieved by exclusively focusing on
the bond critical point rc defined as the (3,-1) crossing point
(the Hessian of ρ(r) is of rank 3 and signature −1) between the
maximum electron density path connecting A and B and the
surface S(A,B).16,17 A single electron density value in the bond
region cannot reflect the intrinsic strength of a bond, which
depends on the total bond density, that is, the distribution of the
electron density in the whole bond region.13 Nevertheless,
Gibbs and others17−19 have shown that in the case of closely
related bonds between identical or similar atoms the bond
density might be presented by ρ(rc), and a simple bond
length−bond density relationship might exist. Similarly
motivated static bond strength parameters have been derived
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utilizing, for example, molecular orbitals and their occupation,
energy partition methods, density matrices, and electrostatic
forces, etc.3−5,7,9

In principle, a static description of the bond strength based
on either electron density ρ(r) or energy density distribution
H(r)7,20,21 might lead to reliable measures provided the
problems pointed out above could be solved. Currently, it is
easier to access the bond strength via a dynamical model where,
instead of a large amplitude motion leading to the cleavage of
the bond in question, only infinitesimally small amplitudes are
considered, which do not change the electronic structure of the
molecule or even break any of its bonds. This leads to the
molecular vibrations, which actually cause small changes in the
electronic structure.8 The vibrational properties such as
frequencies or force constants are determined for an
infinitesimal change in the positions of the atoms in a
molecule.22,23 Hence, the stretching frequency ωn and
stretching force constant kn of a bond should be suitable
quantities to determine the bond strength.12

Badger24,25 showed that for diatomic molecules an inverse
power relationship between force constant k and bond length R
exists. This so-called Badger Rule, together with other early
observations, laid the basis for the general belief that shorter
bonds always imply stronger bonds. However, several recent
papers have emphasized that in certain situations the shorter
bonds can become the weaker bonds thus indicating a reverse
rather than inverse bond length−bond strength (BLBS)

relationship, for example for the NF bonds in the fluoro
amines HnNF3‑n and methyl fluoro amines (CH3)nNF3‑n with (n
= 0−2),26−31 the A-F bonds in substituted homologues of
ethane,32−34 the O−F bonds in HOF, OF2, and FNO2

35−39 or
the S−F bonds in the SF2 dimer,40,41 Cr−H bonds in
chromium dihydrides,42 or the Ti−P bonds in titanium
complexes with phosphines43,44

For some of these examples the bond in question connects
electronegative atoms possessing electron lone pairs (lp).
Therefore, one assumed that lp−lp repulsion might be
responsible for a reverse relationship.13 However, in other
cases such as the Pb−P and Pb−C bonds,45 the Cr−H bonds,42

or the Ti−P bonds43,44 lp−lp repulsion does not play any
decisive role so that alternative electronic effects had to be
invoked to explain the reported reverse BLBS relationships and
the resulting bond anomalies. Therefore, we investigate in this
work several of the systems mentioned in the literature where
the focus will be on those claimed bond anomalies that do not
involve lp−lp repulsion.
In the following, we will critically evaluate the question

whether bond anomalies exist or whether they are just the
result of vaguely defined bond strength parameters, exper-
imental or computational shortcomings, or a natural con-
sequence of opposing electronic effects consistent with our
general understanding of the chemical bond. For this purpose,
we will first (section 2) discuss the computational methods
used in this work. The results and the discussion of these

Figure 1. Structures 1−20 with CCSD(T)/aug-cc-pVTZ atomic charges (NBO) given in melectron: (blue) central atom; (green) halogen atom;
(brown) H atom; (black) other atoms. The bold red numbers give the pyramidalization angle θ.
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results will be presented in section 3. Finally, in section 4 the
conclusions of this work will be drawn.

2. COMPUTATIONAL METHODS

Normal vibrational modes are delocalized as a result of
electronic and kinematic mode−mode coupling.46 By solving
the Wilson equation22 electronic coupling is eliminated and
kinematic coupling remains. In 1998, Konkoli and Cremer
showed that elimination of the latter coupling requires the
solution of a mass-decoupled Wilson equation, which leads to
the local vibrational modes.46,47 The local modes are driven by
an internal coordinate qn describing the molecular geometry
and in this way, they are most useful for the electronic structure
analysis. Local modes for curvilinear coordinates or symmetry
coordinates can also be defined.47 Zou and co-workers48−50

proved that there is a 1:1 relationship between the normal
vibrational modes of the Wilson equation and the local
vibrational modes obtained by the mass-decoupled Wilson
equation: Each of the Nvib = 3N − L local vibrational mode
frequencies (N, number of atoms; L, number of translations
and rotations) of a molecule can be related by an adiabatic
connection scheme (ACS) to the Nvib normal frequencies. If

local modes are driven by M > Nvib redundant internal
coordinates, M − Nvib local vibrational modes relate to normal
modes with zero frequencies and therefore are not true local
modes. In this way, a unique set of Nvib local modes can be
identified.50 In a previous work, the calculation of local mode
force constants kn

a and frequencies ωn
a as well as the

construction of ACS diagrams has been amply de-
scribed.48,50−52

Local mode frequencies can be both measured and calculated
although their measurement is limited to specific isotopomers
of a target molecule53−55 or requires special laser techniques in
connection with overtone spectroscopy.56 Local mode force
constants, contrary to normal mode force constants, have the
advantage of being independent of the choice and the number
of coordinates used to describe the molecule in question.46,47

Since a stretching force constant refers to an infinitesimally
small change in the geometry, it does not lead to a change in
the electronic structure and, therefore, the local stretching force
constant is an excellent probe for the intrinsic strength of a
bond.
The usefulness of the local mode description of the intrinsic

bond strength47−49 has been documented by the character-

Figure 2. Geometry and bond strength descriptors of the NE (E = O, S, or Se) and NF bonds in fluorinated amine oxides, amine sulfides, and amine
selenides 9−20 (H, white; N, blue; O, red; F, green; S, yellow; Se, magenta). Bond lengths in Å, bond angles in degrees (black), stretching force
constants in mdyn/Å (blue for NE, bold green for NF bond), BDE(NE) and BDH(NE) values (in red) in kcal/mol. Charges of E or N (brown), and
F (green) in melectron. Series 1−6 (brown outlined numbers) are indicated to lead to NE bond shortening (s), lengthening (l), strengthening (st),
weakening (we), or a bond anomaly. Lower left box: NE bond length changes ΔR in Å for 10−12, 14−16, 18−20 relative to 9 (first row), 13 (row
2), and 17 (row 3). Lower right box: ΔR(NF) values relative to 2−4. CCSD(T)/aug-cc-pVTZ calculations.
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ization of CC bonds,47,49,57,58 NN bonds,12 CO bonds,59 CX
bonds with X = F, Cl, Br, I,60−64 H-bonding,51,52,65,66 pnicogen
bonding,67,68 and the characterization of isotopomers.69 In this
work, we will apply the local vibrational mode analysis46,48,50,70

to a representative test set of 53 molecules, which have been
discussed in connection with reverse BLBS relationships or
which are needed for reasons of comparison. Molecules 1−32
(see Figures 1, 2, and Table 1) contain electron-rich A−X
bonds of the type N−F, N−O, N−S, or N−Se, whereas
molecules 33−53 contain Pb−P, Pb−C, Cr−H, or Ti−P bonds
(Figure 3, Table 2), which have been discussed in connection
with possible reverse BLBS relationships involving atoms from
fourth and higher periods of the periodic table.
Equilibrium geometries and normal vibrational modes of

molecules 1−32 were calculated at the CCSD(T) level
(coupled cluster theory with single (S) and double (D)
excitations and a perturbative treatment of triple (T)
excitations)71 using aug-cc-pVTZ basis sets.72−74 Preliminary

calculations were carried out at the DFT (density functional
theory) level of theory employing the B3LYP hybrid func-
tional75−78 with the same basis set. Molecules 33−53
containing metals Cr and Pb were calculated with the long-
range corrected DFT functional LC-ωPBE79−81 again employ-
ing the aug-cc-pVTZ basis set. In the case of the Ti complexes,
Pople’s 6-31++G(d,p) basis set82,83 was used. For molecules
containing Pb, the Stuttgart effective core potentials (ECPs)
were employed.84,85 All DFT calculations were carried out
using an ultrafine grid86,87 and tight convergence criteria in the
geometry optimizations (forces and displacements ≤10−6 a.u.;
changes in the density matrix, ≤ 10−8) to guarantee a reliable
calculation of vibrational properties.
BDE and BDH(298) values were calculated for molecules 1−

32 with the G4 method.88 In the case of the Ti−P bonds, BDE
and BDH values were calculated at the LC-ωPBE/6-31+
+G(d,p) level of theory correcting results for basis set
superposition errors (BSSEs).89 All BDEs reported in this

Table 1. Calculated Bond Properties for Molecules 1−32a

B3LYP/aug-cc-pVTZ CCSD(T)/aug-cc-pVTZ G4

no. molecule (state), sym. R(AX) ωa(AX) ka(AX) n(AX) R(AX) ωa(AX) ka(AX) n(AX) BDE(AX) BDH(AX)

N−F Bonds
2 H2N−F(1A′), Cs 1.433 938 4.176 1.000 1.427 934 4.142 1.000 73.10 69.27
3 H(F)N−F(1A′), Cs 1.402 911 3.938 0.964 1.394 923 4.047 0.985 68.30 65.69
4 F2N−F(1A1), C3v 1.379 875 3.637 0.918 1.369 920 4.021 0.981 59.75 58.27
6 H3C(H)N−F(1A), C1 1.443 892 3.782 0.940 1.435 911 3.946 0.968 73.36 70.18
7 H3C(F)N−F(1A′), Cs 1.413 871 3.605 0.913 1.403 909 3.922 0.964 67.33 65.34
8 (CH3)2N−F(1A′), Cs 1.454 854 3.466 0.891 1.436 904 3.878 0.957 73.20 70.55
10 ON(H2)-F(

1A′), Cs 1.681 497 1.171 0.456 1.660 550 1.439 0.493 51.11 48.67
11 ON(H)(F)-F(1A′), Cs 1.511 598 1.699 0.574 1.491 582 1.608 0.531 54.03 51.95
12 ON(F2)-F(

1A1), C3v 1.441 719 2.458 0.721 1.424 749 2.662 0.744 53.62 51.79
14 SN(H2)-F(

1A′), Cs 1.792 348 0.576 0.295 1.771 407 0.786 0.329 32.72 30.84
15 SN(H)(F)-F(1A′), Cs 1.524 327 0.506 0.272 1.492 308 0.452 0.227 34.15 32.84
16 SN(F2)-F(

1A1), C3v 1.441 549 1.433 0.517 1.416 625 1.853 0.584 36.69 35.85
18 SeN(H2)-F(

1A′), Cs 1.750 317 0.477 0.262 1.776 384 0.700 0.305 28.66 26.74
19 SeN(H)(F)-F(1A′), Cs 1.485 336 0.538 0.282 1.448 482 1.101 0.412 31.76 30.46
20 SeNF2−F(1A1), C3v 1.417 577 1.582 0.549 1.392 707 2.371 0.689 33.23 29.14

N−H, ON−H, SN−H, SeN−H
1 H2N−H(1A1), C3v 1.013 3503 6.796 1.000 1.012 3528 6.894 1.000 114.77 106.73
5 H3C(H)N−H(1A′), Cs 1.012 3507 6.813 1.001 1.011 3520 6.863 0.999 106.98 99.04
9 ON(H2)-H(

1A1), C3v 1.013 3183 5.610 0.943 1.025 3305 6.052 0.963 59.31 52.81
13 SN(H2)-H(

1A1), C3v 1.016 3468 6.661 0.994 1.014 3520 6.863 0.999 61.63 54.33
17 SeN(H2)-H(

1A1), C3v 1.014 3509 6.822 1.001 1.013 3544 6.958 1.003 67.52 60.16
References

NO, NS, NSe
21 H2N−OH(1A′), Cs 1.445 942 3.902 0.959 1.443 942 3.905 0.962 69.08 62.98
22 H2N-SH(

1A′), Cs 1.732 699 2.805 0.826 1.730 723 2.995 0.851 70.76 66.14
23 H2N-SeH(

1A′), Cs 1.878 593 2.471 0.811 1.854 628 2.768 0.864 63.10 58.98
24 HNO(1A′), Cs 1.198 1652 12.005 1.918 1.210 1582 11.007 1.923 167.50 164.71
25 HNS(1A′), Cs 1.571 1077 6.649 1.406 1.584 1025 6.033 1.359 124.67 122.47
26 HNSe(1A′), Cs 1.720 879 5.427 1.318 1.725 843 4.986 1.281 106.22 104.31

PO and AsO Bonds
27 H2P−OH(1A′), Cs 1.677 782 3.796 0.912 1.669 808 4.055 0.943 93.22 88.91
28 H2As−OH(1A′), Cs 1.821 644 3.226 0.814 1.792 692 3.718 0.881 81.24 77.59
29 HPO(1A′), Cs 1.492 1208 9.076 1.561 1.497 1179 8.633 1.563 184.64 182.98
30 HAsO(1A′), Cs 1.634 966 7.244 1.341 1.636 951 7.031 1.350 157.57 156.38

FH Bonds
31 F···H···F−(1Σg

+), D∞h 1.149 1361 1.044 0.551 1.138 1241 0.868 0.550 43.23 43.96
32 F−H(1Σ+), C∞v 0.922 4090 9.432 1.102 0.919 4139 9.660 1.101 141.31 136.40

aDistance R(AX) in Å, local stretching frequencies ωa(AX) in cm−1, local AX stretching force constants ka(AX) in mdyn Å−1, and bond strength
order n(AX). For molecular structures and NBO charges, see Figure 1.
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work do not include zero-point energies because only the
electronic factors influencing their magnitude will be
considered. NBO (natural bond orbital) charges90,91 were
determined at the CCSD(T)/aug-cc-pVTZ level (1−33), at the
B3LYP/aug-cc-pVTZ (1−33), and at the LC-ωPBE level with
either the aug-cc-pVTZ or 6-31++G(d,p) basis set (34−53).
Many of the molecules considered in this work adopt a

pyramidal structure where the degree of pyramidalization plays
an important role in the discussion. The latter was measured by
determining for an AHnXm molecule that normal vector which
forms with the three AH or AX bond vectors one and the same
angle α. The pyramidalization angles were defined as θ = α −
90 so that the planar form of AHnXm is identified by θ = 0°.
Intrinsic bond strengths were compared by using the

stretching force constants ka(AZ). To simplify the comparison
of force constants, the ka values were used to derive relative
bond strength orders (BSOs) n. The relative BSO n(AX) was
calculated by utilizing the extended Badger rule,12,31 according
to which n is related to the local stretching force constant ka by
a power relationship n = a(k)b. The constants a and b are
determined with the help of two reference values and the
requirement that for a zero force constant n becomes zero. As
reference molecules hydroxylamine (21; n(NO) = 1.0) and
nitroxyl (24; n(NO) = 2.0) were used. At the CCSD(T) level, a
= 0.402 and b = 0.669 were obtained, and at the DFT level a =
0.432; b = 0.617 were obtained. The resulting equations were
used for all bonds investigated in this work. However, for each

type of bond A−X investigated, the BSO values were rescaled
by introducing additional reference molecules. For example, the
BSO values of the NF bonds were scaled by setting the BSO of
the N−F bond of 2 to 1.0, and those of the NS (NSe) bonds by
using the single bond in H2N−SH (H2N−SeH) as reference for
n = 1.0.
The BSO values of A−H bonds were calculated from the

local stretching force constants by using the FH bonds in F···
H···F− (31; n(FH) = 0.5) and HF (32; n = 1.0) as suitable
reference (CCSD(T): a = 0.521, b = 0.288. B3LYP: a = 0.505,
b = 0.306) and, then scaling the resulting n = f(ka) relationship
with the help of reference molecules AH3. Also, the FH
relationship was extended to Cr−H bonds by recalculating it at
the LC-ωPBE/aug-cc-pVTZ level of theory. The corresponding
ka(FH) values for 31 and 32 are 1.006 and 9.609 mdyn/Å,
respectively. This led to a = 0.499 and b = 0.307. The BSO
value of the Cr-dihydride 49 was set to 1.0 to rescale calculated
BSO values for Cr−H bonds.
This approach was tested: (i) by calculating the relative BSO

values of reference molecules with formal double bonds NS,
NSe (25; 26) and (ii) single bonds P−O, As−O (27; 28)
with formal double bonds PO, AsO (29; 30). Then the
ratio of the BSO values were compared with those of the
corresponding BDE values. In all cases, reasonable BSO values
were obtained, which qualitatively changed parallel to the
calculated BDE values for these bonds (Table 1).

Figure 3. Molecules 33−53. Atomic NBO charges according to LC-ωPBE/aug-cc-pVTZ (Pb, Cr) or LC-ωPBE/6-31++G(d,p) calculations (Ti) are
given in melectron: (blue) metal atom; (green) H or halogen atom; (brown) C system; (red) P atom; (purple) phosphine.
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The local vibrational modes46 were calculated and analyzed
with the program package COLOGNE2015.92 For the
CCSD(T) calculations, the program CFOUR93,94 was used,
and for the DFT calculations, Gaussian 09 was used.95

3. RESULTS AND DISCUSSION

In Table 1, AX bond properties of compounds 1−32 (compare
with Figure 1) calculated at the B3LYP/aug-cc-pVTZ and
CCSD(T)/aug-cc-pVTZ levels of theory are listed. These
comprise the distance R(AX) for A = N and X = F and H, the
local stretching frequency ωa(AX) and force constant ka(AX),
the relative BSO values n(AX), as well as BDE(AX) and
BDH(AX) values. NBO charges calculated at the CCSD(T)
level are given in Figure 1 for molecules 1−20. Figure 2
summarizes the corresponding data for the NE bonds in
molecules 9−20. Figure 4 gives the BSO relationship for all NF
bonds investigated in this work. In Table 2, MA bond
properties of compounds 33−53 calculated at the LC-ωPBE
level of theory are listed, comprising the distances R(MA), (M
= Pb, Cr, and Ti; A = C, P, H, and F), the local stretching
frequencies ωa(MA), and force constants ka(MA). Figure 3
gives a summary of the corresponding NBO charges.
BLBS Relationships for NF Bonds. The NF bond

anomaly was discussed by several authors on the basis of

vaguely determined bond strength descriptors (see
below).27−30 Cremer and Kraka13 verified the NF bond
anomaly by utilizing for the first time local NF stretching
force constants derived from low level DFT vibrational modes

Table 2. Calculated Bond Properties for Molecules 33−53a

no. molecule bond typeb R(MA) ka(MA) ωa(MA)

34 Pb(CH3)F Pb−F 2.066 2.730 515.9
35 PbF2 Pb−F 2.045 2.946 535.9
36 Pb(CH3)3F Pb−F 2.059 2.765 519.2
37 Pb(CH3)2F2 Pb−F 2.039 2.938 535.2
38 Pb(CH3)F3 Pb−F 1.998 3.397 575.5
39 PbF4 Pb−F 1.972 3.929 618.9
33 Pb(CH3)2 Pb−C 2.253 1.780 516.0
34 Pb(CH3)F Pb−C 2.234 1.863 528.0
36 Pb(CH3)3F Pb−C 2.177 2.208 574.8
37 Pb(CH3)2F2 Pb−C 2.144 2.347 592.5
38 Pb(CH3)F3 Pb−C 2.141 2.299 586.5

40 Ti(η5-2,4-C7H11)2P(Me)3 Ti−P 2.521 0.940 291.1
41 Ti(η5-2,4-C7H11)2P(OEt)3 Ti−P 2.416 1.124 318.4
42 Ti(η5-2,4-C7H11)2PF3 Ti−P 2.293 1.753 397.6
40 Ti(η5-2,4-C7H11)2P(Me)3 Ti···X 1.756 0.941 244.7
41 Ti(η5-2,4-C7H11)2P(OEt)3 Ti···X 1.753 1.288 286.3
42 Ti(η5-2,4-C7H11)2PF3 Ti···X 1.743 1.301 287.9
43 Ti(η5-2,4-C7H11)2 Ti···X 1.888 1.054 259.1

47 Cr(H)(η5-Cp) (CO)3 Cr−H 1.565 2.245 1963.4
48 Cr(H)(η5-Cp) (CO)2 P(OMe)3 Cr−H 1.576 2.151 1921.8
49 Cr(H)2(η

5-Cp)2 Cr−H 1.530 2.404 2031.4
50 Cr(H)(η5-Cp)2Me Cr−H 1.517 2.468 2058.2
51 Cr(H)(η5-Cp)2SiH3 Cr−H 1.567 2.025 1864.6
52 Cr(H)2 Cr−H 1.594 1.997 1851.5
47 Cr(H)(η5-Cp) (CO)3 Cr···X 1.802 3.389 454.6
48 Cr(H)(η5-Cp) (CO)2P(OMe)3 Cr···X 1.802 3.335 450.9
49 Cr(H)2(η

5-Cp)2 Cr···X 1.760 3.446 458.3
50 Cr(H)(η5-Cp)2Me Cr···X 1.796 2.855 417.2
51 Cr(H)(η5-Cp)2SiH3 Cr···X 1.775 3.434 457.6
53 Cr(H)(η5-Cp)2 Cr···X 1.781 2.702 405.9

aDistance R(MA) in Å, local stretching frequencies ωa(MA) in cm−1, and local MA stretching force constants ka(MA) in mdyn Å−1. For molecular
structures and NBO charges, see Figure 3. bX is the geometrical center of the pentadienyl unit (Ti complexes) or the Cp ring (Cr complexes). LC-
ωPBE/aug-cc-pVTZ (Pb, Cr) and LC-ωPBE/6-31++G(d,p) calculations (Ti).

Figure 4. Relative BSO values n(NF) given as a function of the
corresponding local NF stretching force constants ka(NF) according to
CCSD(T)/aug-cc-pVTZ calculations. E = O, S, or Se.
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(B3LYP/6-31G(d,p)) as quantitative bond strength descrip-
tors. Their results are scrutinized and confirmed in this work by
using the more reliable CCSD(T) vibrational modes in
connection with a larger basis set containing diffuse functions.
Figure 5 reveals that all NF bonds investigated in this work

have peculiar bond properties, which are difficult to describe by
a Badger-type inverse BLBS relationship. Even if two or three
BLBS relationships are used (solid and dashed lines in Figure
5a), the scattering of data points is large. It is more reasonable
to consider different classes of fluoro amines separately as in
Figure 5b (blue line, fluoro amines; red, methyl fluoro amines;
green, fluoro amine radicals, which have been added for reasons
of completeness). The N−F bonds of each of these fluoro
amine classes follow a reverse BLBS relationship in line with a
bond anomaly; that is, the CCSD(T) results confirm the
previous (and current) DFT results (see Table 1).
Cremer and Kraka13 explained the N−F bond anomaly as a

result of bond shortening caused by increasing fluorination.
Shorter N−F bonds are weakened by an increase in lp(N)−
lp(F) repulsion. However, this explanation would imply that for
the planar fluoro amines the NF anomaly increases, which is
not the case. Therefore, a revised and more detailed explanation
of the observed bond anomalies based on the calculated

stretching force constants, bond lengths, and NBO charges is
appropriate. Clearly, increasing fluorination leads to a strong
withdrawal of negative charge from the N atom, which becomes
highly positively charged (Figure 1). Its valence orbitals
contract so that its covalent radius becomes smaller and the
NF bonds become shorter. Pyramidalization of the planar
molecular form of 1 is a consequence of the second order
Jahn−Teller (SOJT) effect96−99 involving the two a1-sym-
metrical frontier orbitals. The highest occupied molecular
orbital (HOMO) is dominated by the lp(N) orbital, whereas
the antibonding (lowest unoccupied molecular orbital) LUMO
has a dominant contribution from the substituents of N. The
smaller the HOMO−LUMO gap is the stronger is the
pyramidalization of the molecule as reflected by the
pyramidalization angle θ. If the H atoms in 1 are replaced by
F, the energy of the LUMO decreases thus closing the
HOMO−LUMO gap and leading to a stronger pyramidaliza-
tion (see red θ values in Figure 1). A stronger pyramidalization
leads to increased p-orbital character of the bond orbitals
(hybridization defect100−105) and a concomitant weakening of
the NF bonds. This effect is enhanced by two lp−lp repulsion
effects: (i) Through-space lp(F)−lp(F) repulsion between two
or three F atoms in the pyramidal forms. (ii) Decreased
anomeric delocalization of the lp(F) into a vicinal σ*(NF)
orbital. This is maximal for the planar form and the in-plane
lp(F) electrons lowering in this way through-space lp−lp
repulsion. For the pyramidal form, lp(F)−lp(F) repulsion also
increases because anomeric lp(F) delocalization is strongly
reduced.
This explanation model of the NF bond anomalies does not

exclude that through-bond lp(N)−lp(F) repulsion also makes a
bond weakening contribution. However, the latter cannot be
decisive. Therefore, we will test in the following whether the
conversion of the lp(N) into an NE bond (E = O, S, Se) leads
to a vanishing of the N−F bond anomalies, which would
attribute a decisive role to lp(N)−lp(F) repulsion.

Removal of the Nitrogen Lone Pair. If lp(N)−lp(F)
repulsion in the fluoro amines would be the main cause for the
observed bond anomalies, it would be eliminated when
establishing an N→E (E = O, S, Se) donor−acceptor bond
leading to ONH3‑nFn, (n = 0, 1, ··· 3, 9−12), SNH3‑nFn (13−
16), and SeNH3‑nFn, (17−20) so the NF bonds in these
molecules should show a normal Badger-type behavior. On first
sight, this seems to be the case although there are some unusual
BLBS trends (Table 1; Figure 2): The NF bonds are
significantly longer than in the corresponding fluoro amines,
but decrease with increasing fluorination as found for the fluoro
amines. This should lead to an increase in the bond strength,
that is, a normal BLBS relationship should result. For the same
number of F atoms, NF bond lengths increase from E = O to
Se (n = 1) or decrease (n = 3; Figure 2). NE bond lengths
decrease (E = O) or increase (E = Se) with fluorination or
follow a mixed trend (E = S; first shortening, then lengthening,
Figure 2). Bond anomalies are found for the NF and NS bonds
of the pair 14/15, which seems to be a consequence of the
reversion of trends from the amine oxides to the amine
selenides. The unusual NF bond lengths and ONF bond angles
observed for 10−12 have been discussed in the literature.106,107

MO theory suggests significant ionic contributions to
bonding,106 whereas the Ligand Close Packing model (a steric
model) suggests predominantly covalent bonding.107 The focus
of this work is to elucidate the electronic structure changes
taking place in the series 9−20 upon successive fluorination by

Figure 5. (a) Inverse BLBS relationships for all NF bonds investigated.
(b) Reverse BLBS relationships in the cases of NF bond anomalies.
CCSD(T)/aug-cc-pVTZ calculations.
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utilizing local mode force constants ka(NF) and ka(NE) (E =
O, S, Se) and NBO charges and to clarify what electronic effects
lead to the overall trends in NF and NE bond lengths and the
absence of the expected bond anomalies.
Because of the donor−acceptor bond N→O, the negative

charge on N is reduced from −1022 me in 1 to −338 me in 9,
from −358 to +83 (2, 10), +169 to +493 (3, 11), and +561 to
+802 me (4, 12, Figure 1). Accordingly, the contraction of the
covalent N radius should be stronger and the NF bonds
shorter, which is not the case as they are significantly longer
and weaker (Figure 5a). This is indicative of an anomeric effect
involving the lp(O) electrons, which are delocalized into low-
lying σ*(NF) orbitals in the sense of a back-donation mechanism
thus strengthening the NO bond, whereas the NF bonds are
weakened. In 10, the NO bond is 1.222 Å compared to 1.371 Å
in 9 (0.149 Å reduction) and considerably stronger (ka(NO) =
9.791 mdyn/Å. 9: ka(NO) = 4.102 mdyn/Å). The N−F bond
becomes 0.223 Å longer than in 2 and significantly weaker as is
reflected by the ka(NF) value of 1.439 mdyn/Å compared to
ka(NF) = 4.142 mdyn/Å in 2. The trends in the calculated
R(NF) and ka(NF) values suggest that the anomeric effect
dominates the contraction effect thus leading in the amine
oxides ONH3‑nFn always to weaker (longer) NF bonds.
We will show in the following that the absence of the lp(N)

does not lead to a Badger-type inverse BLBS relationship and
that anomeric delocalization involving the chalcogen lp
disguises an existing NF bond anomaly partly. This requires a
careful evaluation of the electronic effects determining the
intrinsic strength of both the NF and NE bonds: (i) Anomeric
delocalization will increase from O to S and Se because of the
increase in the lp(E) energy. (ii) Also, it will increase with the
number of F atoms in the NFm group because this leads to a
larger positive charge at N and lower lying σ*(NFm) orbitals.
(iii) However, with increasing m a strong impact on the NE
bond will have just a 1/m fraction of this impact on an
individual NF bond so that the anomeric NF bond lengthening
should decrease with the number m of F atoms in the NFm
group. (iv) A large positive charge leads to a contraction of the
N orbitals, which increasingly reduces the overlap with the
lp(E) orbitals as they become more diffuse in the series O, S,
Se.
In Figure 2, all relevant data needed to rationalize the various

trends in the BLBS relations of 9−20 are summarized in which
9, 13, and 17 together with 2−4 serve as suitable reference
molecules. Any shortening of the donor−acceptor bond NE
upon fluorination indicates either contraction of the covalent
radius of N or anomeric delocalization of lp(E) into the NFm
group. If there is a positive charge at E (Figure 2), anomeric
delocalization should play an important role. With increasing
positive charge at N, its lp orbital is contracted, which may lead
to a shorter NE bond, but not necessarily to a stronger NE
bond as the lp energy is reduced and the interaction with the
np(E) orbital becomes energetically more difficult. On the basis
of these general considerations the trends in the series 1−6
(brown outlined numbers) indicated in Figure 2 are shortly
discussed.
Series 1: The decrease in the NE bond length (relative to the

reference bond lengths: −0.149, −0.216, −0.216 Å) and
increase in the NF bond lengths (0.233, 0.344, 0.349 Å) are
predominantly caused by anomeric delocalization increasing
from O to S and Se. Series 4: The increasing shortening of the
NO bond length indicates increasing anomeric delocalization,
which is facilitated by decreasing σ*(NFm) orbital energies. As

the anomeric delocalization effect is shared by an increasing
number of NF bonds, individual NF bonds experience a
reduction in bond lengthening so that shorter NF bonds result
with increasing m. The intrinsic bond strength increases.
Obviously, the anomeric effect outweighs through-space
lp(F)−lp(F) repulsion and hybridization defects. However,
Figure 5a reveals that both 11 and 12 have too low NF
stretching force constants compared to 10 and that it is justified
to speak of a hidden bond anomaly.
Series 2: The decrease of the NE bond length is partly

stronger and partly weaker. Anomeric delocalization slightly
increases for S, but then decreases because of a decrease in
overlap between the 4pπ-orbital and the contracted σ*(NF2)
orbitals, which is revealed by a reduction of the NSe bond
length by just 0.180 Å. Through-space lp−lp repulsion weakens
the NF bonds. A NF bond anomaly results as is revealed by the
positions of the 11, 15, and 19 data points in Figure 5a. Series 5:
The intrinsic NS bond strength steadily decreases according to
the CCSD(T) local NS force constants, which suggest a
decrease in lp(S)−σ*(NFm) orbital overlap and anomeric
delocalization. The NE bond lengths (1.619, 1.608, 1.614 Å,
Figure 2) indicate a bond anomaly, which can result from
several effects: changes in the NS donor bond because of orbital
contraction at N, through-space lp(S)−lp(F) repulsion, or
hybridization defects. A bond anomaly is also found for the NF
bonds: For 15, the local NF force constant is unusually low
ka(NF) of 14−16: 0.786, 0.452, 1.853 mdyn/Å, see Table 1;
R(NF): 1.771, 1.492, 1.416 Å. Comparison with the
corresponding values for reference molecules 2−4 clarifies
that anomeric delocalization is still the dominant effect (NBO
charges at S: +212, +153, +161 me). Figure 5a confirms that
the irregularity of the NF bonds in series 5 is stronger than that
in series 4, but that trends are similar.
Series 3: Because of the decrease in anomeric lp(E)

delocalization from 12 to 20, the NF bond length decreases,
whereas the bond strength does not show the expected
increase, which is in line with another bond anomaly. Especially
the ka(NF) value of 16 is unusually low (12, 16, 20: 2.662,
1.853, 2.371 mdyn/Å) thus confirming the impression that
bonding in the SNH3‑nFn molecules is at the crossing point of
different electronic effects (anomeric delocalization decreasing,
the donor−acceptor bond decreasing, the covalent radius of N
decreasing, through-space lp−lp repulsion increasing, hybrid-
ization defects increasing). It would be a misleading
simplification to focus on one “dominating” effect in this
case. Series 6: The anomeric delocalization effect is clearly
weaker as for the O and S series 4 and 5 (reflected by the
decreases in the NSe bond length: 0.216, 0.180, 0.159 Å). With
increasing fluorination, there is another decrease of anomeric
delocalization, which leads to a lengthening/weakening of the
NSe bond and a shortening/strengthening of the NF bonds,
thus indicating that the anomeric effect still dominates in this
series (Figure 2).
Inspection of Figure 5a confirms that all ENH3‑nFn (E: O, S,

Se) molecules possess an unusual BLBS behavior, which is
reminiscent of the fluoro amines, but which is partly disguised
by anomeric delocalization of the lp(E)→σ*(NFm) type.
Therefore, it is appropriate to speak of hidden bond anomalies
and hidden reverse BLBS relationships. Clearly, through-bond
lp(N)−lp(F) repulsion is not the reason for the N−F bond
anomaly observed for the fluoro amines. The N−F bond
anomalies are disguised by strong anomeric delocalization,
which leads to some of the weakest NF bonds found so far with
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BSO values between 0.2 and 0.4 (amine sulfides 15 and 14;
amine selenides 18 and 19; see Figure 4), which could be used
as suitable fluorination agents.
Methyl Fluoro Amines. In methyl amine (5), the negative

charge at N is decreased by 219 to −803 me with regard to
ammonia (1) (Figure 1) primarily because the methyl group
can get some of the negative charge σ-donated to N back via in-
plane lp(N)−σ*(CH) interactions as indicated by a C−H bond
lengthening to 1.095 Å. In CH3NHF (6) the negative charge
on N is reduced by 594 to −209 me and in CH3NF2 (7) by
1057 to +254 me with regard to the parent molecules 2 and 3,

respectively. The change from 6 to 7 (463 me more positive N)
is comparable to that found for the fluoro amines. Therefore, as
shown in Figure 5a, the NF bonds in 6 (R(NF): 1.435 Å;
ka(NF): 3.946 mdyn/Å) and 7 (1.403 Å; 3.922 mdyn/Å)
change according to a reverse BLBS relationship describing
another NF bond anomaly. The effect is for a similar bond
length decrease of 0.032 (0.033) Å four times smaller (Δka =
0.024 compared to 0.095 mdyn/Å), which is a result of the
smaller charge at N and the larger covalent N radius caused by
the hyperconjugative stabilization of the amine via its methyl
group.

Figure 6. Decomposition of the (a) 15 normal vibrational modes of methyl difluoro amine (7) and (b) 24 normal modes of dimethyl fluoro amine
(8) into local vibrational modes based on measured frequencies.30 The color code (given on the right side) identifies each local mode and the
internal coordinate driving it.46 Each contribution is given in percentage. For the numbering of atoms, see the inset on the right side.
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Substitution of two hydrogens by methyl as in 8 (R(NF):
1.436 Å; ka(NF): 3.878 mdyn/Å) leads to a normal effect, that

is, an inverse BLBS relationship. Oberhammer and co-workers
published the gas-phase structure of 8.27,28 They observed a

Table 3. Normal Mode and Local Mode Properties for Methyl Difluoro Amine (7) Based on Experimental Frequenciesa

ωμ ka ωa ωcoup

μ symbol cm−1 no. internal coordinate mdyn Å−1 cm−1 cm−1

15 A″ 3027 6 C1−H5 4.954 3007 20
14 A′ 3027 4 C1−H3 4.954 3007 20
13 A′ 2957 5 C1−H4 4.892 2989 −32
12 A″ 1443 11 H4−C1−H5 0.633 1416 27
11 A′ 1443 9 H3−C1−H4 0.633 1416 27
10 A′ 1398 10 H3−C1−H5 0.627 1410 −12
9 A′ 1167 7 N2−C1−H3 0.809 1179 −12
8 A″ 1134 8 N2−C1−H4 0.798 1174 −40
7 A′ 1047 3 C1−N2 3.979 1022 25
6 A′ 858 2 N2−F7 3.686 881 −23
5 A″ 836 1 N2−F6 3.686 881 −45
4 A′ 558 14 F6−N2−F7 1.720 637 −79
3 A′ 460 13 C1−N2−F7 1.393 599 −139
2 A″ 420 12 C1−N2−F6 1.393 599 −179
1 A″ 271 15 H3−C1−N2-F6 0.117 477 −206

ZPE [kcal/mol]: 28.66 29.59 −0.93
aMeasured frequencies from ref 26 and 30. Local mode frequencies are characterized by the internal coordinate, which drives the mode. They are
ordered according to the ACS, which relates each local mode to a particular normal mode. The coupling frequency ωcoup provides a measure of
mode−mode coupling.48,49,51 The zeropoint energy (ZPE) is calculated for each set of frequencies and leads to the value ZPE(normal) = ZPE(local)
+ ZPE(coup).

Table 4. Normal Mode and Local Mode Properties for Dimethyl Fluoro Amine (8) Based on Experimental Frequenciesa

ωμ ka ωa ωcoup

μ sym cm−1 no. internal coordinate mdyn Å−1 cm−1 cm−1

24 A′ 3010 7 C7−H8 4.909 2994 16
23 A″ 3010 3 C1−H3 4.909 2994 16
22 A′ 2970 5 C1−H5 4.820 2966 4
21 A″ 2970 9 C7−H10 4.820 2966 4
20 A′ 2870 8 C7−H9 4.532 2876 −6
19 A″ 2870 4 C1−H4 4.532 2876 −6
18 A′ 1475 18 H8−C7−H9 0.665 1446 29
17 A″ 1462 12 H3−C1−H4 0.665 1446 16
16 A′ 1449 13 H3−C1−H5 0.636 1417 32
15 A″ 1440 19 H8−C7−H10 0.636 1417 23
14 A′ 1415 14 H4−C1−H5 0.640 1416 −1
13 A″ 1391 20 H9−C7−H10 0.640 1416 −25
12 A″ 1200 10 N2−C1−H3 0.827 1195 5
11 A′ 1190 16 N2−C7−H8 0.827 1195 −5
10 A′ 1160 17 N2−C7−H10 0.801 1171 −11
9 A″ 1090 11 N2−C1−H5 0.801 1171 −81
8 A″ 985 6 N2−C7 4.176 1047 −62
7 A′ 930 2 C1−N2 4.176 1047 −117
6 A′ 785 1 N2−F6 3.435 850 −65
5 A′ 465 15 C1−N2−C7 1.116 573 −108
4 A″ 435 21 H3−C1−N2-F6 0.119 488 −53
3 A′ 410 24 F6−N2−C7-H8 0.119 488 −78
2 A′ 304 23 C1−N2−C7-H8 0.116 467 −163
1 A″ 245 22 H3−C1−N2-C7 0.116 467 −222

ZPE [kcal/mol]: 50.79 52.02 −1.23
aMeasured frequencies from ref 28. Local mode frequencies are characterized by the internal coordinate, which drives the mode. They are ordered
according to the ACS, which relates each local mode to a particular normal mode. The coupling frequency ωcoup provides a measure of mode−mode
coupling.48,49,51 The zeropoint energy (ZPE) is calculated for each set of frequencies and leads to the value ZPE(normal) = ZPE(local) +
ZPE(coup).
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bond length increase from 1.371 Å in 4108 to 1.447 Å in 8. On
the basis of a normal-mode analysis, they derived MP2/6-311+
+G(d,p) N−F stretching force constants of 4.58 and 4.77
mdyn/Å for 4 and 8, respectively, which suggested a reverse
BLBS relationship contrary to the CCSD(T) results obtained in
this work: R(NF) of 1.369, 1.436 Å; ka(NF) of 4.021, 3.878
mdyn/Å (Table 1). Hagen and co-workers published the gas
phase structure of difluoro methyl amine 7 and derived MP2
N−F stretching force constants for fluoro amines utilizing
symmetry coordinates and scaling the results to fit observed
infrared frequencies.30 By assuming the symmetric NF
stretching frequency to have a value of 1443 cm−1, they
derived NF force constants for 4, 7, and 8, which supported an
inverse BLBS relationship in line with Badger’s rule.
In both publications, NF bonding is discussed on the basis of

normal vibrational modes. However, normal vibrational modes
are kinematically coupled and because of this it is erroneous to
single out a normal mode as an NF stretching mode and use it
to derive a local (pure) NF stretching force constant. The
decomposition of the normal modes of 7 into local mode
components (see Figure 6a, Table 3) using the experimental
frequencies of Hagen and co-workers reveals that the
characterization of frequency 11 at 1443 cm−1 as the NF
stretching frequency is misleading. The symmetric and
asymmetric normal modes 11 and 12 (both at ω11 = 1443
cm−1) are admixtures of NCH and HCH bending vibrations.
The normal modes with the highest NF character are the A″-
symmetrical mode 5 (ω5 = 836 cm−1; 91% NF stretching +9%
of HCH and NCH bending character) and the A″-symmetrical
mode 6 (ω6 = 858 cm−1; 44% NF stretching + more than 30%
CN stretching character). Normal modes 7 and 8 contain still
30% and 10% NF stretching character. Therefore, none of the
force constants of these normal modes is qualified to serve as
an unique NF bond strength descriptor. Instead, we derive
from the experimental frequencies a local NF stretching
frequency of ωa(NF) = 881 cm−1, which is associated with a
local NF stretching force constant ka(NF) of 3.683 mdyn/Å
(Table 3). Even in the case of 8 with just one NF bond, there is
no normal mode with pure NF character as is obvious from
Figure 6b and Table 4. Normal mode 6 has 75% NF stretching
character mixed with 25% CN stretching character.
Critical Assessment of Postulated Reverse BLBS

Relationships. Reverse BLBS relationships have been
reported for heavy metal bonds,45 Ti bonds,43,44 and transition
metal hydrides.42 We focus this work on the investigation of
Pb−F and Pb−C single bonds in methylated lead molecules of
the type (CH3)nPb(II)F(2‑n) (n = 0−2, 33−35) and (CH3)nPb-
(IV)F(4‑n) (n = 0−4, 36−39),45 Ti−P bonds in P(CH3)3,
P(OC2H5)3, and PF3 adducts of open titanocene, Ti(η5-2,4-
C7H11)2, (40−42),43,44 and Cr−H bonds in chromium
cyclopentadienyl hydrides 47−5142 (see Figure 3). Molecules
43−46, 52, and 53 are investigated to get the reference values
needed in this connection.
The studies cited above used binding energies as bond

strength descriptors (derived from NMR measurements) for
the Ti−P bonds,43,44 measured or quantum chemical BDE
values for the Cr−H bonds,42 and calculated relative stabilities
derived from isodesmic reactions for the Pb−F and Pb−C
bonds.45 As discussed in the introduction, BDE (BDH) values
are disqualified as measures for the intrinsic strength of a bond
because they depend on the stability of the fragments
generated, which are stabilized in different ways via geometry
relaxation and electron density reorganization.8 The same holds

for binding energies and model based relative stabilities.
Therefore, we have reevaluated the BLBS relationships for
these molecules and have identified them as either inverse
(Badger-type) or reverse BLBS relationships utilizing the local
stretching force constant ka as reliable bond strength descriptor.

Intrinsic Strength of Pb−F Bonds. Kaupp and Schleyer45

reported that in (RnPb(II)FX(2‑n) (n = 0−2) and (RnPb(IV)-
FX(4‑n) (n = 0−4; R = H, CH3; X = F, Cl) the Pb−R and Pb−X
bonds shorten upon successive halogenation but seem to
become weaker if the relative stabilities of the molecules in
question are calculated.45 They concluded that successive
halogenation leads to an increase of the metal charge, followed
by an increase of the difference in the radial extensions of the
Pb 6s and 6p orbitals making spn hybridization less favorable
and the covalent bonds in these compounds weaker. However,
as discussed above, spn hybridization plays only a major role in
the case of bonding between second row atoms and, therefore,
it should not significantly influence the strength of bonds
involving the heavy metal Pb. The increase of positive charge
on Pb (Pb charges for the Pb(II) series: 33, +1031; 34, +1316;
35, +1560. Pb charges for the Pb(IV) series: 36, +1732; 37,
+2001; 38, +2257; 39, +2537 me; Figure 3) leads to a decrease
of the Pb covalent radius and accordingly should imply shorter
and stronger Pb bonds. This is reflected by the local mode force
constants ka in a quantitative way. We find Badger-type BLBS
relationships for both Pb−C and Pb−F bonds (Figure 7a and
7b) with no sign of any bond anomalies. Obviously, intrinsic
bond strengths cannot be reliably predicted using isodesmic or
other model reactions, which always depend on the electronic
structure changes in both reactants and products and do not
characterize any specific bond.

Intrinsic Strength of Ti−P Bonds. Ernst and co-workers43

discussed Ti(II) compounds 40−42 as examples for a reverse
BLBS relationship. They determined Ti−P bond lengths of
2.550(2) (40), 2.472(4) (41), and 2.324(2) Å (42) by single
crystal X-ray diffraction studies and used as measures for the
Ti−P bond strength the following BDHs: 14.5(8) (41),
10.6(6) (42), and 17.4(8) kcal/mol (43) in which these values
were derived from 13P NMR spectra by monitoring the
dissociation of the phosphine adducts in THF solution.44 These
BDH values led them to the conclusion that 42 has the shortest
and strongest Ti−P bond in this series, whereas the BLBS order
for 40 and 41 is reversed. Calculated local Ti−P stretching
force constants do not confirm their assumption (see Table 2
and Figure 7). The R(TiP) and ka(TiP) values of 2.521 Å and
0.940 mdyn/Å (40), 2.416 and 1.124 (41), and 2.293 and
1.753 (42) are in line with a normal BLBS relationship, which is
also in line with the BDE (BDH) values calculated in this work:
13.0 (11.2) kcal/mol (40), 15.6 (13.6) (41), and 20.4 (18.0)
(42).
As is revealed by an NBO analysis of complexes 40−42 and

the corresponding monomers, that is, the open titanocene (43),
the phosphines P(Me3)3 (44), P(OEt)3 (45), and PF3 (46), the
Ti−P bond strength depends on the positive charge on P (red
numbers in Figure 3). With increasing electronegativity of X in
the series X = Me, OEt, F, the positive charge on P increases
from +803 me in 44 to +1610 me in 45 and +1743 me in 46.
Upon complexation with 43, the charge of the Me, OEt, and F
substituent hardly changes, whereas the positive charge on P
increases to +1184 (40), +2123 (41), and +2232 me (42). This
is indicative of a charge transfer from P to Ti as is reflected by
the charge on Ti which changes from +988 (43) to −72 (72).
The positive charge on P leads to a contraction of its covalent
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radius. The orbital energy of the P lone pair decreases,
increasing the overlap with one of the adjacent empty Ti d-
orbitals thus supporting the charge transfer from P to Ti. As a
result, the Ti−P bond becomes shorter and stronger where the
intrinsic strength of the TiP bond depends on the amount of
charge transfer and the overlap of the bonding orbitals.
Intrinsic Strength of Cr−H Bonds. Recently, Tang, Fu, and

Guo reported a reverse BLBS relationship for Cr−H bonds in a
series of 32 Cr hydrides.42 They used experimental BDHs14 as
well as calculated BDEs (B3P86/LanL2DZ+P77,109−111 calcu-
lations without BSSE corrections) as bond strength descriptors.
In Table 2, local stretching force constants ka(CrH) for a
selection of the reported Cr hydrides are listed, including two
chromium(IV)-cyclopentadienyl-hydrides, 47 and 48, three
Cr(II)-dicyclopentadienyl hydrides (49−51), and as reference
molecules chromium dihydride (52) and chromocene
(53).112−120 In Figure 7, it is shown that force constants
ka(CrH) and CrH bond lengths R(CrH) (green curve) follow a
Badger-type BLBS relationship. Although the variation in the
Cr−H bond length includes only 0.1 Å, the large variation in
the Cr charges (−2451 me in 48 to +621 me in 52) and H
charges (+324 in 50 to −310 me in 52, see Figure 3 and Table

2) confirms that CrH bonding in very different electronic
environments is investigated and, because of this, the inclusion
of additional Cr-hydrides would not change our conclusion.
Molecule 50 has the strongest CrH bond with a BSO value

of 1.008. The weakest CrH bond is found for the chromium
dihydride 52 with a BSO value of 0.945. It is interesting to note
that although the investigated chromium hydrides show a large
variety of Cr and H charges with Crδ− Hδ+ polarization, (47−
51) and Crδ+ Hδ− polarization (52) the spread in the BSO
values is relatively small (Figure 7). A Cr−H bond anomaly
cannot be expected because any destabilizing electronic factor
upon bond shortening is absent. Since Cr hydrides play a key
role in catalytic hydrogenation processes,121,122 the quantitative
assessment of the CrH bond strength as provided by the local
stretching force constants can serve as an important design tool.
An extensive study of CrH bonding based on the local
vibrational mode analysis is in progress.

Basic Problems of Testing Badger-Type Relationships in
Transition Metal Complexes. The Badger relationship between
stretching force constants as descriptors for the intrinsic bond
strength is originally derived for diatomic molecules24,25 and
the extended Badger relationship discussed in several recent
studies12,31,123 is qualitatively fulfilled for bonds with a similar
bonding mechanism. The scattering of the (ka,R) data points
increases with an increasing variation in the bonding
mechanism, for example, when the bonding for main group
elements is compared with that for transition metal complexes
or lanthanide and actinide molecules. With an increase in
scattering, a reversion of the BLBS relationship becomes easily
possible. We demonstrate this by focusing on the Ti complexes
40−43 and the Cr complexes 47−53 on the metal−carbon
bonding with the 2,4-dimethyl-pentadienyl and cyclopenta-
dienyl anion ligands, respectively, which is best accomplished
by considering distance R(MX) and stretching force constant
ka(MX) for the interaction between M and the geometrical
center X of the π-ligand. These values are also listed in Table 2.
For the Ti complexes 40−42 the R(MX) distance decreases

from 1.756 to 1.743 Å, which leads to an increase of the
ka(MX) force constant from 0.941 to 1.301 mdyn/Å, in line
with an inverse BLBS relation. The Ti complex 43 has an
R(MX) value of 1.888 Å and a ka(MX) value of 1.054 mdyn/Å
(larger than that of 40) and thereby violates the Badger-type
relation for the other Ti complexes. These are 16-electron
complexes, whereas 43 is a 14-electron complex, which has a
different type of bonding as it is obvious from the calculated
NBO charges at Ti summarized in Figure 3. The changes in
bonding from one complex type to the other are interesting and
can be discussed on the basis of the charge distribution and the
intrinsic bond strengths; however, they do not necessarily
indicate an anomaly in bonding as the bonding mechanism is
different.
The situation is more complex in the Cr-hydrides 47−51.

According to the R(MX) and ka(MX) values of Table 2, the
two complexes 47 and 48 as well as chromocene (53) have
unusual bonding situations as the R value is large (1.802 Å, but
the ka(MX) values (3.335 and 3.389 mdyn/Å) suggest stronger
bonding interactions than those found for 50 or 53 (Table 2).
Complexes 47−51 are all 18-electron complexes, whereas
chromocene is a 16-electron complex, which has a different
type of bonding. But even in the case of 47 and 48, there is a
bonding difference insofar as only one Cp-ligand is involved as
compared to two Cp ligands in complexes 49−51. The
difference in the bonding mechanism is reflected by Cr charges

Figure 7. (a) Inverse Badger-type BLBS relationships between the
bond length R and the local stretching force constant ka of Ti−P
(purple), Cr−H (green), Pb−C (blue), and Pb−F bonds (red). (b)
Relative BSO values n(CrH) given as a function of the corresponding
local stretching force constants. DFT calculations, see text.
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of about −2.4 e in 47 and 48, −1.1−1.5 e in 49 - 51, and just
0.03 e in the case of 53. An R(MX) value sensitively registers
the changes in the charges of the connected centers, the atomic
number of M, and other factors, whereas the local force
constant ka gives a reliable account of the intrinsic bond
strength irrespective of the number of inner core−shells, the
number of ligands, or the charge distribution. Therefore, it is
inappropriate to compare Cr−Cp bonding in complexes with
different bonding mechanisms and to speak of bond anomalies
in these cases.
BDE Values as Bond Strength Descriptors. Since decades

BDE values have been used to predict fragmentation patterns of
molecules. In this connection, one speaks in a simplified way of
the strength of a bond to resist fragmentation. BDE values
include all changes taking place during the reaction as, for
example, bond breaking, rehybridization, electron density
reorganization, spin decoupling and recoupling effects, energy
changes resulting from avoided crossings (diatomics), Jahn−
Teller and pseudo-Jahn−Teller effects or changes in spin orbit
coupling. The intrinsic bond strength does not include any of
these effects as it refers to the strength of the bond in the
equilibrium of the molecule and measured for an infinitesimal
change of the bond. Therefore, it can be compared from
molecule to molecule and reflects changes in the electronic
structure of a molecule and its bonds even if they follow
different dissociation mechanisms (e.g., homolytic vs hetero-
lytic). Often intrinsic bond strength and reaction bond strength
are mixed in discussions, which leads to erroneous conclusions.
The fact that calculated G4 BDE and BDH values are parallel

in some cases to the intrinsic bond strength is misleading as the
former parameters always depend on additional factors rather
than just the strength of the bond being broken. As reaction
energies they reflect also the stabilization of the dissociation
products caused by a relaxation of electron density (major part)
and geometry (minor part). These stabilization energies adopt
large varying values, which in most cases disguise any trends in
the intrinsic bond strength.8,12,31 The fact that the calculated
BDE and BDH values of the fluoro amines correctly reflect the
NF bond anomaly only suggests that the relaxation mechanisms
of the fragments are similar in these cases for the corresponding
(fluoro)amine radicals. In recent work, we have given several
examples revealing the shortcomings of BDE values as intrinsic
bond strength descriptors.8,12,60−62,68 This is also confirmed by
the BDE values of the N−F bonds for the SNH3‑nFn molecules
(Table 1).

4. CONCLUSIONS AND OUTLOOK
Bond anomalies lead to reverse (anti-Badger) rather than
inverse, Badger-type BLBS relationships. They seem to be more
frequent than it was thought in the form of either direct or
hidden bond anomalies, in which an example of the former is
given by the fluoro amines and one of the latter by the fluoro
amine chalcogenides investigated in this work. Their detection
requires reliable spectroscopic measurements or alternatively
accurate quantum chemical calculations of the coupled cluster
type if bonds between electronegative atoms are involved as in
the case of the NF bond. Even more important is the evaluation
of the intrinsic strength of a given bond, for which vibrational
spectroscopy is the perfect, broadly applicable tool. It is always
possible to convert normal into local vibrational modes using
measured (e.g., the methyl fluoro amines) or calculated
vibrational frequencies13,31,46,47 as was confirmed in this work.
In this way, the local stretching force constant of any bond can

be determined, which as a dynamic parameter associated with
an infinitesimal change in the bond length does not lead to any
significant electronic structure changes, but probes the strength
of the bond, and by this is the perfect descriptor of the intrinsic
bond strength.
Utilizing CCSD(T) results for geometries, local stretching

force constants, and NBO charges, bond anomalies have been
confirmed for the fluoro amines, the methyl fluoro amines, and
fluoro amine sulfides. They have been rationalized as an
interplay of bond shortening and bond weakening effects in
which the latter are a result of hybridization defects in
connection with SOJT distortions, lp−lp repulsion, and
anomeric lp delocalization. On the basis of the results of this
work, bond anomalies and reverse BLBS relationships should
be found for electron-rich bonds between second period or
second period and third period atoms when considering
equilibrium geometries.
The investigation of the fluorinated amine chalcogenides has

established the existence of hidden bond anomalies, which result
when a bond anomaly is disguised by another electronic effect.
In the case of molecules 9−20 the mantling effect is an
anomeric delocalization of the lp(E) electrons into the vicinal
NF bonds thus shortening the NE and lengthening the NF
bonds. Because the strength of anomeric delocalization can be
assessed by the change in the NE bond length, it is possible to
unravel the existence and magnitude of the underlying NF
bond anomalies, which become an “open” anomaly for the
amine sulfides because of two annihilating factors that
determine the magnitude of anomeric delocalization.
Through-bond lp(N)−lp(F) repulsion is less important than
through-space lp(F)−lp(F) repulsion, which is a result of the
large positive charge at N and a contraction of the lp(N) orbital
in planar fluoro amines.
We have investigated three cases of claimed bond anomalies

in connection with the Pb−C, Pb−F, Ti−P, or Cr−H bonds in
molecules 33−53 and find for all these bonds a normal
(inverse) Badger-type BLBS relationship; that is, the claimed
bond anomalies do not exist. We also find that in none of these
cases was a reliable intrinsic bond strength descriptor used in
the previous investigations: BDEs or BDHs as well as the
energies of isodesmic or other formal reactions are not suitable
to reliably describe the intrinsic strength of a particular bond.
This work has also shown that reverse BLBS relationships

can easily be found across the periodic table if one compares
bonds, which are the result of very different bonding
mechanisms. Therefore, we suggest that terms such as bond
anomaly, anti-Badger behavior, or reverse BLBS relationships
are exclusively used for those bonds that connect the same type
of atoms according to the same type of bonding mechanism as
in the case of the bonds studied in this work.
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(103) Pyykö, P. On the Interpretation of ”Secondary Periodicity” in
the Periodic System. J. Chem. Res. Synop. 1979, 380−381.
(104) Kaupp, M. The Role of Radial Nodes of Atomic Orbitals for
Chemical Bonding and the Periodic Table. J. Comput. Chem. 2007, 28,
320−325.
(105) Bartell, L. A Structural Chemist’s Entanglement with
Gillespie’s Theories of Molecular Geometry. Coord. Chem. Rev.
2000, 197, 37−49.
(106) Tyrrell, J. Use of Oxidation-State Differences and Molecular
Orbitals to Interpret Bonding in the Series ONXYZ (X, Y, Z = H, F,
Cl), HNNX3, HNNX2Y, and HNNXY2 (X, Y = H, F) and OCX3

−,
OCX2Y

−, and OCXY2
− (X, Y = H, F). J. Phys. Chem. A 2006, 110,

228−233.
(107) Robinson, E. A.; Gillespie, R. J. Ligand Close Packing and the
Geometry of the Fluorides of the Nonmetals of Periods 3, 4, and 5.
Inorg. Chem. 2003, 42, 3865−3872.
(108) Sheridan, J.; Gordy, W. The Nuclear Quadrupole Moment of
N14 and the Structure of Nitrogen Trifluoride from Microwave
Spectra. Phys. Rev. 1950, 79, 513.
(109) Perdew, J. P. Density Functional Approximation for the
Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B:
Condens. Matter Mater. Phys. 1986, 33, 8822−8824.
(110) Wadt, W. R.; Hay, P. J. Ab Initio Effective Core Potentials for
Molecular Calculations - Potentials for Main Group Elements Na to
Bi. J. Chem. Phys. 1985, 82, 284−298.

(111) Hay, P. J.; Wadt, W. R. Ab initio Effective Core Potentials for
Molecular Calculations - Potentials for K to Au Including the
Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299−310.
(112) Pearson, R. The Transition Metal Hydrogen Bond. Chem. Rev.
1985, 85, 41−49.
(113) Estephane, J.; Groppo, E.; Vitillo, J. G.; Damin, A.; Gianolio,
D.; Lamberti, C.; Bordiga, S.; Quadrelli, E. A.; Basset, J. M.; Kervern,
G.; et al. A Multitechnique Approach to Spin-Flips for Cp2Cr(II)
Chemistry in Confined State. J. Phys. Chem. C 2010, 114, 4451−4458.
(114) Xu, Z.-F.; Xie, Y.; Feng, W.-L.; Schaefer, H. F. Systematic
Investigation of Electronic and Molecular Structures for the First
Transition Metal Series Metallocenes M(C5H5)2 (M= V, Cr, Mn, Fe,
Co, and Ni). J. Phys. Chem. A 2003, 107, 2716−2729.
(115) Ma, B.; Collins, C. L.; Schaefer, H. F. Periodic Trends for
Transition Metal Dihydrides MH2, Dihydride Dihydrogen Complexes
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