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ABSTRACT: Analytical second derivatives for the normalized elimination of the small component (NESC) method are derived
for the first time and implemented for the routine calculation of NESC vibrational frequencies and other second order molecular
properties using the scalar relativistic form of NESC. Using response theory, the second derivatives of the transformation matrix
U connecting the large and the pseudolarge components of the relativistic wave function are correctly derived. The 24 derivative
terms involving the NESC Hamiltonian and the NESC renormalization matrix are individually tested, and their contributions to
the energy Hessian are calculated. The influence of a finite nucleus model and that of the picture change is determined. Different
ways of speeding up the calculation of the NESC second derivatives are tested. It is shown that second order properties can
routinely be calculated in combination with Hartree−Fock, density functional theory, Moller−Plesset perturbation theory, and
any other electron correlation corrected quantum chemical method provided analytic second derivatives are available in the
nonrelativistic case. The general applicability of the analytic NESC Hessian is demonstrated by benchmark calculations for
NESC/DFT calculations involving up to 1500 basis functions.

1. INTRODUCTION
One of the most important applications of the all-electron
relativistic quantum chemical methodology is the calculation of
molecular properties.1 The availability of analytic first and
second derivatives of the energy is a prerequisite for the analytic
evaluation of first and second order molecular response
properties. In the domain of many-body quantum mechanics,
the use of analytic energy gradients and Hessians is regarded as
the preferred way of obtaining molecular properties.2

Furthermore, there is a general consensus that the analytic
techniques of calculating energy derivatives are significantly
more efficient and more precise than the numeric or
seminumeric differentiation methods.2

The second derivatives of the energy with regard to the
nuclear displacements (thus yielding the energy Hessian) are
required to calculate the vibrational frequencies of a molecule.
This implies that all of the molecular integrals and the
molecular orbital (MO) coefficients are differentiated. The
analytic molecular Hessian formalism can be combined with the
appropriate molecular integral derivatives for obtaining also
other molecular response properties such as electric polar-
izabilities, infrared intensities, magnetic susceptibilities, mag-
netic shielding tensors, indirect nuclear spin−spin coupling
constants, etc. In its own right, the Hessian matrix plays an
important role for characterizing the molecular potential energy
surfaces (PESs) whereby its eigenvalues characterize stationary
points as minima, first order, or higher order saddle points.
Furthermore, they determine the curvature of a PES at a
stationary point and by this the vibrational force constants of a
molecule, which, by solving the basic equation of vibrational
spectroscopy, lead to the molecular vibrational frequencies.
These in turn are needed to calculate zero-point energies and

vibrational contributions to the enthalpy and entropy at a given
temperature.
Recently, we have started a multistep-development task with

the purpose of increasing the applicability of the normalized
elimination of the small component (NESC) method3 in its
scalar relativistic form by deriving analytic energy derivatives for
the routine calculation of response properties. Among the exact
two-component all-electron relativistic approaches, the NESC
method, which was originally derived by Dyall,3 represents
perhaps the most concise and efficient computational scheme
that enables one to obtain relativistically corrected molecular
energies at the cost of a nonrelativistic quantum chemical
calculation.3−7 Dyall’s pioneering work3,5 triggered related
developments such as, for example, the work by Filatov and
others.6,8,9 Systematic applications of NESC were carried out by
Cremer and co-workers,10,11 Kraka and Cremer,12 and Filatov
and co-workers.13−17 NESC was also, directly or indirectly,
relevant for the development work on the infinite order
Douglas−Kroll−Hess (IODKH) method,18−21 the matrix
driven formulation of the infinite order two-component
(IOTC) method,22−24 the X2C method,25−27 or the calculation
of relativistically corrected molecular properties.28,29

In recent work, we have derived analytic energy derivatives
for the routine optimization of molecular geometries30 and the
calculation of other first order molecular response properties.
The NESC first derivative formalism30 has been developed and
applied to the analytic calculation of effective contact densities
needed for the calculation of Mössbauer isomer shifts,31

hyperfine structure constants of paramagnetic molecules,32
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and electric field gradients at the nuclear site.33 In this work, we
will extend the applicability spectrum of NESC by deriving,
implementing, and employing the methodology of analytic
second derivatives with respect to nuclear displacements.
Although we will focus on the molecular Hessian and
vibrational frequencies, our intention is to derive and
implement a general analytic second derivative formalism,
which can be used for obtaining relativistically corrected second
order molecular response properties such as molecular
polarizabilities, infrared intensities, magnetic shieldings, or
indirect nuclear spin−spin coupling constants.
The theory of the analytic NESC second derivatives is

presented in sections 2−4. When deriving analytic derivatives in
the context of exact two-component relativistic methods, such
as NESC, the major difficulty originates from the necessity of
differentiating matrices of operators, which cannot be expressed
in a concise analytic form, which is the case for the elimination
of the small component operator of NESC. Analytic derivatives
of this operator as well as of the renormalization matrix of
NESC are derived in detail in Appendices A−C. In section 5,
the implementation of the NESC second derivatives and details
of the computations using the formalism derived are described.
The results of the Hessian and vibrational frequencies
calculations are presented in section 6, where the accuracy
and feasibility of the NESC second derivative formalism is
analyzed by comparison with the results of other calculations
and experimental data. Conclusions are presented in the final
section.

2. THE NESC METHOD
Starting from the four-component Dirac equation with
embedded restricted kinetic balance (RKB):
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Dyall obtained the NESC equation3

ε̃ = ̃+ + +LA SA (2)

by (i) eliminating the positronic eigenvalues ε− as well as the
corresponding eigenvectors A− and B− and (ii) introducing a
matrix U, which connects the large component A+ and the
pseudolarge component B+ via

=+ +B UA (3)

In eq 2, the relativistic metric is given by eq 4.

̃ = + †

mc
S S U TU

1
2 2 (4)

In eq 1, S, T, and V are the matrices of the overlap, kinetic
energy, and potential energy operators, and W is the matrix of
the operator 1/(4m2c2)(σ·p)V(r)(σ·p) (or 1/(4m2c2)∇V(r)·∇
in the scalar relativistic approximation) in the basis of the
atomic orbitals χμ(r).

3

The NESC Hamiltonian L̃ takes the form

̃ = ̃ + ̃L T V (5)

where T̃ and Ṽ are defined as in eqs 6 and 7, respectively:

̃ = + −† †T U T TU U TU (6)

̃ = + †V V U WU (7)

Matrix U can be calculated either iteratively using one of the
following equations
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or in a one-step noniterative method.7 In the following, all
derivations are carried out in the scalar relativistic form.
In the case of a many-electron problem described for

example by the Hartree−Fock or Kohn−Sham method, the
one-electron NESC Hamiltonian L̃ can be renormalized on the
nonrelativistic metric

= ̃−
†H G LGe1 (10)

and used in connection with the nonrelativistic energy
expression.5 In eq 10, matrix G is the renormalization matrix:34

= ̃− − − −G S S SS S( )1/2 1/2 1/2 1/2 1/2 (11)

implying that

= ̃−GG S S1 (12)

The renormalization matrix is positive definite, which is of
relevance for the calculation of its derivatives (see Appendix A).
The Fock matrix is then defined by

= + −−F H J K( )e1 (13)

and the total electronic energy E of the many-electron system
by eq 14,

= + −−E tr trPH P J K
1
2

( )e1 (14)

where J and K are the Coulomb and exchange parts of the Fock
matrix and P is the density matrix calculated as P = CnC†.
There, diagonal matrix n contains the orbital occupation
numbers, and matrix C collects the eigenvectors of the Fock
matrix obtained from diagonalization of the pseudoeigenvalue
problem (eq 15):

ϵ=FC SC (15)

3. ANALYTIC GRADIENT OF THE NESC ENERGY
Taking a derivative of the electronic energy (eq 14) with regard
to λ, where λ corresponds, for example, to a nuclear coordinate
or to a component of the electric field, one obtains the analytic
gradient of E:
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Here, matrix Ω is defined by Ω = −CϵnC†, and the prime at
∂′/∂λ implies that only the two-electron integrals rather than
the density matrix need to be differentiated. The first and the
last term on the right-hand side (rhs) are calculated utilizing
nonrelativistic methodology. Only, the second term has to be
determined in a NESC gradient calculation.
Writing the derivative of the renormalized NESC Hamil-

tonian as

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300127e | J. Chem. Theory Comput. XXXX, XXX, XXX−XXXB



λ λ λ λ
∂

∂
= ∂

∂
̃ + ̃ ∂

∂
+ ∂ ̃

∂
−

†
† †H G

LG G L
G

G
L

Ge1
(17)

the second term in eq 16 adopts the form
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where the new matrices P̃ = GPG† and D = L̃GP are
introduced.
The derivatives of the matrix L̃ are obtained by differentiating

eqs 5, 6, and 7,
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Then, the first term on the rhs of eq 18 can be calculated by

λ λ λ

λ λ λ

̃ ∂ ̃
∂

= ̃ + ̃ − ̃ ∂
∂

+ ̃ ∂
∂

+ ̃ ∂
∂

+ ∂
∂

+ ∂
∂

† † †

†
†⎛

⎝⎜
⎞
⎠⎟

tr tr tr

tr tr

P
L

UP PU UPU
T

UPU
W

P
V

P
U

P
U

( ) ( )

0 0
(20)

where P0 = P̃(T − U†(T − W)). For the first three terms on
the rhs of eq 20, the one-electron integral derivatives are
directly available from nonrelativistic quantum chemical codes.
The major difficulty, when evaluating eqs 18 and 20, originates
from the terms containing the derivatives ∂U/∂λ of the
elimination of the small component operator U (see, eqs 3, 8,
and 9) and the derivatives ∂G/∂λ of the renormalization matrix
G (eq 11). The exact expressions for obtaining these derivatives
have been derived in our previous publications30,31 (see also
Appendices A and B where the new formulas for the second
derivatives of these matrices are given).

4. ANALYTIC SECOND DERIVATIVES OF THE NESC
ENERGY

Starting from eq 16, the second derivatives can be calculated as
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The first and the third terms in eq 21 are calculated utilizing the
standard nonrelativistic methodology. The derivatives ∂P/∂μ
and ∂Ω/∂μ are obtained from the coupled perturbed (CP)
equations,2,35 which employ the derivatives ∂H1−e/∂μ. The
NESC CP equations are presented in Appendix C.
For the second to last term of eq 21, the derivative matrix

∂H1−e/∂λ is given in eqs 17 and 19. By differentiating eq 17
another time, one obtains the second derivative of the
renormalized NESC Hamiltonian and thereby also the second
term in eq 21:
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In eq 23, the first and second derivatives of matrix G can be

calculated using the methods described in Appendix A. Note,

however, that the derivatives of the elements of the

renormalization matrix G with respect to the nuclear

displacements are very small, on the order of 10−4 a.u. or

less. Indeed, the renormalization matrix G is sufficiently close to

a unit matrix (see eq 12) for all of the basis functions except for

the tightest ones. For the latter basis functions, however, the

dependence of the matrix elements of G on the molecular

geometry is the weakest. Consequently, the contribution of the

last term of eq 23 is on the order of 10−7 a.u. or less (see Table

1). Hence, this term can be neglected for the calculation of

vibrational frequencies.
The expression for ∂L̃/∂λ in the third term of eq 23 is given

in eq 19 where the terms containing the ∂U/∂λ derivatives can

be neglected on the basis of their magnitude. As discussed in

refs 31−33, these terms make negligibly small contributions to
the energy derivatives, even when calculating the properties

strongly dependent on the core electrons, such as the contact

densities or isotropic hyperfine structure constants. A further

simplification of the third term of eq 23 originates from the

observation that the contributions from ∂V/∂λ in eq 19 are

usually 103 times greater than those from ∂T/∂λ and ∂W/∂λ,

respectively. Therefore, for the purpose of calculating geometric

derivatives, ∂L̃/ ∂λ in the third term of eq 23 can be replaced by

∂V/∂λ without leading to any significant errors. The

simplifications described are only valid for the NESC

derivatives with regard to nuclear coordinates; i.e., when

differentiating with respect to other external perturbations,

these terms may need to be retained.
Differentiating eq 19 again, one obtains eq 24:
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such that the first term on the rhs of eq 23 is given by
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All terms in eqs 25−29 have been programmed (for the
calculation of the derivatives of G and U, see Appendices A and
B). Benchmark calculations reveal however that, for frequency
calculations, all terms in eqs 26−29 can be neglected without
leading to any significant errors (see below). This can be
explained by considering that U = I + O(c−2) for basis functions
in the valence region,3,5 which holds also for the derivatives of
the W matrix. Also, the difference I−U is on the order of
O(c−2). Thus, all terms in eqs 26−29 are on the order of
O(c−4). This is in line with the observations made in the case of
the frequency calculations. Hence, the important terms of the
second and second to last terms in eq 21 are given by eq 30
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For the purpose of testing these simplifications and the
individual contributions to eq 30 under different conditions, we
calculated a set of three molecules listed in Table 1. Before
analyzing the results in detail, a comment on the use of the
finite nucleus model in the derivative calculations is
appropriate. According to the data obtained, the differences
caused by the use of a point charge or a finite nucleus model in
connection with the ∂

2V/∂μ∂λ and ∂
2W/∂μ∂λ derivatives are

negligible. The same is also true when calculating the energy
gradient with regard to nuclear coordinates.30 Accordingly, the
finite nucleus model is used in connection with the
corresponding molecular integrals when calculating single
point energies. For the calculation of the first and second

Table 1. Individual Contributions of the Terms in eqs
23−30a

AuH Au2 Hg2

term 4 in eq 23 −1.2 × 10−6 −4.7 × 10−7 −1.4 × 10−8

eq 26 3.6 × 10−5 4.5 × 10−5 6.5 × 10−6

eq 27 2.0 × 10−5 1.3 × 10−5 2.5 × 10−6

eq 28 −1.6 × 10−5 −4.9 × 10−6 2.0 × 10−6

eq 29 −1.2 × 10−5 −1.2 × 10−5 −3.8 × 10−7

terms Tn in eq 30
T 2: pc - fnb 1.0 × 10−8 −7.6 × 10−9 −1.8 × 10−13

T 3: pc - fnc 3.2 × 10−7 −9.0 × 10−10 1.0 × 10−11

T 4: NR -
NESCd

−0.03231 −0.04970 −0.001738

T 4: AR - NESCe −0.00163 0.00004 0.000010
T 5 0.02448 0.03484 0.001348
T 6 −0.02413 −0.03496 −0.001266
T 6: appr - exactf −0.00004 −0.00001 0.000000
T5 + T6 0.00035 −0.00012 −0.000082
ke 0.39580 0.23871 0.003429
ωe (ana.) 2283.7 179.0 21.18
ωe (num.) 2283.8 178.9 21.1 ± 0.4
ωe (nonrelat.) 1599.0 121.5 30.7
aEnergies in hartrees, frequencies in cm−1. See text for more detail.
bDifference between point charge (pc) and finite nucleus (fn) model
used in connection with ∂

2W/∂μ∂λ of term 2. cDifference between
point charge (pc) and finite nucleus (fn) model used in connection
with ∂

2V/∂μ∂λ of term 3. dDifference between nonrelativistic (NR)
and relativistic NESC one-electron contribution ∂H1−e/∂λ in term 4.
eDifference between approximate relativistic (AR: in term 4 of eq 30,
the two ∂G/∂λ containing contributions are neglected) and exact
relativistic NESC one-electron contribution ∂H1−e/∂λ in term 4.
fDifference between the approximate (appr) (∂L̃/ ∂λ is replaced by
∂V/∂λ) and exact description of term 6.
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derivatives of these integrals with respect to nuclear displace-
ments, the point charge nuclear model is sufficient.
The dominant contributions in eq 30 result from the first

four terms on the rhs. In term 4, the contributions from ∂G/∂λ
are much smaller than those from ∂L̃/∂λ. Our test calculations
reveal that the contributions from terms 5 and 6 usually
amount to less than 5 cm−1 in the frequencies. Whenever the
accurate calculation of the Hessian matrix is not needed (for
example, optimization of transition states or reaction path
following), terms 5 and 6 can be neglected and term 4
approximated, thus significantly saving computer time and core
memory. Derivative ∂L̃/∂λ in term 6 can be replaced by ∂V/∂λ
(see discussion above), which also does not lead to any
significant error (see Table 1).
Thus, the NESC Hessian (eq 21) comprises (i) the terms in

eq 30 combined with the derivatives of the two-electron
integrals and the overlap integrals obtained by using the usual
nonrelativistic formalism, (ii) the derivatives ∂P/∂λ of the
density matrix, and (iii) the derivatives ∂Ω/∂λ of the molecular
Lagrangian obtained using the NESC CP formalism described
in Appendix C.

5. COMPUTATIONAL METHOD

The NESC contributions (eq 30) to the energy Hessian (eq
21) were programmed within the COLOGNE2011 program
package36 in connection with the analytic second derivative
methodology of DFT37 and MP2.38 Special care was taken to
obtain reliable first and second derivatives of matrices U and G.
For this purpose, the problem of finding the first and second
derivatives of G was formulated in the form of a Sylvester
equation, which was solved exactly using either the r-Smith or
the eigenvalue decomposition method as described in Appendix
A. For the exact calculation of ∂U/∂λ, response theory was
employed (see Appendix B).31 Because the use of response
theory for obtaining ∂U/∂λ requires knowledge of the negative-
energy (positronic) states, the one-step method7 for obtaining
the matrix U was used throughout this work.
In density functional calculations, two hybrid functionals

were applied in this paper: PBE039 and B3LYP.40 The ultrafine
integration grid was used in the DFT calculations. In the MP241

calculations, the 5d5f6s6p6d7s electrons of U and the
5f6s6p6d7s electrons of Cn were correlated.
The test calculations were carried out with a variety of all-

electron basis sets42−48 (see Table 2), which in some cases had
to be recontracted with a finite nucleus model possessing a
Gaussian charge distribution.49 Comparisons with relativistic
effective core potentials (RECPs)42 were made throughout this
work. For the velocity of l ight , the value c =
137.035999070(98) a.u.50 was used through the article.

All NESC calculations were performed using the diagonalize-
then-contract strategy.7 That is, the NESC equations were
solved in the basis set of primitive functions, and after finishing
the one-electron part, the resulting matrices were converted to
the contracted basis set.30 The calculation of the gradient and
the Hessian of the one-electron part was also carried out in the
set of primitive basis functions, which implied back and forth
transformations, because the coupled perturbed parts had to be
done in the basis of the contracted functions. Geometry
optimizations were carried out with tight convergence criteria.

6. RESULTS AND DISCUSSION
In Table 3, NESC/PBE0 and NESC/MP2 geometries,
vibrational frequencies, and zero-point energies (ZPE) of
some di-, tri-, and penta-atomic molecules containing gold (Au,
Z = 79), mercury (Hg, Z = 80), uranium (U, Z = 92), and
copernicium (Cn, Z = 112) are listed and compared with
experimental data and the results of some other high level
calculations. The results of RECP calculations are also included
in Table 3 for reasons of comparison with NESC results. For
the purpose of demonstrating the influence of relativistic effects
on calculated vibrational frequencies, vibrational frequencies
without scalar relativistic corrections are given for the mercury
hydrides and halides. As a proof for the general applicability of
the NESC second derivative formalism, we have also calculated
infrared intensities for all molecular vibrations (see Table 3).
However, presentation and discussion of the formulas for
obtaining these second order response properties is beyond the
scope of this paper and will be presented elsewhere.
NESC/PBE0 frequencies deviate on average by just 5 cm−1

from the corresponding RECP values. However in those cases
where the potential is steep in the quadratic range and the
RECP geometry differs from the NESC geometry, differences
between NESC and RECP vibrational frequencies can become
larger (see, e.g., HgH and HgH2 in Table 3). Changes in the
vibrational frequencies due to relativistic effects range from −73
to 350 cm−1 and are on average 105 cm−1. For the three
diatomic molecules in Table 1, the vibrational frequency
changes by 30% and more. For the infrared intensities, the
differences are more distinct: The relativistic effects lead to
changes by −133.6 up to 88.1 km/mol (standard deviation 52.2
km/mol), whereas the differences between NESC and RECP
intensities range from −11.7 to 16.9 km/mol (standard
deviation: 5.8 km/mol; see Table 3).
NESC/PBE0 frequencies are close to experimental results

where in some cases they are slightly larger in other cases
somewhat smaller. Especially encouraging is the (Hg,Hg)
stretching frequency of 21.2 cm−1 for the mercury dimer, which
differs by just 2 cm−1 from the experimental value of 19.4
cm−1.51 Similarly convincing results are obtained for the gold
dimer (179 vs 191 cm−1)52 and the mercury−gold cation (152
vs 156 cm−1,53 Table 3). The NESC/PBE0 description of the
copernicium dimer (period 7 homologue of Hg, atomic number
112, longest half-lifetime measured: 28.5 s for isotope 28554)
leading to a interaction distance of 3.70 Å and a stretching
frequency of 17 cm−1 is consistent with that for the mercury
dimer. The NESC/MP2 results and the DKS/BP results of
Schwerdtfeger and co-workers55 for Cn2 are similar.
In those cases where comparison with experimental results is

not possible, close agreement with other high level methods is
obtained as, e.g., with CCSD(T)/RECP calculations. This is the
case for HgF2, HgF4, HgCl2, HgCl4, and to some extent also
UO2

2+. It seems that the more reliable account of electron

Table 2. Specification of the Basis Sets Used in This Work

element description reference

H, C, O, F,
S, Cl

hexathiacrownether-HgCl2: recontracted 6-311G
basis with a finite nucleus model

42

in other calculations: recontracted def2-QZVPP
with a finite nucleus model

42

Au, Hg, Tl recontracted SARC with a finite nucleus model 43
U, No DK3-Gen-Tk/NOSeC-VTZP 44, 45
No SCF-DK3 with point charge nucleus model,

uncontracted
46, 47

Cn (E112) Dyall’s triple-ζ basis set (32s29p20d13f),
uncontracted

48
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Table 3. Comparison of NESC Geometries (Distances in Å), ZPE Values (kcal/mol), Vibrational Frequencies (cm−1), and
Infrared Intensities (km/mol) with the Corresponding Experimental and Other Quantum Chemical Valuesa

mol.(symm.) method structure ZPE frequency, infrared intensity, and mode

HgH (C∞v) NESC/PBE0 Hg−H: 1.747 1.93 1349.0 (103.4; σ+)
RECP/PBE0 Hg−H: 1.762 1.90 1327.1 (101.7; σ+)
NR/PBE0 Hg−H: 1.856 2.03 1421.9 (216.9; σ+)
exptl.69 Hg−H: 1.741 1.98 1385 (σ+)

HgH2 (D∞h) NESC/PBE0 Hg−H: 1.639 8.11 816.1 (33.3; πu), 1964.4 (415.2; σu
+), 2077.1 (0; σg

+)
RECP/PBE0 Hg−H: 1.646 8.10 808.0 (34.1; πu), 1963.2 (426.9; σu

+), 2085.6 (0; σg
+)

NR/PBE0 Hg−H: 1.768 6.64 592.9 (166.9; πu), 1732.1 (371.7; σu
+), 1727.1 (0; σg

+)
exptl.70 Hg−H: 1.633 8.07 770 (πu), 1994.6 (σu

+), 2112 (σg
+)

HgH4 (D4h) NESC/PBE0 Hg−H: 1.625 17.67 758.1 (0; b2g), 771.2 (45.0; eu), 856.8 (9.6; a2u), 909.1 (0; b2u), 2013.2 (346.3; eu), 2123.0 (0; a1g),
2145.8 (0; b1g)

RECP/PBE0 Hg−H: 1.631 17.54 750.8 (0; b2g), 762.8 (44.2; eu), 848.6 (9.8; a2u), 901.6 (0; b2u), 1996.1 (354.3; eu), 2111.5 (0; a1g),
2138.6 (0; b1g)

NR/PBE0 Hg−H: 1.728 14.83 563.6 (0; b2g), 559.3 (49.8; eu), 664.9 (70.1; a2u), 771.9 (0; b2u), 1808.9 (258.2; eu), 1787.3 (0; a1g),
1848.7 (0; b1g)

MP2/RECP71 Hg−H: 1.618 17.87 772 (0; b2g), 757 (58; eu), 842 (7; a2u), 909 (0; b2u), 2058 (310; eu), 2154 (0; a1g), 2194 (0; b1g)
HgF (C∞v) NESC/PBE0 Hg−F: 2.039 0.64 444.9 (42.0; σ+)

RECP/PBE0 Hg−F: 2.047 0.64 446.2 (36.6; σ+)
NR/PBE0 Hg−F: 2.089 0.69 482.1 (74.5; σ+)
exptl.72 0.70 490.8 (σ+)

HgF2 (D∞h) NESC/PBE0 Hg−F: 1.910 2.31 179.6 (18.5; πu), 590.3 (0; σg
+), 665.1 (126.7; σu

+)
RECP/PBE0 Hg−F: 1.917 2.28 173.6 (15.2; πu), 585.0 (0; σg

+), 660.4 (116.8; σu
+)

NR/PBE0 Hg−F: 2.023 1.90 116.6 (32.9; πu), 516.2 (0; σg
+), 580.1 (108.5; σu

+)
CCSD(T)/
RECP73

Hg−F: 1.914 2.31 180.1 (πu), 590.3 (σg
+), 666.0 (σu

+)

HgF4 (D4h) NESC/PBE0 Hg−F: 1.883 5.36 176.3 (0; b2u), 227.5 (0; b2g), 229.0 (22.7; a2u), 253.9 (3.3; eu), 607.5 (0; b1g), 613.3 (0; a1g), 691.7
(102.6; eu)

RECP/PBE0 Hg−F: 1.888 5.30 171.6 (0; b2u), 224.6 (0; b2g), 224.4 (17.7; a2u), 251.4 (2.1; eu), 604.0 (0; b1g), 606.2 (0; a1g), 687.3
(91.9; eu)

NR/PBE0 Hg−F: 1.960 4.63 133.2 (0; b2u), 202.0 (0; b2g), 186.5 (26.3; a2u), 210.7 (2.2; eu), 533.8 (0; b1g), 521.2 (0; a1g), 621.3
(64.0; eu)

CCSD(T)/
RECP73

Hg−F: 1.889 5.26 180.1 (b2u), 218.0 (b2g), 225.8 (a2u), 247.6 (eu), 590.7 (b1g), 597.9 (a1g), 687.6 (eu)

HgCl (C∞v) NESC/PBE0 Hg−Cl: 2.389 0.39 273.2 (19.0; σ+)
RECP/PBE0 Hg−Cl: 2.403 0.39 270.2 (15.2; σ+)
NR/PBE0 Hg−Cl: 2.459 0.42 291.8 (37.1; σ+)
exptl.74 Hg−Cl: 2.395 0.42 293.4 (σ+)

HgCl2 (D∞h) NESC/PBE0 Hg−Cl: 2.249 1.40 103.1 (6.7; πu), 359.0 (0; σg
+), 412.2 (62.6; σu

+)
RECP/PBE0 Hg−Cl: 2.255 1.35 95.5 (4.6; πu), 351.2 (0; σg

+), 403.6 (55.6; σu
+)

NR/PBE0 Hg−Cl: 2.372 1.19 73.0 (11.7; πu), 316.6 (0; σg
+), 371.7 (55.8; σu

+)
CCSD(T)/
RECP73

Hg−Cl: 2.258 1.40 102.2 (πu), 360.5 (σg
+), 414.6 (σu

+)

HgCl4 (D4h) NESC/PBE0 Hg−Cl: 2.295 2.94 71.9 (0; b2u), 128.6 (4.5; a2u), 145.8 (0;b2g), 146.9 (0.1; eu), 312.7 (0;b1g), 337.2 (0; a1g), 382.2 (36.7;
eu)

RECP/PBE0 Hg−Cl: 2.300 2.89 69.6 (0; b2u), 125.6 (2.3; a2u), 142.1 (0; b2g), 144.2 (0.6; eu), 308.8 (0; b1g), 331.8 (0; a1g), 377.7
(30.7; eu)

NR/PBE0 Hg−Cl: 2.397 2.46 52.8 (0; b2u), 101.1 (5.1; a2u), 97.4 (0; b2g), 112.4 (0.9; eu), 277.1 (0; b1g), 284.8 (0; a1g), 342.5 (17.9;
eu)

CCSD(T)/
RECP73

Hg−Cl: 2.311 2.85 71.9 (b2u), 123.0 (a2u), 143.2 (b2g), 142.6 (eu), 293.7 (b1g), 321.9 (a1g), 379.1 (eu)

Hg2 (D∞h) NESC/PBE0 Hg−Hg:
3.587

0.03 21.2 (0; σg
+)

RECP/PBE0 Hg−Hg:
3.663

0.02 14.6 (0; σg
+)

exptl.51 Hg−Hg:
3.629

0.03 19.4 (σg
+)

AuH (C∞v) NESC/PBE0 Au−H: 1.530 3.26 2283.7 (14.7; σ+)
RECP/PBE0 Au−H: 1.534 3.25 2270.0 (15.0; σ+)
exptl.72 Au−H: 1.524 3.30 2305.0 (σ+)

AuF (C∞v) NESC/PBE0 Au−F: 1.923 0.80 556.7 (52.3; σ+)
RECP/PBE0 Au−F: 1.935 0.78 545.3 (47.2; σ+)
Expt.75 Au−F: 1.918 0.81 563.7 (σ+)

Au2 (D∞h) NESC/PBE0 Au−Au:
2.506

0.26 179.0 (0; σg
+)
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correlation provided by CCSD(T) will be balanced by the more
accurate relativistic description (NESC compared to the use of
RECPs), if the latter is combined with the PBE0 functional.
NESC/MP2 however seems to provide somewhat inferior
results. The results for UO2

2+ reveal the typical tendency of
MP2 to exaggerate pair-electron correlation and to lead to an
artificial lengthening of bonds and thereby an underestimation
of experimental frequencies.56 It is noteworthy that, in all cases
considered, ZPE values obtained with different computational
approaches or based on experimental frequencies do not differ
significantly, which is not unexpected in view of a conversion
factor of 1/349.757 from cm−1 to kcal/mol.
Mercury in the oxidation state IV was realized by the

synthesis and identification of HgF4 in the matrix by Andrews
and co-workers,57 who pointed out that the existence of a
Hg(IV) derivative suggested a Xe4f145d8 electron configuration,
the involvement of d electrons in bonding, and accordingly the
chemical behavior typical of a transition metal. The NESC/
PBE0 frequencies of HgHn, HgFn, and HgCln (n = 1, 2, 4) listed
in Table 3 show some trends, which become clearer when
calculated normal vibrational modes are converted into local
vibrational modes.58−60 The NESC/PBE0 local mode vibra-
tional force constants are given in Table 4. The local Hg−X (X
= H, F, Cl) stretching force constants reflect the strength of the
corresponding HgX bonds. They show that there is a small, but
significant, increase in bond strength when HgF4 is formed,
which despite (F,F) repulsion leads to a stable tetrafluoride. In
the case of the hydride, the increase in the strength of the HgH
bond from the di- to the tetrahydride is small, whereas in the
case of the chloride it is even reversed. We conclude that
electronegativity of the ligand and the (ligand,ligand) repulsion
are decisive for the formation of a stable Hg(IV) molecule.
NESC/PBE0 frequency calculations included calculations

with 620 basis functions (e.g., Cn2). For the purpose of
calculating a system of direct chemical relevance, we calculated

the mercury crownthioether shown in Figure 1, which has been
discussed in connection with the removal of mercury from the
environment.61 Although the primitive and contracted basis set
involved 998 and 597 basis functions in this case, the
calculation of the vibrational frequencies turned out to require
only slightly more than the time of a nonrelativistic frequency
calculations depending however on the accuracy required. Since
the interactions of the Hg atom with the six S atoms are
relatively weak, we expected that only some frequencies in the
low range are affected by the relativistic corrections and that
RECP calculations with the XC functional and basis similar to
those used in the NESC calculations should lead to similar
frequencies. Hence, we used the mercury(II)chloride hexathia-
crown complex of Figure 1 as a test case for the reliability and

Table 3. continued

mol.(symm.) method structure ZPE frequency, infrared intensity, and mode

RECP/PBE0 Au−Au:
2.511

0.25 176.5 (0; σg
+)

exptl.52 Au−Au:
2.472

0.27 190.9 (σg
+)

HgAu+ (C∞v) NESC/PBE0 Hg−Au:
2.563

0.22 152.0 (0.8; σ+)

RECP/PBE0 Hg−Au:
2.571

0.21 149.4 (0.9 σ+)

DC FSCC53 Hg−Au:
2.553

0.22 156 (σ+)

238UOσ2
2+

(D∞h)
NESC/PBE0 U−O: 1.682 3.75 182.8 (21.1; πu), 1087.7 (0; σg

+), 1171.4 (209.4; σu
+)

RECP/PBE0 U−O: 1.676 3.76 183.3 (16.4; πu), 1091.1 (0; σg
+), 1175.9 (192.5; σu

+)
NESC/MP2 U−O: 1.712 3.29 138.0 (14.6; πu), 961.3 (0; σg

+), 1066.8 (88.8; σu
+)

CCSD(T)/
RECP76

U−O: 1.690 3.59 178.4 (πu), 1035.3 (σg
+), 1120.0 (σu

+)

C238UO (C∞v) NESC/PBE0 U−C: 1.734, 3.26 95.0 (116.3; π), 916.3 (253.1; σ+), 1174.7 (200.0; σ+)
U−O: 1.779

RECP/PBE0 U−C: 1.730, 3.25 90.3 (106.5; π), 918.7 (244.2; σ+), 1174.1 (192.0; σ+)
U−O: 1.773

exptl.77 872.2 (σ+), 1047.3 (σ+)
285Cn2 (D∞h) NESC/PBE0 Cn-Cn: 3.700 0.02 16.9 (0; σg

+)

NESC/MP2 Cn-Cn: 3.407 0.05 33.8 (0; σg
+)

BP/DKS55 Cn-Cn: 3.45 0.04 25 (σg
+)

aRECP calculation: ECP60MWB-SEG for U78 and def2-QZVPP for other atoms.42 For the nonrelativistic calculations (NR), the same basis set as in
the NESC calculations was used. Intensities of π, πu, and eu modes have to be multiplied by the degeneracy factor g = 2.

Table 4. NESC/PBE0 Local Mode Force Constants ka of
Some Selected Hg- and U-Containing Moleculesa

mol (sym) Hg−X [Å] local mode force constant ka [mdyn/Å]

HgH (C∞v) 1.747 Hg−H: 1.075
HgH2 (D∞h) 1.639 Hg−H: 2.406; H−Hg−H: 0.148
HgH4 (D4h) 1.625 Hg−H: 2.486; H−Hg−H: 0.124; out-of-plane:

0.665
HgF (C∞v) 2.039 Hg−F: 2.025
HgF2 (D∞h) 1.910 Hg−F: 3.969; F−Hg−F: 0.155
HgF4 (D4h) 1.883 Hg−F: 4.320; F−Hg−F: 0.300; out-of-plane:

0.764
HgCl (C∞v) 2.389 Hg−Cl: 1.311
HgCl2 (D∞h) 2.249 Hg−Cl: 2.628; Cl−Hg−Cl: 0.116
HgCl4 (D4h) 2.295 Hg−Cl: 2.199; Cl−Hg−Cl: 0.287; out-of-

plane: 0.413
238UO2

2+

(D∞h)
1.712 U−O: 11.273; O−U−O: 0.108

C238UO
(C∞v)

1.734,
1.779

U−C: 9.264; U−O: 7.456; C−U−O: 0.028

aStretching force constants in mdyn/Å, bending force constants in
mdyn*Å/rad2.
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feasibility of NESC second derivative calculations in the case of
larger molecules. The results listed in Table 5 show that

NESC/B3LYP/SARC/6-311G and B3LYP/RECP/6-311G cal-
culations lead to the same ZPE value and similar frequencies,
which differ only by 3 to 4 cm−1 in the low-frequency range.
Hence, the NESC second derivative program developed in this
work is reliable also in the case of large molecule calculations.

7. CONCLUSIONS
In this work, we have extended the applicability spectrum of the
NESC method, which provides an exact two-component
relativistic description for molecules with heavy and superheavy
atoms.

1. We have developed the methodology for routinely
calculating second order response properties with the
help of analytic second energy derivatives for the NESC
method within its scalar relativistic form.

2. We have outlined and programmed a computationally
efficient algorithm to calculate the NESC Hessian also in
the presence of basis functions with very large exponents
(steep basis functions). A versatile, generally applicable

algorithm is a prerequisite for NESC calculations in
combination with HF, DFT, or correlation corrected ab
initio calculations such as CI, MPn perturbation theory,
coupled cluster theory, CASSCF, or any other non-
relativistic method provided that analytic second
derivatives are available for the latter methods.

3. Special care has been laid on the calculation of first and
second derivatives of the renormalization matrix G (i.e.,
considering the so-called picture change) and the matrix
representation of the operator Û for the elimination of
the small component. For this purpose, this problem was
cast in the form of a Sylvester equation, for which the
exact solution was worked out. Also, the determination of
∂U/∂λ via response theory recently described31 has been
extended to the corresponding second derivatives.

4. The development of the NESC Hessian was done
considering a finite nucleus model and the correct picture
change, i.e., renormalization of the NESC Hamiltonian.

5. The economic implementation of the analytic NESC
energy Hessian and its general applicability is emphasized
by presenting NESC/DFT vibrational frequency calcu-
lations with 1000 primitive basis functions for organic
mercury compounds. Benchmark calculations testing the
accuracy of the algorithm developed were carried out
with 1500 basis functions.

6. NESC/PBE0 vibrational frequencies are in reasonable
agreement with available experimental values and the
results of other high level quantum chemical calculations.

7. In the cases of the mercury and the copernicium dimer,
accurate stretching frequencies of 21 and 17 cm−1 have
been obtained using the relativistic corrections obtained
with NESC.

8. By converting calculated NESC/DFT vibrational modes
into local vibrational modes and determining local
stretching force constants, we have made predictions
for the formation of Hg(IV) molecules.

9. In all cases considered, the CPU time needed for the
calculation of the NESC vibrational frequencies is less
than 5% larger than that needed for the corresponding
calculation of nonrelativistic vibrational frequencies
carried out with the same ab initio or DFT method
and the same basis set.

In summary, we have proven that analytic NESC second
derivative calculations can routinely be carried out and that in
this way NESC second order response properties become
available. The applicability range and the usefulness of NESC
have been substantially increased. The methodology presented
in this work is also of relevance for other exact two-component
relativistic methods such as IOTC or X2C.

A. APPENDIX: THE FIRST AND SECOND DERIVATIVES
OF THE RENORMALIZATION MATRIX G

By differentiating eq 12 once or twice, one obtains a special
case of the Sylvester equation:

+ =GX XG Q (A1)

with

λ λ
= ̃ ∂

∂
− ∂ ̃

∂
− ⎛

⎝⎜
⎞
⎠⎟Q S

S S
GG1

(A2)

for X = ∂G/∂λ and

Figure 1. NESC/B3LYP geometry of the C6v-symmetrical Hg(II)Cl2
hexathia-18-crown-6 complex (distances in Å).

Table 5. Vibrational Frequencies (cm−1) of the HgCl2
Hexathia-18-crown-6 Complex (C6v) Obtained at the NESC/
B3LYP and RECP/B3LYP Levels of Theory (ZPE: 129.03
kcal/mol)

mode method frequency [cm−1]

a1 NESC 36.3, 131.3, 177.4, 291.6, 350.5, 624.8, 734.3, 1223.2,
1650.2, 3187.9

RECP 36.2, 131.4, 176.4, 294.1, 353.2, 624.9, 734.7, 1226.4,
1647.6, 3185.3

a2 NESC 383.4, 533.3, 722.0, 931.5, 1293.8, 3161.9
RECP 384.2, 535.1, 723.1, 932.3, 1297.0, 3158.1

b1 NESC 53.3, 162.4, 618.0, 679.7, 1201.9, 1607.5, 3189.2
RECP 55.0, 163.3, 618.8, 680.5, 1204.7, 1604.8, 3185.4

b2 NESC 62.3, 137.7, 457.2, 514.6, 828.2, 948.8, 1347.9, 3160.9
RECP 62.7, 139.1, 457.1, 515.0, 828.7, 949.3, 1352.0, 3158.0

e1 NESC 45.1, 53.7, 90.6, 122.9, 200.4, 400.8, 514.7, 629.1, 716.6,
762.6, 936.8, 1216.3, 1315.1, 1638.9, 3161.7, 3188.1

RECP 42.2, 50.0, 87.5, 123.1, 200.3, 401.2, 516.1, 629.7, 717.3,
763.4, 937.5, 1219.4, 1318.5, 1636.4, 3158.5, 3184.0

e2 NESC 31.8, 56.0, 116.2, 197.7, 443.0, 501.4, 626.4, 692.8, 809.4,
945.0, 1205.9, 1338.9, 1617.9, 3161.1, 3188.9

RECP 33.3, 56.4, 116.5, 198.7, 442.7, 502.3, 627.3, 693.5, 810.0,
945.5, 1208.8, 1342.7, 1615.3, 3157.4, 3184.8
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(A3)

for X = ∂
2G/∂μ∂λ.

Here, we prove that the renormalization matrix given in eq
11 is positive definite. The matrices S and T are both positive
definite (provided the basis set does not contain any linear
dependencies). Johnson proved that A = B†B is positive
definite only if B is invertible.62 Hence, both S̃ and S−1/2S̃S−1/2

are positive definite, and their square-root matrices exist. Since
always positive eigenvalues are taken in the calculation of the
square-root matrix, K = (S−1/2S̃S−1/2)−1/2 is also positive
definite. Then, G is also positive definite because both G and K
are similar matrices. If the eigenvectors of K are collected in
matrix RK (RK is a real matrix because of the hermitian nature
of K), then one can obtain the eigenvectors of G from RG =
S−1/2RK, which are also real. For a positive definite
renormalization matrix G with real eigenvectors as given by
eq 11, the Sylvester equation can always be solved, i.e., the
existence of the real solution X is guaranteed. As we will show
in the following, there are no special requirements with regard
to matrix RG, which, for example, can be nonhermitian.
As contributions from the first derivative of G are on the

order of 10−4 or less, the last two terms in eq A3 can be
neglected. The contributions from the first and second
derivatives of U are on the order of O(c−4) in view of the
prefactor of 1/2mc2 of the second term in eq 4. Therefore, one
can simplify the derivatives of S̃ as follows:

λ λ λ
∂ ̃
∂

≈ ∂
∂

+ ∂
∂

†

mc
S S

U
T

U
1

2 2 (A4)

and

μ λ μ λ μ λ
∂ ̃

∂ ∂
≈ ∂

∂ ∂
+ ∂

∂ ∂
†

mc
S S

U
T

U
1

2

2 2

2

2

(A5)

In eqs A4 and A5, the first and second derivatives of S (or T)
can be precalculated and saved in three (∂S/∂x, ∂S/∂y, and ∂S/
∂z) and six (∂2S/∂x∂x, ∂2S/∂x∂y, ∂2S/∂x∂z, ∂2S/∂y∂y, ∂2S/
∂y∂z, and ∂

2S/∂z∂z) lower triangular matrices, respectively. In
this work, two efficient methods for solving the Sylvester
equation were programmed: (i) the r-Smith method and (ii)
the eigenvalue decomposition method.

The r-Smith Iterative Method
The r-Smith method is based on an iterative procedure and
requires that G is positive definite, which is the case (see
above). In the original Smith iterative method,63 the general
Sylvester equation

+ =AX XB C (A6)

is transformed into a Stein equation:

μ μ μ μ μ

μ μ μ μ μ
μ μ

+ + − − − =

= + + + + −
− +

̅ ̅ ̅

̅

A I X B I A I X B I C

X A I C B I A I A I
X B I B I

( ) ( ) ( ) ( ) 2

2 ( ) ( ) [( ) ( )]
[( )( ) ]

1 1 1

1

(A7)

which can be written as

Φ Γ= +X X X0 (A8)

where μ ≥ Max(A1,1, A2,2, ..., AM,M; B1,1, B2,2, ..., BM,M) (M:
number of basis functions) is a scalar constant,64 and the
generalized inverse matrix is defined by

= =̅ † − † † † −M M M M M MM( ) ( )1 1 1
(A9)

The iterative solution of eq A8 proceeds according to Smith63

using eq A10

∑ Φ Γ= ++
=

X X Xk
i

k
i i

1 0
1

0
(A10)

There are several improved iterative Smith methods to
accelerate convergence. Zhou and co-workers65 replaced eq
A10 by

∑ Φ Γ

Φ Φ Γ Γ

Φ Φ Γ Γ

= + ≥ ≥

= =

= =

+
=

−

+ +

⎧
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⎩
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k rX X X , 0, 2,

, ,

, ,

k k
i

r

k
i

k k
i

k k
r

k k
r

1
1

1

1 1

0 0 (A11)

which is the r-Smith iterative method. If A and B are not positive
definite, ρ(Φ)ρ(Γ) > 1 and the iterative procedure will diverge.
In the case of the first derivative of G, the minimum number

of matrix multiplications is about 9N[(r − 1)(Niter − 1) + r] for
3N Sylvester equations (N: number of atoms in a molecule).
The optimal μ value is given by Max(Gii).

64 In this case, the
convergence ratio is 10−3 − 10−5; that is, if the maximum
deviation between iterations k − 1 and k is 10−8, the accuracy of
iteration k will be about 10−12. Usually, r = 2 and Niter = 1 − 2 if
the accuracy of 10−12 is required. For this situation, the number
of matrix multiplications is on the average 20N. For geometry
optimizations and frequency calculations as well as energy
calculations using a finite nucleus model, the r-Smith method is
the method of choice. However, for a few test calculations with
a point nucleus model and steep basis functions (exponent
larger than 1012), the following algorithm turned out to be
somewhat more costly (for Niter = 1 as in 80% of all
calculations), but numerically more stable.
The Eigenvalue Decomposition Method
For the case of a hermitian matrix G in eq 12, the eigenvalue
decomposition method was previously used by several
authors.29,66,67 In the following, this method will be extended
to the case of a non-hermitian matrix G.
Starting from the general Sylvester eq A6, let us diagonalize

the non-hermitian matrices A and B

ε=AR RA A A (A12)

ε=BR RB B B (A13)

by multiplying them by their right eigenvectors RA and RB,
respectively. Using the generalized inverse matrix A9, eqs A12
and A13 can be written as

ε = ̅R ARA A A
1

(A14)

and

ε = ̅R BRB B B
1

(A15)

respectively. Let us rewrite the Sylvester equation as in eq A16:

+ =̅ ̅AR R X XR R B CA A B B
1 1

(A16)
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Multiplying eq A16 by RA
1̅ from the left and by RB

1 ̅ from the
right and using eqs A14 and A15, one obtains

ε ε+ =̅ ̅ ̅R XR R XR R CRA A B A B B A B
1 1 1

(A17)

or in a simpler form

ε ε̃ + ̃ = ̃X X CA B (A18)

where a new matrix X̃ = RA
1̅XRB is used. The elements of matrix

X̃ can be calculated using eq A19:

ε ε
̃ =

̃

+
X

C
i j

i j

Ai i Bj j
,

,

, , (A19)

and matrix X can be obtained by back transformation

= ̃ ̅X R XRA B
1

(A20)

Since both eigenvalues and eigenvectors of G are real (see
above), there is no necessity for complex matrix algebra. About
the same number of matrix multiplications as in the r-Smith
method are needed; however, the diagonalizations slightly
increase the cost compared to an r-Smith calculation with r = 2
(normal case).
For a benchmark calculation of the gradient with 33 atoms

(solution of 99 Sylvester equations) and 1500 basis functions,
both methods took about 10 minutes on a single processor.
However, routine calculations of the NESC gradient are
efficiently carried out in parallel.

B. APPENDIX: CALCULATION OF THE FIRST AND
SECOND DERIVATIVES OF U WITH THE HELP OF
RESPONSE THEORY

Although the methods discussed so far can provide sufficient
numeric accuracy for the geometry optimizations and vibra-
tional frequency calculations with the NESC method, the
calculation of some other first and second order response
properties may require the determination of the exact first and
second derivatives of the elimination of the small component
operator U. In these cases, the following approach is the
method of choice.

Calculation of the First Derivatives of U
Denoting the matrix operator on the left hand side of eq 1 as D̃,
the metric matrix on the right hand side as M̃, the four-
component wavefunction as Φ, and the matrix of the
eigenvalues as ε; differentiating eq 1 with respect to a
perturbation λ; and multiplying the resulting equation by Φ†

from the left, one arrives at eq B1:

ε ε ε ε− + = Φ ̃ Φ − Φ ̃ Φλ λ λ λ λ† †O O D M (B1)

in which the relationships Φ†DΦ̃ = ε and Φ†MΦ̃ = I were
used, and ελ, D̃λ, and M̃λ denote the derivatives of the
corresponding matrices with respect to the parameter λ. In eq
B1, an operator Oλ is introduced, which connects the derivative
of the four-component wavefunction with Φ as in eq B2

Φ Φ=λ λO (B2)

Operator Oλ plays the central role for obtaining the derivatives
∂U/∂λ. Its matrix elements are given in eq B3.

ε

ε ε

Φ Φ Φ Φ

Φ Φ

=

̃ − ̃
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− ̃ =
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λ λ
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i j

D M
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( ) ( )
for

1
2

( ) for

ij

ij ij j

j i

ii
(B3)

Note that the diagonal elements of Oλ are obtained by
differentiating the normalization condition of the four-
component wavefunction Φ and that Oλ is a non-symmetric
matrix.
Next, eq B2 is rewritten in terms of individual components of

the four-component wavefunction Φ.

=

=
+ +

+ +

λ λ

λ λ

λ λ

λ λ

λ λ λ λ
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O O

O O
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1 2

3 4

1 3 2 4

1 3 2 4 (B4)

As can be seen from eq B4, the response of the large and small
components of the electronic states involves mixing with the
positronic states via the negative-positive block O2

λ of the
response operator Oλ. Apparently, this is not the same as eq 33
of ref 28. In that paper, the contributions of the positronic
wavefunction were neglected and only the last terms in A+

λ and
B+
λ kept. In this connection, we note that the formalism

proposed by Reiher and Wolf,68 which is based on the exact
decoupling of electronic and positronic states by a
perturbation-independent transformation, should lead to the
vanishing of the response operator O2

λ and consequently of the
derivative ∂U/∂Udλ.
By differentiating eq 3 with regard to λ and substituting eq

B4, one obtains eq B5 for ∂U/∂λ.

λ
∂
∂

= = − ̃λ λ
− − +

†U
U B UA O A S( ) 2 (B5)

In explicit form, the matrix elements O2
λ are given by eq B6:

ε

ε ε

Φ Φ Φ Φ
=

̃ − ̃

−
λ

λ λ† †
+

+ −
O

D M
( )

( ) ( ) ( )

( ) ( )ij
ij ij j

j i
2

2 2

(B6)

where index i runs over positronic states, index j over electronic
states, and the following negative−positive blocks of the D̃ and
M̃ matrices are introduced

λ λ λ

λ λ
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+ ∂
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B
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(B7)

λ λ
Φ Φ̃ = ∂

∂
+ ∂

∂
λ†

−
†

+
−

−
†

+mcM A
S

A B
T

B(2 )2
2 1

(B8)

Equation 20 contains the contributions of the operator ∂U/
∂λ to the NESC energy derivative. These contributions are
always given by traces of matrix products:

λ
∂
∂

= ̃ − = ′λ λ
+
†

− −tr tr trP
U

A SP B UA O M O( )0 0 2 2 (B9)

where a new matrix M′ = A+
†S̃P0(B− − UA−) is introduced.

Because the elements of the operator O2
λ are expressed in terms

of quadratic forms of the general type C−
† (∂X/∂λ)C+ where C =
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A and B and ∂X/∂λ is a matrix of the derivatives of the
molecular integrals, the trace in eq B9 can be transformed as in
eq B12:

∑ ∑

ε ε λ

ε ε λ
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λ
= ∂

∂
trZ

Y
(B12)

where Z is a matrix with the elements given by the term in
parentheses in eq B11. Thus, the contributions of the Uλ

operator to the energy gradient can be conveniently formulated
in terms of traces of matrix products. After some algebraic
transformations, one arrives at eq B13 for the contribution of
∂U/∂λ

∑
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however, with the new matrices PY (Y = S, T, V, W) given in
the following.

∑
ε

ε ε
= −

′
−νμ μ ν+ −

+

+ −

M
P A A( ) ( ) ( )

( )

( ) ( )i j
j i

j ji

j i
S

, (B14)
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j i

ji
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, (B16)

∑
ε ε

=
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+ −

M
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( ) ( )i j
j i

ji

j i
W

, (B17)

Thus, eq B13 together with eqs B14−B17 completes the
derivation of the exact NESC analytic gradient. These
equations can be used in connection with analytic gradient
geometry optimizations or in connection with the first-order
response formalism for obtaining various molecular properties.
Since the calculation of the first derivative of U does not cost
much, it is always calculated in geometry optimizations unless
steep basis functions are used as reflected by Max(ε+) > 106

(for the definition of ε+, see eq 1).
Calculation of the Second Derivatives of U
By introducing a new operator Õμλ via

Φ = Φ + = Φ ̃μλ μλ μ λ μλO O O O( ) (B18)

and differentiating eq B5 with respect to external parameters μ,
one obtains for Uμλ the following equation

= − ̃ − −

− ̃ − ̃ ̃
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μ λ λ μ
− −

+
†

− +
†

− +
†

U B UA O O O O O

O A SA O O A SA O A S

( )(

)
2 2 4 2 4
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where only Õ2
μλ is not known. Next, one differentiates eq 1 with

regard to the two external parameters μ and λ and, after some
algebra, obtains
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where [a,b] = a·b − b·a is a commutator. Because in eq B19
only the off-diagonal part of the operator Õμλ is needed, the last
term εμλ does not make any contribution to it. The diagonal
part can be obtained from differentiation of the normalization
condition Φ†MΦ̃ = I with respect to μ and λ. However, this is
not necessary, because i ≠ j is always true for Õ2

μλ.
According to eq B3, both εi and εj correspond to the

electronic eigenvalues for (O4
μ)ij. If εi and εj (i ≠ j) are quasi-

degenerate or degenerate, the matrix elements (O4
μ)ij may

become undetermined by eq B1. Because an orthogonal
transformation of the degenerate energy levels leaves the
energy unchanged, the undetermined elements of (O4

μ)ij may be
set to zero. The derivatives ∂2U/∂μ∂λ obtained from eq B19 are
contracted with the second derivatives of matrices S, T, V, and
W, which were precomputed and saved in lower triangular
arrays as described after eq A5.

C. APPENDIX: NESC COUPLED PERTURBED
EQUATIONS

The derivatives ∂P/∂μ and ∂Ω/∂μ in eq 21 are obtained from
the coupled-perturbed (CP) equations.35 The orbital rotation
operator Oμ in eq C1

μ
∂
∂

= μC
CO

(C1)

connects the first derivatives ∂C/∂μ of the molecular orbitals C
with respect to the perturbation μ. Differentiating the SCF
equations with the Fock operator 13 with respect to the
perturbation, one obtains a set of equations for the elements of
the operator Oμ:

μ μ

μ
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ii
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(C2)

Because the derivative ∂F/∂μ of the Fock operator depends on
the first-order orbitals via the first derivative of the density
matrix P
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Equation C2 needs to be solved iteratively. Having obtained
operator Oμ, the quantities entering eq 21 are calculated as in
eqs C4 and C5

μ
∂
∂

= +μ μ † †P
C O n n O C( ( ) )

(C4)

μ

μ
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C
F

C C

( ) ( )

(C5)

In eq C3, the derivatives ∂H1e/∂μ of the NESC one-electron
Hamiltonian are used in matrix form. These derivatives can be
obtained using the formalism described in section 3, and the
matrices ∂P/∂μ and ∂Ω/∂μ can be saved for further use in
connection with eq 21.
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