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Based on the analytic derivatives formalism for the spin-free normalized elimination of the small
component method, a new computational scheme for the calculation of the electric field gradient
at the atomic nuclei was developed and presented. The new computational scheme was tested by
the calculation of the electric field gradient at the mercury nucleus in a series of Hg-containing
inorganic and organometallic compounds. The benchmark calculations demonstrate that the new
formalism is capable of reproducing experimental and theoretical reference data with high accu-
racy. The method developed can be routinely applied to the calculation of large and very large
molecules and holds considerable promise for the interpretation of the experimental data of bio-
logically relevant compounds containing heavy elements. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4742175]

I. INTRODUCTION

The electric field gradient (EFG) at an atomic nucleus
is a sensitive property reflecting the local chemical environ-
ment in so far as it depends on the non-spherically symmet-
ric part of the electron density distribution of the resonating
atom.1 The EFG can be accessed via the nuclear quadrupole
interaction, which can be measured by various experimen-
tal techniques, including Mössbauer spectroscopy,2 nuclear
quadrupole resonance spectroscopy,3, 4 or perturbed angular
correlations (PAC) of γ -rays spectroscopy.5 The interpreta-
tion of the experimental spectroscopic data often requires
high level theoretical calculations to reveal the relationship
between the electronic structure and the measured nuclear
quadrupole interaction.6

A variety of theoretical approaches have been recently
applied to the calculation of EFGs in atomic and molecu-
lar systems of which only a few can be mentioned here:
(i) approaches based on the quasi-relativistic zero-order
regular approximation (ZORA) realized for density func-
tional theory,7 (ii) the direct perturbation theory approach of
Stopkowitz et al.,8 (iii) the high-order Douglas-Kroll-Hess
(DKH) approximation at the self-consistent field theory
level,9, 10 and (iv) the four-component relativistic Dirac-
Coulomb formalism in connection with a high level treatment
of electron correlation.11–14 In particular, Pernpointner et al.15

have demonstrated the necessity of the inclusion of relativis-
tic and electron correlation effects into the molecular calcula-
tions for obtaining accurate theoretical estimates of the EFG
for heavy atoms. This has been recently confirmed by Ar-
cisauskaite et al.14 in high-level four-component calculations
on a series of mercury compounds.

a)Electronic mail: mike.filatov@gmail.com.

Due to the computational complexity, high-level cor-
related calculations in connection with the four-component
Dirac-Coulomb Hamiltonian can only be carried out for small
molecules with a few atoms. For the interpretation of the
experimental data, theoretical calculations of large and very
large molecules are desirable, which requires the develop-
ment of simple yet accurate theoretical methods. In a series
of recent articles,16–18 we have developed and presented the
analytic derivatives formalism for the normalized-elimination
of the small component (NESC) relativistic method.19 The
formalism developed20 has been applied to the calculation
of analytic energy gradients in geometry optimizations,16

the calculation of contact densities at the nuclei of heavy
atoms,17 and the calculation of the isotropic hyperfine struc-
ture constants,18 vibrational frequencies and electric polariz-
abilities for compounds of heavy elements.21 These applica-
tions have verified the high accuracy of the NESC formal-
ism developed, its conceptual and computational simplicity,
and its applicability when investigating large and very large
molecules. In the present work, the NESC analytic derivatives
formalism will be extended to the calculation of the electric
field gradient. It will be tested in the calculation of EFGs for
the mercury nucleus in a series of inorganic and organometal-
lic compounds of Hg. The development of this formalism
should provide a possibility of routinely calculating EFGs
in large inorganic, organometallic, and bio-inorganic com-
pounds containing heavy elements.

II. THEORY

The interaction of the nuclear quadrupole moment
(NQM) Qij with the electric field gradient (EFG) Vij at the
site of the nucleus is described by Eq. (1),1, 22

Ĥ int =
∑
i,j

QijVij , (1)
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where the summation is carried out with respect to the Carte-
sian components i, j = x, y, z. Usually, the NQM tensor com-
ponents are expressed in terms of the nuclear spin operator as
in Eq. (2),

Qij = eQ

2I (2I − 1)

(
1

2

(
Îi Îj + Îj Îi

) − 1

3
δij I (I + 1)

)
, (2)

where I and Îi are the nuclear spin and the nuclear spin oper-
ator, respectively; Q is the nuclear quadrupole moment, and e
is the electron charge. Note that, for nuclei with I = 1/2, all
components Qij of the NQM tensor vanish.

For a given nucleus, the EFG operator, see Eq. (3), is
defined as a second derivative with respect to the Cartesian
coordinates

Vij =
(

∂

∂xi

∂

∂xj

− 1

3
δij∇2

)
V, (3)

of the electrostatic potential V , which describes interaction
of a given nucleus with electrons and other nuclei in the
molecule. The EFG defined in this way is a symmetric trace-
less tensor as requested by the Laplace equation. Often, it
is convenient to define the principal axis system (by diag-
onalization of the Vij tensor), in which the principal axes
a, b, and c are labeled such that the diagonal components
Vaa , Vbb, and Vcc satisfy the relation |Vaa| ≤ |Vbb| ≤ |Vcc|.
Then, the EFG tensor can be characterized by only two pa-
rameters, the principal value Vcc and the asymmetry param-
eter η = (Vaa − Vbb)/Vcc. In practice, a nuclear quadrupole
coupling constant (NQCC) νQ, Eq. (4),1, 3, 23 is used to in-
terpret nuclear quadrupole resonance (NQR) and Mössbauer
spectra,2, 4

νQ = eQ〈Vcc〉
h

, (4)

in which 〈Vcc〉 is the expectation value of the Vcc EFG opera-
tor in the ground electronic state of the molecule.

A. NESC electric field gradient

In the context of a quantum chemical method that
satisfies the Hellmann-Feynman theorem24, 25 (e.g., the
Hartree-Fock method), the expectation value of an operator
that perturbs the molecular Hamiltonian can be obtained by
differentiating the total energy of the perturbed system with
respect to the perturbation parameter(s). Adding the nuclear
quadrupole interaction Hamiltonian (1) to the potential en-
ergy operator of the NESC Hamiltonian19, 26 and differentiat-
ing the resulting total energy ENESC(QK

ij ) with respect to the
components of NQM QK

ij yields the corresponding EFG ex-
pectation values at the position of the Kth nucleus as defined
by Eq. (5),

〈V K
ij 〉 = ∂ENESC(QK

ij )

∂QK
ij

∣∣∣∣
QK

ij →0

(5a)

+
∑
L �=K

ZL

3Xi,KLXj,KL − δijR
2
KL

R5
KL

, (5b)

where the term in Eq. (5b) represents the nuclear-nuclear
part of the EFG and Xi, KL are the Cartesian components of
the internuclear distance vector RKL = RK − RL. Note that,
when calculating the NESC electronic energy ENESC(QK

ij ) in
Eq. (5a), only the electron-nuclear interaction potential should
be used in connection with Eq. (3).

In the NESC method,19 the exact relativistic one-electron
Hamiltonian27 is projected onto the positive-energy (elec-
tronic) states and renormalized on the non-relativistic met-
ric thus yielding the Newton-Wigner representation.28, 29 In
many-electron calculations, the spin-free NESC one-electron
Hamiltonian obtained in this way replaces the usual non-
relativistic one-electron Hamiltonian (the sum of the kinetic
and the nuclear-electron attraction potential energy opera-
tors) thus leading to an accurate account of the major part
of the scalar-relativistic correction to the electronic energy.26

As has been shown by Dyall,19, 26 only a tiny fraction of
the scalar-relativistic Dirac-Coulomb energy30, 31 of a many-
electron system in form of the renormalized two-electron Dar-
win term is lost in the spin-free one-electron NESC method.

The nuclear quadrupole interaction (1) perturbs
the nuclear-electron attraction energy, which enters
the one-electron NESC Hamiltonian via the matri-
ces of the operators V (r) = −∑

K ZKv (r − RK ) and
W (r) = (σ · p)V (r)(σ · p)/4m2c2. In these operators,
v (r − RK ) is the Coulomb potential of a point-like or a
finite-size charge distribution of the Kth nucleus, ZK is the
nuclear charge, σ = {σx, σy, σz} is a vector of the Pauli
matrices, p is the linear momentum operator, m is the electron
mass, and c is the velocity of light.

The derivative of the NESC total molecular energy with
respect to the perturbation parameters can be obtained using
the NESC first derivatives formalism developed in our previ-
ous works (see Refs. 16–18). Using Eqs. (15) and (16) from
Ref. 18, the derivatives in Eq. (5) are given by Eq. (6)

∂ENESC(Qij )

∂QK
ij

= tr
(

P̃ + P0V + (P0V )†
) ∂V

∂QK
ij

(6a)

+tr
(

UP̃U† + P0W + (P0W )†
) ∂W

∂QK
ij

, (6b)

where U is the matrix of the elimination of the small com-
ponent operator19 and the matrices P̃, P0V , and P0W are ob-
tained from the usual molecular density matrix as described in
Refs. 17 and 18. In these matrices, the effect of renormaliza-
tion from the Dirac-Pauli representation of relativistic equa-
tions to the Newton-Wigner representation (sometimes called
the picture change effect) is correctly taken into account along
with the effect resulting from the decoupling between the
electronic and positronic states.17, 18 It has to be noted that no
approximations are made in Eq. (6), which yields the exact
derivative of the NESC total energy.

The derivatives ∂V
∂QK

ij

and ∂W
∂QK

ij

entering Eq. (6) can be ob-

tained as the second derivatives of the respective molecular
integrals with respect to nuclear coordinates. Differentiation
of Eq. (7),

V(QK
ij ) =

〈
χμ

∣∣∣∣V (r) +
∑
i,j

QK
ij V

K
ij

∣∣∣∣χν

〉
, (7)
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where χμ and χν are the basis functions, with respect to QK
ij

yields Eq. (8).

∂V(QK
ij )

∂QK
ij

=
〈
χμ

∣∣∣∣V K
ij

∣∣∣∣χν

〉
, (8a)

=
〈
χμ

∣∣∣∣
((

∂

∂xi

∂

∂xj

− 1

3
δij∇2

)
v (r − RK )

)∣∣∣∣χν

〉
, (8b)

=
(

∂2

∂Xi,K∂Xj,K

− 1

3
δij∇2

K

) 〈
χμ

∣∣∣∣v (r − RK )

∣∣∣∣χν

〉
. (8c)

When converting Eq. (8b) to Eq. (8c), it is used that
the interaction potential v (r − RK ) depends on the electron-
nuclear distance r − RK and, therefore, differentiation with
respect to r is equivalent to differentiation with respect to
−RK (see Ref. 32). Note that, in Eq. (8c), only the interaction
potential should be differentiated with respect to the Cartesian
components Xi, K of the vector r − RK .

Using the Gaussian function to model the nuclear
charge distribution, the electron-nuclear interaction potential
v (r − RK ) is given by Eq. (9),

v (r − RK ) = − 1

|r − RK | erf

( |r − RK |
ζK

)
, (9)

where erf is the error function and ζ K is the parameter related
to the root mean square (rms) charge radius 〈R2

K〉1/2 of the
nucleus K as in Eq. (10),

ζK =
√

2

3
〈R2

K〉1/2. (10)

Note that setting ζ K = 0 recovers the usual Coulomb potential
of a point charge.

The molecular integrals 〈χμ|v (r − RK )|χν〉 can be cal-
culated using the formalism developed by Taketa et al.33

When calculating the derivatives
∂W(QK

ij )

∂QK
ij

, the latter integral is

replaced by 〈(σ · p)χμ|v (r − RK )|(σ · p)χν〉 or, in the spin-
free approximation (i.e., neglecting the spin-orbit coupling),
by 〈∇χμ|v (r − RK )| · ∇χν〉. The derivatives in Eq. (6) are
formulated entirely in terms of traces of matrix products
and the practical application of these formulae requires only
a fraction of time needed for a single Hartree-Fock (HF)
iteration.

III. COMPUTATIONAL DETAILS

The formalism described in Sec. II was implemented in
the COLOGNE2011 suite of programs.34 When using the
finite-size nuclear model, the values of the rms nuclear charge
radii of all the elements were taken from the compilation of
Visscher and Dyall.35 For a point charge nucleus model, the
value of the ζ parameter in Eq. (9) was set to zero. In the rel-
ativistic calculations, the value c = 137.035999070(98) a.u.36

was used for the velocity of light. The non-relativistic cal-
culations were carried out using the same computer code by
setting the velocity of light to 108 a.u.

The open-shell species were calculated using the spin-
unrestricted formalism. When calculating the EFG values, all

TABLE I. Electric field gradients Vcc (in a.u.) calculated for hydrogen
halides HX (X = F, Cl, Br, I, At) using the HF method. Basis sets and molec-
ular geometries are taken from Ref. 10. The point charge nucleus model is
used.

Molecule sf-DC-HFa NESC/HF DKH7/HFb HFc

HF 2.809762 2.809268 2.809266 2.799747
HCl 3.591413 3.590266 3.590207 3.541602
HBr 7.542301 7.536883 7.536523 7.009479
HI 11.640837 11.628164 11.627166 9.670471
HAt 26.755285 26.702020 26.690805 15.358366

aSpin-free Dirac-Coulomb Hartree-Fock calculations taken from Ref. 37.
bSeventh order Douglas-Kroll-Hess calculations from Ref. 10.
cNon-relativistic HF calculations; this work.

electrons were correlated in the post-Hartree-Fock methods.
The spin-free formalism was used throughout this work.

IV. RESULTS

The formalism described in Sec. II has been tested in
the calculation of EFGs for a set of hydrogen halides HX
(X = F, Cl, Br, I, At). In these calculations, the geometries of
hydrogen halides were taken from Ref. 10 as well as the basis
sets for all atoms. In Table I, the results of the NESC/HF cal-
culations carried out with the use of the point charge nucleus
model (i.e., setting ζ = 0 in Eq. (9)) are compared with the
results of the spin-free Dirac-Coulomb Hartree-Fock (sf-DC-
HF) calculations from Ref. 37, high-order (DKH7) Douglas-
Kroll-Hess (DKH) calculations,10 and non-relativistic HF re-
sults. All calculations reported in Table I employ the same
basis set.10

Although the NESC method is computationally much
simpler than the high-order DKH approach (in the latter
method, the energy calculation alone requires thousands of
matrix multiplications38), the NESC EFG values reported in
Table I are closer to the reference values obtained with the sf-
DC-HF calculations. The remaining deviation of the NESC
EFG values from the reference sf-DC-HF values is attributed
to the effect of the two-electron Darwin terms neglected in
the one-electron NESC method.19, 26 However, even for an el-
ement as heavy as astatine, the effect of the neglected two-
electron terms is less than 0.2% and is much less than the total
relativistic correction to the calculated EFG (∼43%). We note
that the inclusion of the neglected two-electron terms into the
NESC calculations would have required the calculation of a
large number of additional two-electron integrals thus lead-
ing to a considerable increase of computational costs without
noticeable gain in accuracy.

In Table II, the results of NESC/HF and NESC/MP2
calculations carried out utilizing the finite nucleus model
are compared with the reference data obtained from four-
component Dirac-Coulomb HF calculations.10 Comparison of
the NESC/HF and the 4c-DC-HF EFG values reveals the ef-
fect of the spin-orbit coupling (SOC) interactions. For the
heaviest hydrogen halide HAt, SOC leads to a reduction of
Vcc of ∼2% . As the elements at the end of a period in the pe-
riodic table have the largest SOC effects, this result indicates

Downloaded 07 Aug 2012 to 129.119.99.194. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Electric field gradients Vcc (in a.u.) calculated for hydrogen
halides HX (X = F, Cl, Br, I, At) using the NESC/HF and NESC/MP2 meth-
ods. The basis sets and molecular geometries are taken from Ref. 10. The
finite size nucleus model is used.

Molecule 4c-DC-HFa NESC/HF NESC/MP2

HF 2.809754 2.809268 2.554123
HCl 3.591314 3.590261 3.402235
HBr 7.540289 7.536556 7.254653
HI 11.623332 11.620941 11.047529
HAt 25.979844 26.506524 26.273005

aFour-component Dirac-Coulomb Hartree-Fock calculations taken from Ref. 10.

that SOC plays only a minor role for the correct calculation
of the EFG, especially in the case of lighter elements.

Comparing the NESC/HF data in the third column of
Tables I and II reveals that using the finite size nucleus model
leads to a minute decrease of the absolute value of Vcc (∼0.7%
for HAt). The effect of using the finite size nucleus rapidly
disappears as the atomic number of the halogen atom de-
creases. Electron correlation plays a more important role for
the calculated EFGs, especially for lighter atoms. Inclusion of
electron correlation leads to a reduction of the absolute value
of Vcc, which varies between ∼10% for HF and 0.9% for HAt.
The inclusion of electron correlation at the relativistic level
causes an increase of the electron density in the K-shell and
depletion of the density in the higher lying shells.39 As the
EFG depends on the non-spherically symmetric (quadrupole)
part of the electron density, this depletion may lead to a re-
duction of its absolute magnitude.

The performance of the NESC method has been further
investigated in the calculation of EFGs for a series of mer-
cury compounds. In Table III, the results of the NESC/HF
calculations carried out with the use of the point charge nu-
cleus model and with the use of the finite nucleus model are
compared with the results of 4c-DC-HF calculations from
Ref. 14. These calculations are carried out with the use of a
very large uncontracted basis set of quadruple-zeta (QZ) qual-

TABLE III. Electric field gradients Vcc (in a.u.) calculated for a set of HgX2

(X = Cl, Br, I, CH3) compounds. The molecular geometries are taken from
Ref. 14. The uncontracted QZ basis set as described in Ref. 14 is used for all
atoms.

Molecule 4c-DC-HFa NESC(fn)/HFb NESC(pn)/HFc

HgCl2 −12.95 −12.14 −12.12
HgBr2 −11.82 −11.11 −11.09
HgI2 −11.68 −11.04 −11.03
Hg(CH3)2 −19.83 −18.77 −18.78

aFour-component Dirac-Coulomb Hartree-Fock calculations with unrestricted kinetic
balance condition taken from Ref. 14.
bFinite nucleus model used.
cPoint-charge nucleus model used.

ity as described in Ref. 14. As the major difference between
the reference 4c-DC-HF and the NESC/HF calculations re-
sults from the absence of the SOC effects in the latter, the
data of Table III confirm that SOC plays only a minor role for
the EFG values contributing a mere few percent into the fi-
nal value. Furthermore, the effect of finite size nucleus model
in the NESC/HF calculations is negligibly small, even for an
element as heavy as mercury.

The EFG values Vcc as well as the effective contact
densities,17 
ρ̄ = ρ̄Hg − ρ̄Mol , for the mercury atom were
calculated for an extended set of mercury molecules listed
in Table IV. Beside the compounds from Ref. 14, a num-
ber of other molecules studied recently by us17 was in-
cluded into the calculations. In addition, two Hg(II) com-
plexes, Hg(cys)2 and HgCl2-crown-S6, were studied. The ge-
ometries of HgCl2, HgBr2, HgI2, Hg(CH3)2 were taken from
Ref. 14, the geometries of HgF, HgF2, HgF4, Hg(SH)2−

4 ,
and Hg(SH)4 were taken from Ref. 17, and the geome-
tries of Hg(II)-L-cysteine, Hg(cys)2,40 and HgCl2-crown-
S6 ((Z,Z,Z,Z,Z,Z)-1,4,7,10,13,16-hexathiacyclooctadeca-2,5,
8,11,14,17-hexaene,41, 42 see Figure 1) were optimized using
the NESC/B3LYP method. In the geometry optimizations, the
segmented all-electron relativistically contracted (SARC)

TABLE IV. Electric field gradients Vcc (in a.u.) and effective contact densities ρ̄ (in bohr−3) calculated for a set of mercury compounds. The molecular
geometries are taken from Refs. 14, 47, and 17. The modified SARC basis set (see text) is used for mercury and the TZVPP basis set is used for other elements.

NESC/HF NESC/MP2 4c-DC-CCSD-Tb

Entrya Molecule Symmetry Vcc 
ρ̄c Vcc 
ρ̄ Vcc

1 HgF C∞v −8.68 (−8.45)d 96.64 − 5.78 80.72
2 HgF2 D∞h −12.85 (−12.55) 119.70 − 9.18 108.00
3 HgF4 D4h +4.40 (+4.44) 95.17 +3.74 109.38
4 HgCl2 D∞h −12.40 (−12.14) 110.05 − 9.32 98.15 − 9.51
5 HgBr2 D∞h −11.31 (−11.11) 111.66 − 8.54 97.26 − 8.63
6 HgI2 D∞h −11.17 (−11.04) 101.51 − 8.64 85.53 − 8.61
7 Hg(CH3)2 D3h −19.30 (−18.77) 49.04 − 15.22 45.11 − 15.71
8 Hg(SH)4 C4h +8.00 87.57 +4.99 85.39
9 Hg(SH)2−

4 S4 +0.84 162.03 +0.82 149.40
10 Hg(cys)2

e C1 −13.23 86.72 − 9.38 72.72
11 HgCl2-crown-S6

e C6v −9.87 144.31 − 7.28 126.77

aNumber of entry in Figure 2.
bTaken from Ref. 14.
cCalculated with respect to the contact density for a neutral mercury atom, 
ρ̄ = ρ̄Hg − ρ̄Mol (ρ̄HF

Hg =2106192.35 bohr−3, ρ̄MP 2
Hg =2106301.66 bohr−3).

dValues in parentheses obtained using completely uncontracted QZ basis set.
eGeometry optimized in this work using NESC/B3LYP with SARC and TZVPP basis sets.
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FIG. 1. Geometries of Hg(cys)2 (upper panel) and HgCl2-crown-S6 (lower
panel) molecules.

basis set43 was used for mercury combined with the
6-31+G(d) basis set44 for other elements.

When calculating the EFGs and effective contact densi-
ties of the molecules of Table IV, the SARC basis set was
modified as follows. The two tight-most primitive functions
in the contracted s-type basis function were uncontracted
and five tight primitive functions were added in a geomet-
ric progression.17 Two tight primitive p-type functions and
two tight primitive d-type functions with the exponents ob-
tained from a geometric progression were added to the set of
p- and d-type basis functions. The augmented SARC basis set
on mercury was combined with the all electron def2-valence
triple-zeta basis functions with three sets of first polarization
functions (TZVPP) basis set45 on other elements (def-TZVP
(Ref. 45) on H and TZVP (Ref. 46) on I). With the use of
these basis sets in the NESC/HF calculations, the EFGs of
HgF, HgF2, HgF4, HgCl2, HgBr2, HgI2, Hg(CH3)2 obtained
with the use of a much larger uncontracted QZ basis set were
reproduced with an average deviation of 1.7%.

The EFGs calculated at the NESC/MP2 level are in good
agreement with the reference values obtained in Ref. 14 using
the 4c-DC-CCSD-T method in connection with the uncon-
tracted QZ basis set. The average deviation of the NESC/MP2
EFGs from the reference values is only 0.8%. For Hg(CH3)2

at low temperature, Arcisauskaite et al.14 have reported the
experimental value νQ(199Hg) = 2400 MHz. This value
(no error bars were reported) is in a very good agreement
with νQ(199Hg) = 2414±43 MHz (obtained using eQ(199Hg)

FIG. 2. Electric field gradient Vcc (in a.u.) vs. the effective contact density

ρ̄ = ρ̄Hg − ρ̄Mol (in bohr−3) for mercury compounds calculated using the
NESC/HF method (lower panel) and the NESC/MP2 method (upper panel).
Black squares label the Hg(II) compounds, red dot the Hg(I) compound, and
blue diamonds the Hg(IV) compounds.

= 0.675±0.012 barn14) from the NESC/MP2 calculations.
The comparison of the theoretical and experimental reference
data suggests that the NESC/MP2 method in connection with
the SARC and def2-TZVPP basis sets is capable of yielding
accurate predictions of the EFG values for other compounds
in Table IV.

As seen from Table IV, electron correlation plays an im-
portant role for the correct prediction of both EFG and contact
density of the mercury atom. On average, the magnitude of
Vcc is reduced by ∼23%, which suggests that electron correla-
tion is mandatory for an accurate description of this property.

The molecules in Table IV account for the most impor-
tant oxidation states of mercury in its compounds as well as
the most important structural motifs. The two parameters, 
ρ̄

and Vcc, enable one to reliably discriminate between the dif-
ferent oxidation states and local chemical environments. This
is illustrated in Figure 2, where the EFG values are compared
with the effective contact densities. The EFG shows suffi-
ciently high sensitivity to the local chemical environment and
enables one to discriminate between compounds for which
the contact density differences are nearly equal, e.g., between
compounds 6 and 8, 4 and 5, 3 and 2, see the upper panel of
Figure 2.

For the same formal oxidation state and for the same lo-
cal geometry, the Vcc value may vary by almost a factor of
two, as seen for the compounds 2, 4, 5, 6, and 7 (formal ox-
idation state II, linear local geometry). There is however no
simple correlation between the total charge on the mercury
atom or the populations of the individual valence orbitals of
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TABLE V. Results of the natural population analysis of the relaxed
NESC/MP2 density matrix for mercury compounds. See header of Table IV
for detail on basis sets and geometries.

Entrya Molecule QHg
b ns

c np nd

1 HgF 0.65 1.28 0.18 9.85
2 HgF2 1.25 0.85 0.17 9.69
3 HgF4 1.71 0.61 0.40 9.25
4 HgCl2 0.88 0.96 0.33 9.81
5 HgBr2 0.76 1.00 0.36 9.84
6 HgI2 0.51 1.09 0.49 9.87
7 Hg(CH3)2 0.88 1.15 0.20 9.75
8 Hg(SH)4 0.47 0.90 0.91 9.67
9 Hg(SH)2−

4 0.49 0.73 0.83 9.90
10 Hg(cys)2 0.69 1.12 0.33 9.83
11 HgCl2-crown-S6 0.51 0.88 0.70 9.85

aNumber of entry in Figure 2.
bTotal natural charge on the mercury atom.
cPopulations of the valence orbitals of mercury.

mercury with the calculated Vcc values. Table V lists the re-
sults of the natural population analysis of the NESC/MP2
relaxed density matrix for the mercury compounds. Linear
regression analyses of the EFG values against QHg, ns, np,
or nd do not reveal any significant correlation. It is only the
combined electron population of the 6p-orbitals and the hole
population of the 5d-orbitals of mercury that indicates moder-
ate correlation (r2 = 0.4069) with the Vcc values, see Figure 3.
It is noteworthy that, for the same oxidation state of the mer-
cury atom, the correlation improves noticeably. Thus, if only
Hg(II) species are analyzed, Pearson’s correlation coefficient
r2 increases to 0.6724. The existence of such a correlation is
not at all surprising as the EFG depends on the deformation
(i.e., quadrupole) density near the atomic nucleus.48, 49 Inter-
estingly, the contact density also shows a noticeable correla-
tion with the deformation population (ne

p + nh
d ), which, most

likely, occurs due to the combined effect of the depletion of
the electron density from the 6s- and 5d-orbitals of mercury
and of the changes of the screening due to the population of
the 6p-orbital of mercury.

Mercury is of substantial interest for experimental in-
vestigations due to its biological activity and, in particular,
its toxicity. Mercury has a high affinity to thiol ligands and
to biological and organic molecules containing sulfur. Mer-
cury in biological compounds can be analyzed using a va-
riety of experimental techniques, in particular, the 199mHg
PAC spectroscopy,50 which measures the nuclear quadrupole
interaction. We have therefore evaluated the value of the
NQCC νQ for the Hg(cys)2 complex (see Figure 1), for
which νQ and the asymmetry parameter η are know from the
experiments.51 Using 0.675±0.012 barn for the quadrupole
moment of 199Hg,14 NQCC for Hg(cys)2 from NESC/MP2
is 1486±26 MHz in a reasonable agreement with the exper-
imental value of 1410±20 MHz.51 The asymmetry param-
eter η = 0.033 from the NESC/MP2 calculation is some-
what underestimated as compared to the experimental value
of 0.15±0.02.51 Most likely, this is the consequence of us-
ing the geometry of Hg(cys)2 optimized in a NESC/B3LYP
calculation without the inclusion of environmental effects.

FIG. 3. Electric field gradient Vcc (in a.u., lower panel) and the effective
contact density 
ρ̄ = ρ̄Hg − ρ̄Mol (in bohr−3, upper panel) vs. deformation
density for mercury compounds calculated using the NESC/MP2 method.
Black squares label the Hg(II) compounds, red dot the Hg(I) compound, and
blue diamonds the Hg(IV) compounds.

For instance, when using the geometry optimized for this
complex utilizing the NESC/B2PLYP-D method, the values
νQ = 1546±27 MHz and η = 0.31 were obtained. This shows
a high sensitivity of the EFG tensor to the molecular geome-
try, which can be used for the interpretation of the experimen-
tal NQR or PAC data on biological compounds of mercury
and other elements. For a more accurate comparison with ex-
periment, corrections for the intermolecular interaction and
vibrational averaging need to be taken into account. In this re-
gard, the analytic second derivatives formalism for the NESC
method21 can be used for obtaining the derivatives of EFGs
with respect to the vibrational normal modes as required for
computing the vibrationally corrected NQCCs.52

V. CONCLUSIONS

Based on the analytic derivatives formalism for the
NESC method, we have developed and presented a new com-
putational scheme for the calculation of the electric field gra-
dient at the atomic nuclei. The use of the NESC analytic
derivatives technique provides a computationally simple and
conceptually transparent algorithm that can be used for the
calculation of EFGs at heavy atoms in large inorganic and
bio-inorganic molecules.

The method developed has been tested in the calcula-
tion of the EFG values of a series of hydrogen halides HX
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(X = F, Cl, Br, I, At) and of a series of inorganic and
organometallic mercury compounds. Comparison with the
available reference data, both theoretical and experimental,
reveals a high accuracy of the method developed, which is
capable of reproducing the reference values within a few per-
cent. Application of the NESC/MP2 formalism to obtain the
EFG values in mercury molecules reveals a high sensitivity of
the calculated EFG values with regard to the electronic struc-
ture. In combination with the previously developed analytic
approach for the calculation of the contact densities at the nu-
clei of heavy elements, the method presented is promising in
connection with the theoretical interpretation and simulation
of various spectra including Mössbauer spectra, NMR, NQR,
and PAC spectra of compounds containing heavy elements.
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