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A Comprehensive Analysis of Hydrogen Bond Interactions
Based on Local Vibrational Modes
Marek Freindorf, Elfi Kraka,* and Dieter Cremer

Local stretching modes for 69 different DH single bonds and 58
H· · · A H-bonds are calculated at the ωB97X-D/aug-cc-pVTZ level
of theory to describe the changes in donor D and acceptor A upon
forming the hydrogen-bonded complex. The intrinsic strength of
the DH and AH interactions is determined utilizing the properties
of a well-defined set of local, uncoupled vibrational modes. The
local mode stretching force constant ka(HA) provides a unique
measure of bond strength for both covalently and electrostatically
bonded complexes. Generally applicable bond orders are derived,
which can be related to the binding energies of the hydrogen
bonded complexes. Although the red shifts in the DH stretching

frequencies can be used to detect hydrogen bonding, they are not
sufficient to assess the strength of hydrogen bonding. It is demon-
strated that the calculated BSSE-corrected binding energies of
hydrogen bonded complexes are related to the sum of bond
order changes caused by hydrogen bonding.The covalent charac-
ter of charge assisted hydrogen bonds is explained. Because local
mode frequencies can also be derived from experimental normal
mode frequencies, a new dimension in the study of hydrogen
bonding is gained. © 2012 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24118

Introduction

The properties of the 3N − L normal vibrational modes of an
N-atomic molecule (L: number of translational and rotational
motions of the molecule) contain important electronic structure
information. However, it is difficult to decode this information
into individual atom–atom interactions (e.g., those resulting in
bonding) because normal vibrational modes are always delocal-
ized due to the coupling of the motions of the atoms within the
molecule. Experimentalists have repeatedly attempted to deter-
mine local vibrational modes for polyatomic molecules, however,
only with limited success.[1–7] More successful were theoreti-
cal attempts to determine local vibrational modes. Konkoli and
Cremer[8, 9] developed in 1998 a unique way of extracting local
vibrational modes, which do no longer couple, from delocal-
ized normal modes. These modes were dubbed by the authors
adiabatic (relaxed) internal coordinate modes (AICoMs).[8] They
showed that local vibrational modes are perfectly suited to
describe chemical bonding, which was exploited in a number
of investigations.[9–15]

Recently, it was shown[16] that the AICoMs of Cremer and
Konkoli are the unique and only local counterparts of the
3N − L normal vibrational modes, which according to their
properties (frequency and force constant) correspond exactly
to those local modes, which could be determined experimen-
tally in a few cases.[1–7] The AICoMs can be calculated for hamonic
vibrational modes, anharmonically corrected vibrational modes,
or measured vibrational modes.[11] They have been used to
describe various situations of covalent or ionic bonding[10, 11, 13, 14]

as well as the breaking (forming) of chemical bonds in chemical
reactions.[15, 17, 18] In this work, we will extend their use to weakly
covalent and/or noncovalent bonding situations as they occur
in H-bonded complexes.

Since the discovery of hydrogen bonding (HB) more than
100 years ago, the myriad of experimental and computational

investigations focusing on HB has been repeatedly discussed in
books[19–24] and numerous review articles only some of which can
be mentioned here.[25–31] Recently, Gilli and Gilli[24] summarized
the experimental means of investigating HB. Despite all experi-
mental work on HB, it is fair to say that computational methods
have led to an improved understanding of the electronic nature
of the HB. Early investigations focused preferentially on the elec-
trostatic character of the HB[24] whereas in the more recent
investigations both electrostatic, covalent, and even dispersion
contributions to HB have been analyzed. There is no longer any
doubt that a detailed description of HB can only be obtained
by using reliable quantum chemical methods.[21, 23–25, 31]

Important tools for a quantum chemical investigation of the HB
have been the energy decomposition analysis,[32–34] the virial and
topological analysis of the total electron density distribution,[35–37]

the analysis of the energy density distribution,[38–42] the natu-
ral orbital population analysis,[43, 44] or the electron localization
analysis of Becke and Edgecombe.[45, 46] Especially the electron
density analysis of HB has led to new, sometimes even con-
tradictory insights into HB. In this connection, the work by
Koch and Popelier,[47] Knop et al.,[48] Grabowski,[49] Espinoza
and coworkers,[50] Gatti and Macchi[51] has to be mentioned.
A description of HB utilizing electron localization functions (ELF)
was advocated by Fuster and Silvi.[52, 53] Recently, the analysis
of the electrostatic potential[54] or even that of the reduced
electron density gradient was used to describe HB.[55]
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Alternatively to the investigation of the equilibrium geometry
of the HB complex, the energy profile of the proton transfer
process from donor D to acceptor A was studied and a char-
acterization of different HB situations accomplished.[30, 56] Based
on this approach, the proton affinity (PA) and pKa equilibration
concepts of HB were established, which connect the binding
energy �E of a HB-complex to the differences PA(DH)− PA(HA)

or pKa(DH) − pKa(HA).[30, 56] Proton transfer probes the strength
of HB, however leads also to a drastic change in the electronic
structure of the HB complex, which makes its analysis problematic
(see later). Changes in the electronic nature of HB are less drastic
when applying an external electric field and accordingly pro-
vide valuable information on HB.[57, 58] Related to this approach
is the study of magnetic electron currents in HB complexes as
a response to a magnetic field.[59]

In this work, we will carry out a dynamic investigation of
HB based on the vibrational modes of a HB complex. Vibra-
tional properties such as stretching frequencies and stretching
force constants relate to infinitesimally small changes in HB and
therefore provide measures of its strength without changing the
electronic structure of the HB complex. In this way, questions
concerning the character of HB in special complexes (covalent
or electrostatic), the exact influence of donor D and acceptor
A, or stereoelectronic factors influencing the strength of the HB
can be investigated.

Use of Vibrational Spectroscopy for the
Description of H-Bonding

Vibrational spectroscopy has been amply used to describe
HB.[26, 60–72] The DH bond is weakened as a result of HB,
which is revealed by a red shift �ω(DH) = ω(DH, complex) −
ω(DH, monomer) of the DH stretching frequency ω(monomer)
of the monomer RDH when forming a HB complex RDH · · ·AR′ (in
the following the HB complex is abbreviated as DHA indicating
for the two monomers just the DH and A part). Experimentally as
well as computationally the value of �ω(DH) and its frequency-
normalized analogue η(DH) = �ω(DH)/ω(DH, monomer) have
been determined and used as a signature for HB.[70, 72, 73] It is
tempting to relate �ω(DH) to the thermochemical strength of
the HB. However, the DH stretching mode in a HB complex
DHA will couple to other vibrational modes of the complex and
thereby delocalize. Therefore, one cannot expect that experimen-
tally determined �ω(DH) or η(DH) values are reliable descriptors
of HB. Apart from this, there are also problems in connection with
the choice of the DH reference frequency needed for determining
�ω(DH).

For example, if water is involved in HB as a donor molecule, the
symmetric and antisymmetric OH stretching modes will decouple
to some extent. The value �ω for OH stretching can be based
either on the symmetric or the antisymmetric OH stretching or
their average. For convenience, �ω(DH) values are based on a
comparison of complex and monomer frequencies, which are
closest in value. This however does not imply that the smallest
�ω(DH) difference is the proper measure for the strength of HB.
Apart from this, residual couplings between DH and AH stretching

modes can alter the magnitude of the measured red shift in
the DH stretching frequency.[65] These problems can become
even more serious in the case of complexes forming a cyclic
system due to multiple HBs. In summary, vibrational spectroscopy,
although an important tool for identifying and characterizing
HB, does not provide a reliable tool for determining the strength
of the HB as long as delocalized normal vibrational modes are
used.

A direct descriptor of HB could be the HA stretching fre-
quency, which of course has often a low value and intensity
and therefore is more difficult to measure than the DH stretch-
ing mode. Local vibrational modes solve the problems, which
accompany the description of HB with the help of vibrational
spectroscopy. The local HA stretching mode and its associated
stretching force constant can be directly determined and related
to the strength of the HB.[11] Quantum chemical investigations
based on anharmonically corrected vibrational frequencies[74]

suggest that local stretching force constants obtained with the
harmonic approximation provide a reliable descriptor of the
relative HB strength.

Of course, the local stretching force constants cannot lead to
a distinction between covalent and electrostatic HBs. For this
purpose, one needs a second information where in this work the
local energy density distribution is used. Cremer and Kraka[38–40]

showed that covalent bonding implies a stabilizing (negative)
energy density H(r) at the bond critical point rc(AB) of the
electron density distribution ρ(r) between two bonded atoms
A and B. The energy density distribution Hc = H(rc) will be close
to zero or positive if the interactions are noncovalent, i.e., of
the electrostatic or dispersion type. Espinoza and coworkers[41, 42]

have confirmed the usefulness of this approach in the case of
HB.

In this work, we will investigate the HB complexes shown
in Figure 1 as well as 11 monomers that function as suitable
reference molecules utilizing the local vibrational modes and
the properties of the energy density distribution. Results of
this investigation will be presented in the following way. In
“Computational Methods”section, we will sketch the theory of the
local vibrational modes and describe the computational methods
used in this work. Results and their discussion will be presented
in “Results and Discussion” section. Finally, in “Conclusion” section
the conclusions of this investigation are drawn.

Computational Methods

By solving the Euler-Lagrange equations for a vibrating molecule,
the basic equation of vibrational spectroscopy given by Eq. (1)
is obtained:[75]

FqD = G−1D� (1)

where F is the force constant matrix and D contains the normal
mode vectors dµ (µ = 1, . . . ,Nvib with Nvib = 3K − L) given
as column vectors. Both matrices are expressed in terms of
internal coordinates q. Matrix G is the Wilson matrix and matrix
� is a diagonal matrix containing the vibrational eigenvalues
λµ = 4π2c2ω2

µ where ωµ represents the (harmonic) vibrational
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Figure 1. Structures and symbols of the HB systems and the corresponding monomers investigated in this work. HB is indicated by a dashed line. Conformations
are given schematically as calculated.

frequency of mode dµ given in reciprocal cm and c is the
speed of light. The vibrational problem requires the calculation
of the analytical second derivatives of the molecular energy and
therefore it is solved in terms of Cartesian coordinates

fxL = ML� (2)

where fx is the force constant matrix, L collects the vibrational
eigenvectors lµ, and M is the mass matrix of the molecule in
question. The force constant matrix can be written in three differ-
ent ways using either Cartesian coordinates, internal coordinates
q or normal coordinates Q:

Fq = C†fxC (3)
FQ = K = L†fxL (4)

Matrix C transforms normal mode eigenvectors from internal
coordinate space to Cartesian space

lµ = Cdµ (5)

and is given by

C = M−1B†G−1 (6)

The elements of the B matrix are defined by the partial derivatives
of internal coordinates with regard to Cartesian coordinates.[75]

Matrices B and C are closely related:

BC = BM−1B†G−1 = GG−1 = I (7)
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Figure 1. (Continued)

because G = BM−1B†. Konkoli and Cremer[8] determined the
local vibrational modes directly from the Euler-Lagrange equa-
tions by setting all masses equal to zero with the exception of
those of the molecular fragment (e.g., bond AB) carrying out
a localized vibration. They proofed that this is equivalent to
requiring an adiabatic relaxation of the molecule after enforcing
a local displacement of the atoms by changing a specific inter-
nal coordinate as, e.g., a bond length in the case of a diatomic
molecular fragment (leading parameter principle).[8] The local
modes obtained in this way take the form: [8]

ai = K−1di

diK−1d†
i

(8)

where subscript i specifies an internal coordinate qi and the local
mode is expressed in terms of normal coordinates Q associated

with force constant matrix K of Eq. (4). The local mode force
constant ka is obtained from Eq. (9):

ka = a†
i Kai = (

diK−1d†
i

)−1
(9)

Local mode force constants, contrary to normal mode force
constants, have the advantage of being independent of the
choice of the coordinates used to describe the molecule in
question. Already at an early stage of vibrational spectroscopy
it was shown that a change in the coordinates leads also to
a change in the normal mode force constants.[75, 76] Although
the vibrational frequencies are not influenced by the choice of
the coordinates, they cannot provide reliable bond or electronic
structure information because of the delocalized nature of the
normal vibrational modes and their dependence on the masses
of the atoms involved in a vibration.
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In 1963, Decius[76] was the first who tried to obtain local mode
information from normal vibrational modes. He realized that the
inverse of the force constant matrix (Fq)−1 = �q possesses
diagonal elements �ii , which turned out to be independent of
the choice of the coordinates[77] and seemed to be typical of
the electronic nature of a molecular fragment described by the
internal coordinate qi . Since the early work of Decius, parameters
�ii , later called compliance constants,[78] have found some use
when describing chemical bonds.[79, 80]

Compliance constants are not observable quantities. They are
not associated with a vibrational mode or a measurable quantity
of vibrational spectroscopy. Also, they provide an unusual mea-
sure of the bond strength by quantifying its weakness, i.e., the
larger the value of �ii the weaker is the associated bond. Finally,
their interpretation is hampered by the fact that two compliance
constants �ii and �jj are connected by an off-diagonal element
�ij of finite magnitude, the meaning of which and its consid-
eration in connection with the diagonal compliance constants
remains unclear.[81]

Recently, Zou et al.[16] have proven that compliance constants
are nothing else but the reciprocal of the local mode force
constants of Konkoli and Cremer.[8] Utilizing Eqs. (3)–(5), the
internal coordinate force constant matrix can be written as

Fq = (D−1)†L†fxLD−1 = (D−1)†KD−1 (10)

Hence, the inverse force constant matrix, i.e., the compliance
matrix �q, and its diagonal elements are given by

�q = (Fq)−1 = DK−1D† (11)
(�q)ii = diK−1d†

i (12)

which proves that

ka = 1/(�q)ii , (13)

i.e., the inverse of the local mode force constants of Konkoli and
Cremer are the compliance constants of Decius.[76] This proof
has two important implications. (i) The AICoM local modes are
the only local modes that are directly related to the normal
vibrational modes of a molecule. (ii) The compliance constants
are superfluous as bond descriptors because the local mode
force constants already fulfill this task and there is no reason for
working with the reciprocal of a force constant for the purpose
of describing the weakness of a chemical bond.

In this work, we calculate the local mode stretching force
constants associated with the HB to quantify DH bond weak-
ening and HA bond formation. Despite the many flaws of
density functional theory (DFT) in the case of weak nonco-
valent interactions[25, 82, 83] it has been shown that a reasonable
account of HB will be obtained if the XC functional is carefully
chosen, a large augmented basis set is used, and all energy
calculations and geometry optimizations are carried out using
basis set superposition error (BSSE) corrections.[84] Accordingly,
we employed the long-range corrected hybrid density functional
ωB97X-D, which includes empirical dispersion corrections,[85, 86]

in connection with the aug-cc-pVTZ basis set of Dunning.[87, 88] In

addition, we used for all geometry and energy calcullations the
counterpoise correction of the BSSE.[89, 90] Sherill and coworkers
showed that for counterpoise-corrected ωB97X-D calculations
HB binding energies �E close to reliable CCSD(T) results are
obtained.[84]

Energy, geometry, and vibrational frequency calculations were
performed with an ultrafine grid for numerical integrations. All
calculated stationary points were verified as minima by the
eigenvalues of the Hessian matrix of the molecular energy. Cal-
culations were carried out with the quantum chemical program
packages COLOGNE11,[91] Gaussian09,[92] and AIMAII.[93]

Results and Discussion

In Table 1, properties of the DH and HA bond of 58 HB complexes
and 11 monomers calculated at the ωB97X-D/aug-cc-pVTZ level
of theory are listed. These comprise the distance values R(DH)

and R(HA), the corresponding local mode force constants and
local mode frequencies, the shift values �ωa(DH) and �ka(DH),
the corresponding frequency (or force constant)-normalized shift
values, the binding energies �E , the density properties ρc,Hc, and
Hc/ρc as well as the calculated bond orders n(DH) and n(HA).
Correlations between some of these properties are shown in
Figures 2–4.

Conventional descriptors of H-bond strength

Among chemists, there is a tendency of relating the bond
length R to the bond strength and accordingly there have been
attempts of getting an insight into HB directly from distance
values R(HA) or indirectly from changes in R(DH) values upon
HB formation.[26, 48, 49, 94] Badger[95] was the first who showed that
the stretching force constants of diatomic molecules are suitable
bond strength descriptors and are related to the bond length via
a power relationship. Relationships k = f (R) for different bond
types can be merged into a single one by using an effective
bond length Reff(XY) = R(XY)−d(X)−d(Y) where the correction
parameter d represents an electron density compressibility limit
depending on the number of core shells of a bonded atom.[14] In
the literature, these force constant-bond length relationships are
known as Badger’s rule.[95] Recently, Kraka, Larsson, and Cremer
(KLC) succeeded in generalizing the Badger’s rule from diatomic
to polyatomic molecules utilizing the AICoM local mode force
constants.[14]

In Figure 2a, ka values are shown in dependence of R where the
large ka values (>3 mdyn/Å) are typical of covalent DH bonds
and the small ka values (<1 mdyn/Å) represent HB between
DH and the acceptor A. Two exponential curves are shown in
Figure 2a: the first represents DH or AH interactions with D and
A being second period atoms and the second those involving
third period atoms such as P, S, or Cl. Inspection of special DH
bonds such as NH or OH (Fig. 2b) confirms that the Badger’s
rule for polyatomic molecules is fulfilled as previously pointed
out by KLC.[14] However, in the region of HB (Fig. 2c), there is
a relatively strong scattering of data points, which does not
become obvious from Figure 2a because changes in the HB
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Table 1. Properties of hydrogen bonded complexes as calculated at the ωB97X-D/aug-cc-pVTZ level of theory.[a]

Molecule Bond R ka �ka �ka/ka ωa �ωa �ωa/ωa �E ρc Hc Hc/ρc n

NN1 N–H 1.017 6.692 −0.300 −0.043 3476 −77 −0.022 2.302 −3.434 −1.492 0.902
H · · · N 2.250 0.110 446 −3.18 0.110 0.008 0.072 0.288

NN2 N–H 1.018 6.617 −0.375 −0.054 3456 −97 −0.027 2.297 −3.421 −1.489 0.900
H · · · N 2.217 0.105 435 −3.90 0.119 0.007 0.061 0.284

NN3 N–H 1.016 6.561 −1.057 −0.139 3442 −266 −0.072 2.287 −3.750 −1.640 0.897
H · · · N 2.052 0.158 534 −6.90 0.171 −0.006 −0.036 0.318

NN4 N–H 1.020 6.313 −1.216 −0.162 3376 −311 −0.084 2.271 −3.746 −1.650 0.888
H · · · N 2.003 0.193 590 −8.05 0.191 −0.013 −0.068 0.337

NN5 N–H 1.017 6.706 −0.286 −0.041 3479 −74 −0.021 2.303 −3.429 −1.489 0.903
H · · · N 2.239 0.078 374 −4.85 0.105 0.011 0.108 0.262

NN6 N–H 1.020 6.335 −1.258 −0.166 3382 −320 −0.086 2.272 −3.819 −1.681 0.889
H · · · N 1.991 0.211 617 −8.02 0.195 −0.016 −0.079 0.345

NN7 N–H 1.058 3.810 −3.182 −0.455 2622 −931 −0.262 2.044 −3.134 −1.534 0.772
H · · · N 1.845 0.230 645 −14.76 0.276 −0.052 −0.190 0.353

NO1 N–H 1.014 6.866 −0.227 −0.032 3521 −32 −0.009 2.318 −3.433 −1.481 0.909
H · · · O 2.166 0.091 405 −3.17 0.099 0.016 0.162 0.273

NO2 N–H 1.015 6.856 −0.136 −0.019 3518 −35 −0.010 2.317 −3.433 −1.482 0.908
H · · · O 2.153 0.109 442 −3.25 0.104 0.015 0.143 0.231

NO3 N–H 1.014 6.853 −0.139 −0.020 3517 −36 −0.010 2.318 −3.405 −1.469 0.906
H · · · O 2.317 0.050 298 −3.64 0.081 0.013 0.162 0.231

NO4 N–H 1.015 6.813 −0.179 −0.026 3507 −46 −0.013 2.314 −3.413 −1.475 0.907
H · · · O 2.250 0.064 337 −3.77 0.093 0.014 0.146 0.248

NO5 N–H 1.016 6.765 −0.227 −0.032 3495 −58 −0.016 2.307 −3.420 −1.483 0.905
H · · · O 2.192 0.090 402 −4.48 0.106 0.014 0.131 0.272

NO6 N–H 1.009 7.101 −0.517 −0.068 3580 −128 −0.035 2.333 −3.807 −1.632 0.917
H · · · O 2.002 0.142 504 −5.12 0.146 0.008 0.057 0.326

NO7 N–H 1.011 6.951 −0.578 −0.077 3542 −145 −0.039 2.327 −3.825 −1.644 0.912
H · · · O 1.959 0.172 554 −5.94 0.161 0.005 0.032 0.326

NO8 N–H 1.014 6.938 −0.054 −0.008 3539 −14 −0.004 2.323 −3.472 −1.495 0.911
H · · · O 2.529 0.047 289 −12.90 – – – 0.227

NS1 N–H 1.014 6.812 −0.180 −0.026 3507 −46 −0.013 2.318 −3.381 −1.459 0.906
H · · · S 2.810 0.027 215 −2.99 0.060 0.006 0.100 0.194

NS2 N–H 1.015 6.756 −0.236 −0.034 3492 −61 −0.017 2.312 −3.379 −1.462 0.905
H · · · S 2.700 0.052 301 −3.76 0.075 0.006 0.078 0.234

NS3 N–H 1.014 6.839 −0.153 −0.022 3514 −39 −0.011 2.319 −3.381 −1.458 0.907
H · · · S 2.886 0.030 229 −3.79 0.053 0.006 0.113 0.201

NF1 N–H 1.011 7.006 0.014 0.002 3556 3 0.001 2.338 −3.373 −1.443 0.914
H · · · F 2.826 0.007 110 −1.42 0.017 0.005 0.285 0.134

NF2 N–H 1.013 6.946 −0.046 −0.007 3541 −12 −0.003 2.329 −3.402 −1.461 0.912
H · · · F 2.355 0.028 224 −2.69 0.061 0.011 0.174 0.197

NF3 N–H 1.012 6.990 −0.002 0.0003 3552 −1 0.000 2.335 −3.387 −1.451 0.913
H · · · F 2.494 0.035 250 −1.05 0.043 0.008 0.178 0.254

NCl1 N–H 1.012 6.972 −0.020 −0.003 3548 −5 −0.001 2.332 −3.365 −1.443 0.913
H · · · Cl 2.968 0.030 227 −0.50 0.032 0.006 0.198 0.201

NCl2 N–H 1.013 6.926 −0.066 −0.009 3536 −17 −0.005 2.327 −3.386 −1.455 0.911
H · · · Cl 2.867 0.022 196 −3.16 0.045 0.007 0.160 0.184

ON1 O–H 0.972 7.244 −1.311 −0.153 3601 −312 −0.080 2.401 −4.971 −2.070 0.923
H · · · N 1.955 0.198 598 −6.83 0.206 −0.024 −0.117 0.339

ON2 O–H 0.975 6.956 −1.599 −0.187 3529 −384 −0.098 2.380 −4.921 −2.068 0.912
H · · · N 1.915 0.216 625 −7.67 0.231 −0.036 −0.154 0.347

ON3 O–H 0.973 7.188 −1.367 −0.160 3587 −326 −0.083 2.399 −4.982 −2.077 0.921
H · · · N 1.924 0.201 602 −7.71 0.213 −0.026 −0.121 0.341

ON4 O–H 1.000 4.972 −3.050 −0.436 2984 −806 −0.213 2.194 −4.526 −2.063 0.831
H · · · N 1.751 0.290 724 −12.90 0.332 −0.092 −0.278 0.377

OO1 O–H 0.966 7.860 −0.695 −0.081 3751 −162 −0.041 2.455 −5.077 −2.068 0.944
H · · · O 1.937 0.174 557 −4.98 0.175 −0.005 −0.027 0.327

OO2 O–H 0.967 7.690 −0.865 −0.101 3710 −203 −0.052 2.443 −5.056 −2.069 0.938
H · · · O 1.898 0.172 555 −5.58 0.195 −0.012 −0.062 0.326

OO3 O–H 0.968 7.614 −0.941 −0.110 3692 −221 −0.056 2.439 −5.048 −2.070 0.935
H · · · O 1.876 0.179 567 −5.75 0.206 −0.017 −0.082 0.330

OO4 O–H 0.966 7.870 −0.685 −0.080 3754 −159 −0.041 2.460 −5.072 −2.062 0.944
H · · · O 1.972 0.144 507 −4.96 0.164 0.003 0.016 0.310

OO5 O–H 0.967 7.723 −0.832 −0.097 3718 −195 −0.050 2.445 −5.049 −2.065 0.939
H · · · O 1.928 0.171 553 −5.62 0.182 −0.005 −0.027 0.326

OO6 O–H 0.970 7.484 −1.071 −0.125 3660 −253 −0.065 2.425 −5.016 −2.069 0.931
H · · · O 1.886 0.175 559 −6.70 0.201 −0.012 −0.059 0.328

(continued)
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Table 1. (Continued)

Molecule Bond R ka �ka �ka/ka ωa �ωa �ωa/ωa �E ρc Hc Hc/ρc n

OO7 O–H 0.964 7.934 −0.615 −0.072 3769 −143 −0.037 2.490 −5.147 −2.067 0.946
H · · · O 1.933 0.181 569 −5.00 0.178 −0.006 −0.031 0.331

OO8 O–H 1.086 0.861 −7.694 −0.899 1241 −2672 −0.683 1.668 −2.954 −1.771 0.510
H · · · O 1.408 0.217 623 −34.57 0.686 −0.383 −0.558 0.348

OO9 O–H 0.985 6.217 −1.805 −0.225 3336 −454 −0.120 2.311 −4.814 −2.083 0.884
H · · · O 1.786 0.206 608 −10.85 0.256 −0.035 −0.137 0.343

OO10 O–H 0.969 7.459 −1.096 −0.128 3654 −259 −0.066 2.430 −5.043 −2.075 0.931
H · · · O 2.027 0.089 398 −10.85 0.152 0.013 0.086 0.271

OS1 O–H 0.963 8.056 −0.499 −0.058 3798 −115 −0.029 2.484 −5.091 −2.049 0.950
H · · · S 2.531 0.078 368 −2.86 0.099 0.001 0.011 0.262

OS2 O–H 0.965 7.859 −0.696 −0.081 3751 −162 −0.041 2.466 −5.057 −2.051 0.944
H · · · S 2.453 0.104 425 −4.19 0.118 −0.002 −0.015 0.284

OS3 O–H 0.967 7.657 −0.898 −0.105 3702 −211 −0.054 2.449 −5.021 −2.050 0.937
H · · · S 2.392 0.125 465 −5.23 0.136 −0.006 −0.045 0.298

OS4 O–H 0.965 7.875 −0.680 −0.079 3755 −158 −0.040 2.470 −5.059 −2.049 0.944
H · · · S 2.505 0.077 365 −4.35 0.106 0.002 0.015 0.261

OS5 O–H 0.966 7.782 −0.773 −0.090 3732 −181 −0.046 2.460 −5.044 −2.050 0.941
H · · · S 2.471 0.092 401 −4.83 0.114 0.000 −0.002 0.274

OS6 O–H 0.967 7.654 −0.901 −0.105 3702 −211 −0.054 2.445 −5.019 −2.053 0.937
H · · · S 2.440 0.107 431 −6.00 0.122 −0.002 −0.014 0.286

OF1 O–H 0.957 8.530 −0.025 −0.003 3908 −5 −0.001 2.535 −5.157 −2.035 0.965
H · · · F 2.569 0.008 116 −0.35 0.028 0.007 0.249 0.139

OF2 O–H 0.961 8.252 −0.303 −0.035 3844 −69 −0.018 2.495 −5.133 −2.057 0.957
H · · · F 2.009 0.110 442 −3.41 0.121 0.014 0.118 0.288

OF3 O–H 0.959 8.398 −0.157 −0.018 3877 −36 −0.009 2.519 −5.153 −2.045 0.961
H · · · F 2.182 0.029 226 −1.41 0.078 0.012 0.161 0.199

FO1 F–H 0.939 7.618 −2.101 −0.216 3676 −475 −0.114 2.353 −5.581 −2.371 0.936
H · · · O 1.697 0.319 756 −9.22 0.299 −0.066 −0.220 0.387

FN1 F–H 0.956 5.964 −3.755 −0.386 3252 −900 −0.217 2.213 −5.073 −2.292 0.874
H · · · N 1.679 0.375 823 −14.18 0.382 −0.128 −0.336 0.405

FF1 F–H 0.921 9.480 −0.803 −0.083 4100 −52 −0.012 2.517 −5.955 −2.366 0.994
H · · · F 1.811 0.168 546 −4.37 0.184 −0.004 −0.021 0.324

FF2 F · · · H 1.145 0.803 −8.916 −0.917 1194 −2957 −0.712 −43.20 1.211 −1.684 −1.390 0.5
OCl1 O–H 0.961 8.172 −0.383 −0.045 3825 −88 −0.022 2.496 −5.113 −2.049 0.954

H · · · Cl 2.510 0.051 297 −3.27 0.085 0.008 0.094 0.233
OCl2 O–H 0.958 8.465 −0.090 −0.011 3893 −20 −0.005 2.525 −5.139 −2.035 0.963

H · · · Cl 2.815 0.029 223 −1.17 0.046 0.007 0.149 0.199
ClO1 Cl–H 1.303 3.999 −1.138 −0.222 2632 −351 −0.118 1.609 −1.608 −1.000 0.782

H · · · O 1.853 0.167 546 −5.81 0.222 −0.015 −0.069 0.323
ClN1 Cl–H 1.341 2.268 −2.869 −0.558 1982 −1001 −0.336 1.457 −1.403 −0.963 0.668

H · · · N 1.729 0.183 575 −10.55 0.365 −0.109 −0.297 0.331
ClCl1 Cl–H 1.286 4.898 −0.239 −0.047 2913 −70 −0.024 1.676 −1.683 −1.004 0.831

H · · · Cl 2.549 0.060 323 −1.75 0.083 0.007 0.084 0.243
ClCl2 Cl · · · H 1.565 0.225 −4.913 −0.956 625 −2358 −0.791 −23.24 0.825 −0.564 −0.684 0.351
SS1 S–H 1.462 0.622 −3.741 −0.857 1039 −1714 −0.623 1.155 −0.914 −0.792 0.474

H · · · S 1.987 0.095 406 −17.31 0.358 −0.104 −0.290 0.277
PP1 P–H 1.445 2.385 −0.962 −0.287 2036 −377 −0.156 1.131 −1.158 −1.024 0.677

H · · · P 2.678 0.064 334 0.110 −0.002 −0.014 0.248
FH F–H 0.918 9.719 4152 2.557 −5.990 −2.342 1.0
ClH Cl-H 1.280 5.138 2984 1.700 −1.714 −1.008 0.839
OH2 O–H 0.957 8.555 3913 2.536 −5.153 −2.032 0.996
NH3 N–H 1.011 6.992 3553 2.336 −3.365 −1.440 0.914
SH2 S–H 1.341 4.363 2753 1.482 −1.509 −1.018 0.810
PH3 P–H 1.418 3.347 2413 1.107 −1.098 −0.991 0.744
FAM N–H 1.002 7.618 3708 2.383 −3.728 −1.565 0.936
TFAM N–H 1.003 7.529 3687 2.384 −3.741 −1.569 0.932
IA N–H 1.002 7.593 3702 2.393 −3.830 −1.601 0.934
FA O–H 0.966 8.022 3790 2.479 −5.090 −2.053 0.949
ME O–H 0.956 8.549 3912 2.564 −5.198 −2.027 0.966

FAM, formamide; TFAM, thioformamide; IA, imidazole; FA, formic acid; ME, methanol.
[a] Bond length values R in Å, force constant ka in mdyn/Å, vibrational frequency ωa in cm−1, binding energy �E in kcal/mol, electron density ρc at the bond
critical point in e/Å3, energy density Hc at the bond critical point in Hartree/Å3, energy density per electron κc = Hc/ρc in Hartree.
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Figure 2. a) Local mode stretching force constants ka in mdyn/Å are given
for the (donor-hydrogen) DH bonds and H-bonds HA of the complexes shown
in Figure 1 in dependence of the corresponding interaction distances R in
Å. ωB97X-D/aug-cc-pVTZ calculations. b) Singling out covalent N–H and O–H
bonds. c) Singling out H · · ·N and H · · ·O hydrogen bonds. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

stretching force constants are relatively small, which indicates
that the semiquantitative character of Badger’s rule does not
lead to a reliable description of HB on the basis of calculated
bond distance values R.

The strongest scattering of data points is found for the anionic
systems with strong HB where the values of R are smaller than
those suggested by the power relationship (Figs. 2a and 2c). This
is a direct reflection of the fact that the distance R is an unreliable

Figure 3. Bond order n given as a function of the local mode stretching force
constants ka as calculated for a) covalent DH bonds and b) hydrogen bonds
of predominantly covalent or electrostatic nature. ωB97X-D/aug-cc-pVTZ cal-
culations. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

bond strength descriptor in the case of charged molecules or
molecules with strong charge polarization. This becomes obvious
for the covalent HBs in (F · · ·H · · · F)− (FF1: R = 1.145 Å; ka =
0.803 mdyn/Å). Because of the strong electronegativity of F the

Figure 4. Comparison of the bond order n based on local mode stretch-
ing force constants ka with the electron density-normalized energy density
κc = Hc/ρc at the bond critical point rc. Formal DH single bonds are given
by filled black circles whereas hydrogen bonds are given by empty blue cir-
cles. Three bonding regions (covalent, transition, electrostatic) are indicated.
For the notation of HB systems, see Figure 1; ωB97X-D/aug-cc-pVTZ calcula-
tions. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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central H atom has lost most of its electron density and therefore
has no longer the covalent bonding radius of the H atom in
FH. Therefore, the distances between H and F atoms in FF1 are
strongly decreased and accordingly do not fulfill the exponential
relationship shown in Figure 2a. Similar observations can be made
for other ionic HB-systems (Fig. 1, see also Table 1), which are
mainly responsible for the strong scattering of data points in
Figure 2a.

The covalent radius of an atom and thereby also distance R

depend on the number of core shells, the charge of the atom,
electron spin arrangements, and enviromental factors influencing
the bond density distribution. Attempts to derive effective bond
lengths Reff as first done by Badger[95] may lead to some limited
improvement when using R as a bond strength descriptor in
the case of covalent XY bonds (for example, the NH and OH
bonds investigated in this work; see Fig. 2b), but in the case of
larger variations in atom,atom distances R(HA) leading to small
changes in the local mode stretching force constants, the Badger
rule is poised to fail and interaction distances R can no longer
be considered as reliable bond strength descriptors.

Electron density and the Laplacian of the density at the bond
critical point rc between atoms H and A have been used to
assess the nature of HB.[41, 47–51, 96–100] Espinoza et al.[41, 42] used
in addition the energy density criterion derived by Cremer and
Kraka[38–40] for distinguishing between covalent and electrostatic
HBs. Despite the usefulness of these descriptions, single density
values cannot reflect integral density properties associated with
the whole bond region. Cremer and Gauss[101] have related
the electron density obtained by integration over the zero-
flux surface between two neighboring virial (atomic) spaces
to the bond strength and they could reproduce trends in CC
and CH bond energies for alkanes and cycloalkanes. However,
these authors have also emphasized that the zero-flux density
only reflects trends in covalent bond strengths whereas the
ionic (polar) character of a bond can only be assessed from a
quantitative description of the density polarization in the bond
region. Currently, there is no electron density or energy density
based quantity that can be used as a reliable indicator of the
intrinsic HB strength.

BSSE-corrected binding energies �E = E(complex) −
E(monomer 1) − E(monomer 2) are normally used to describe
the strength of HB. We emphasize that these values do not
correspond to the intrinsic strength of the HB. When breaking
the latter the bond DH relaxes to its normal length as does
the electron density distribution of this bond and other bonds
connected to donor D and/or acceptor A where especially the
electron density in the lone pair region of A relaxes. Geometry
and electron density relaxation of DH and A lead to their sta-
bilization (stabilization energy SE) and by this to a significant
decrease in the binding energy �E . SE values will vary with the
electronic nature of D and A so that their effects on �E are
difficult to predict. We define as the intrinsic HB binding energy
�E(intrinsic) that energy, which would result if both D and A
after DHA dissociation remain in the geometry of the DHA com-
plex and the electron density frozen in the distribution of the
complex. The latter requirement is difficult to fulfill and accord-
ingly none of the HB binding energies given in the literature or

in this work fulfills the criteria of a true intrinsic binding energy
�E(intrinsic), which correctly reflects the strength of the HB.
Hence, a true descriptor of the HB is only provided by the local
mode HA stretching force constants ka(HA) given in this work
(see Table 1).

Determination of H-bond orders

For the determination of a HB bond order, we assume that there is
a continuous transition from electrostatic to covalent HB. Parallel
to this change, there is a reverse change in the nature of the
DH bond, which is increasingly weakened with increasing HB
strength. The local mode stretching force constants ka(DH) and
ka(HA) are sensitive with regard to the total density distribution
enveloping the three atoms involved in HB and thereby they
reflect all electrostatic and covalent contributions to HB, i.e., they
present a measure of the intrinsic bond strength of both DH and
HA interactions. We will exploit this fact by deriving a suitable HB
strength descriptor in form of an HB bond order n(XH) (X = D

or A), which can be easily used for the comparison of different
DH and HA interactions in HB complexes.

In view of the continuous change in ka values for a transi-
tion from covalent to ionic XH bonds observed by KLC,[14] it
is reasonable to assume that a single relationship n = f (ka) is
sufficient to describe the XH bonds investigated in this work.
Any bond order relationship requires suitable reference values
and a suitable mathematical function to map force constants
onto bond orders. In recent work, it has been shown that the
bond order n and the local mode stretching force constant ka

are connected by a power relationship.[13, 14] The results obtained
in this work suggest the extension of this relationship to non-
covalent bonding. In this connection, it is necessary to require
that a force constant equal to zero implies a bond order of
zero, which makes sure that negative bond orders cannot occur.
As reference for a DH single bond with bond order n = 1, we
take the monomer FH, which has a bond dissociation energy
(BDE) of 136.2 kcal/mol.[102] As a second reference system, we
use the complex FF2, for which covalent bonding is established
by the delocalization of four electrons in an all-bonding and a
nonbonding MO. Hence, the bond order of FF2 can be set to
2/(2 × 2) = 0.5.

In Figure 3, the power relationship between bond order n and
local mode stretching force constant ka obtained in this way
(see also Table 1), is depicted where the covalent DH bonds are
shown in Figure 3a and the HBs in Figure 3b. By setting the
bond order of the FH bond to 1, the bond orders of all OH or
NH bonds become smaller than 1, which is reasonable in view of
the fact that the corresponding BDE values (OH2: 118.8 kcal/mol;
NH3: 107.6 kcal/mol[102]) are smaller than the value of BDE(FH).
One can scale the OH, NH or other interactions with D and A
�= F by resetting n(OH), n(NH), etc. for OH2, NH3, etc. equal to 1.
However in this work, we refrain from using other references. The
bond order n is used here to compare all HBs of the complexes
and monomers in Figure 1.

In Figure 4, calculated bond orders are compared with the bond
index κc = Hc/ρc. As expected, there is no direct relationship
between n, which represents the total electron density in the
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Figure 5. PMO analysis of charge assisted hydrogen bonding. Orbital interactions are shown after mutual polarization before the formation of the final MOs.
Upper left corner, F · · ·H · · · F− : 2e-delocalization is large and leads to a symmetric 3c-4e bonding situation. Upper right corner, I · · ·H · · · I− : Although 2e-
delocalization should be smaller because of the lower electronegativity of I (leading to an energy increase in the σ(IH) and σ
(IH) orbital energies), the polarization
splitting of the I− orbitals helps to increase 2e-delocalization and to re-establish the symmetric 3c-4e bonding situation. Lower left corner, H2N–H · · ·NH−

2 : 2e-
delocalization is decreased and polarization effects are not sufficient to counterbalance this effect. An asymmetric 3c-4e bonding situation results. Lower right
corner, H2Sb–H · · · SbH−

2 : To compensate the loss in 2e-stabilization caused by reduced electronegativity, the anion interacts via its pπ orbital. A new complex
geometry leads to some weak, predominantly electrostatic interactions (see text).

interaction region, and the bond index κc obtained at a single
point. There are a dozen HBs (open circles) in the covalent
region, i.e., their κc value is smaller than −0.1 whereas most of
the HBs investigated are in the electrostatic region with positive
κc values or in a transition region between dominant covalent
and dominant electrostatic HBs (Fig. 4).

Among the covalent HBs with bond orders between 0.28 and
0.5, there are especially the charge assisted HBs of FF2, OO8,
NN7, ClCl2, or SS1. According to the pKa or PA equilibration
principle,[30, 56] these ions should have the H atom in a central
position, equal negative charge at the heavy atoms, and D and
A should attract the positively charged H atom with the same
strength (i.e., D after loosing H as a proton and A have the
same PA or pKa values). The symmetrical double-well potential
for proton transfer from D to A is replaced by a broad single-well
potential. However, it is well-known that this situation is only
fulfilled for the halogen anionic systems[28, 103] whereas for the
O, N, S, P, and other anionic systems a double-well potential with
low barrier is observed.[63, 64, 104–110]

The charge assisted HB have been frequently discussed and
multiple attempts have been made to explain the large variation
in their binding energies, the symmetric or asymmetric position
of H, the differences in positive and negative charged ions or the
shape of the PES for the proton transfer.[28, 103, 105–109] We note
that in view of the covalent character of the charge assisted
HBs (see Table 1 and Fig. 4) a simple MO explanation should be
sufficient to explain the trends in calculated bond orders.

According to PMO theory, the interaction between the σ(XH),
σ 
(XH), and the pπ(X) (X = halogen) starting orbitals will depend
on the electronegativity of X, the corresponding orbital energy
differences �ε, and the overlap between the orbitals. A large
electronegativity of X, leads to more negative orbital ener-
gies for σ(XH) and σ 
(XH), a larger �ε(σ , πz), which is even
increased by the polarization of the pzπ(X) orbital caused by
exchange repulsion with the XH bond. The difference �ε(πz , σ 
)

is small and accordingly the 2e-stabilization (delocalization of
the pzπ(X) electron pair into the σ 
(XH) orbital) large whereas
the 4e-destabilization is small (large �ε(σ , πz)). This leads to a
delocalized, strongly stabilized 3c-4e system and a symmetric
position of the H atom as in the case X = F (Table 1).

With increasing atomic number of X, the electronegativity of
X decreases and the σ(XH) and σ 
(XH) orbitals are higher in
energy. This would lead to a reduction of 2e-delocalization, an
increase of 4e-destabilization, and a shift of the H toward the D
atom (asymmetric DHA configuration). However, the polarization
splitting of the pπ(X) orbitals (Fig. 5) is now larger due to the
larger polarizability of X and its diffuse electron lone pairs. Hence
the situation of X = F can be regained (central position of H
atom) despite the lower electronegativity of X.

The situation will be different if X corresponds to a group
such as OH, NH2, SH, or PH2. Polarization splitting cannot push
the σz(X) lone pair energy above that of the pxπ(X) lone pair,
which means that the decrease in electronegativity (increase
in 4e-destabilization, decrease of 2e-stabilization) enforces an
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asymmetric DHA configuration and a (small) barrier to proton
transfer as found for X = OH.[104] A weaker HB is obtained as
reflected by the calculated binding energies �E of 34.6 and
14.8 kcal/mol for OO8 and NN7 (Table 1).

For third period systems with X = SH and PH2, the binding
energy is reduced to 17.3 and 5.6 kcal/mol, respectively (SS1
and PP1, Table 1) compared to the corresponding ClCl2 value
of 23.2 kcal/mol. Obviously, charge assistance does no longer
play a role for PP1 in view of the low electronegativity of P.
However, the PP1 complex can gain some stabilization by a
90◦ rotation of the PH2 anion, which makes the use of the
better polarizable pπ(P) orbital possible and thereby causes a
somewhat better 2e-stabilization energy. It is interesting to note
that PP1 prefers a semieclipsed conformation, which leads to
slightly better electrostatic interactions (involving the bond and
lone pair dipole moments). The trends observed in this work for
X = Cl, SH, and PH2, we have also found for X = Br, SeH, and
AsH2 as well as I, TeH, and SbH2 (not reported in Table 1).

Noteworthy is that the calculated (and experimental) �E value
for FF2 is 43.2 (exp �H(298): 45.8 kcal/mol[102]), which is lower
than half of the BDE of FH (136.2 kcal/mol[102]). This reflects the
stabilization energies of the fragments FH and F− and confirms
the large changes in calculated binding energies upon geometry
and density relaxation as discussed above.

If D is strongly electronegative as in FH and A has an polarizable
electron pair as in NH3 a significantly covalent HB is obtained as is
indicated by the increase in bond orders (and binding energies)
in the series FF1, FO1, and FN1 (Table 1: 0.324, 0.387, 0.405;
�E : 4.4, 9.1, 14.8 kcal/mol). In these HB systems, delocalization
into the σ 
(FH) bond is facilitated and at the same time the
electrostatic interactions between H and A are increased due to
the electronegativity of the F atom.

Noteworthy is also the strong HB involving the NH2 group of
amides such as NN3, NN4, NO6, or NO7 with bond orders of
0.318, 0.337, 0.326, and 0.326 (6.90, 8.05, 5.12, 5.94 kcal/mol, Table
1), which all belong to the class of resonance assisted HBs[111]

as does NN6 involving the NH group of imidazole (Fig. 1). In a
resonance assisted HB systems, π -delocalization leads to a larger
polarity of the NH bond and an increase of both covalent and
electrostatic contributions to the HB. A similar situation is found
for ring systems such as NO8 or ON4, which benefit from two
HBs (Fig. 1).

The weakest HB is found for NF1 or OF1, which involve the
poorly polarizable F2 molecule and therefore yield only bond
orders of 0.134 and 0.139 and κc values larger than 0.2 (Table
1). This is typical of weak, exclusively electrostatic (noncovalent)
interactions.

Bond orders and binding energies of HB

In Figure 6a, BSSE-corrected HB binding energies are related to
calculated HB bond orders n(HA). There is a strong scattering of
�E values, which makes it difficult to extract even a qualitative
relationship between these quantities. The HB binding energy
�E includes energy effects caused by a new interaction HA and
the weakening of the existing DH bond. Hence, �E should be
related to the sum of changes in the bond orders rather than

Figure 6. HB binding energy �E given as a function of a) calculated bond
orders n(HA) and b) the sum of bond order changes caused by complex for-
mation due to hydrogen bonding. ωB97X-D/aug-cc-pVTZ calculations. [Color
figure can be viewed in the online issue, which is available at wileyonlineli-
brary.com.]

a single bond order n(HA). The change in the DH bond can be
assessed by subtracting the bond order for the monomer DH
from that in the complex whereas the bond order of HA can be
directly taken from Table 1.

In Figure 6b, �E values are given in dependence of the
sum of bond order changes �n(DH) + n(HA). Although there
is still some scattering of values, the binding energy �E has
a quadratic dependence on the sum of bond orders (R2 =
0.969), which confirms that local mode force constants provide
a measure of the HB strength. Because the binding energy also
includes other geometry and electron density relaxation effects
upon HB dissociation, an exact relationship cannot be expected.
Nevertheless, the strong binding in the case of charge assisted
HB and other covalent HBs becomes obvious from Figure 6b.

Vibrational spectroscopy as a tool for describing H-bonding

In Table 1, the local mode frequencies of the HB are listed together
with their associated stretching force constants. They reach from
about 100 to 800 cm−1 with the exception of FF2, which has a
HF stretching frequency of 1194 cm−1. Accordingly, local mode
stretching force constants vary from 0.03 to 0.8 mdyn/Å. It has
to be noted that changes in the frequencies larger than 5 cm−1
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(3 × 10−3 mdyn/Å) are relevant, which is the reason why bond
orders are given with an accuracy of 10−3.

Calculated red shifts �ωa(DH) and normalized red shifts η(DH)

for DH bonding are listed in Table 1. In Figure 7, the latter are
related to the local HA stretching frequencies. As in the case of
the binding energies and bond orders, Figure 7 confirms that
the description of HB exclusively via the red shifts of the DH
stretching frequencies can be useful only in the case of closely
related HBs (e.g., HB in water complexes[23]). It can be strongly
misleading if different HBs are investigated as is revealed by
the strong scattering of results for charge-assisted HBs. This
scattering does not change when �ωa(DH) rather than η(DH)

(Fig. 7a) is used. Clearly, frequencies are quantities, which, because
of their mass dependence, should not be used to describe the
strength of a bond. Experimentally, however they are exclusively
available whereas the corresponding force constants have to be
calculated.

Figure 7. a) Calculated normalized red shifts ηa(DH) = �ωa(DH)/ωa(DH)

based on local mode frequencies given as a function of local mode HA stretch-
ing frequencies ωa(HA). b) Calculated red shifts �ωa(DH) given as a function of
normalized energy densities κc(HA) = Hc(HA)/ρc(HA). ωB97X-D/aug-cc-pVTZ
calculations.

The local mode force constants do not suffer from coordinate
dependence or other deficiencies and in addition can be derived
from experimental frequencies.[11] Nevertheless, the general mes-
sage of Figure 7 does not change if �ka(DH)/ka(DH) is related to
ka(HA) values. Any combination of bond order, frequency, force
constant, energy density, or electron density values calculated

for DH and HA does not lead to a reasonable correlation as long
as not all changes in the complex due to HB are included.

From a qualitative point of view, the normalized frequency
shifts η are useful parameters for distinguishing weak HBs (0 >

η > −0.1) from more covalent and stronger HBs (η < −0.1)
where the negative sign is due to the red shift. Test calculations
show that η becomes positive for blue shifted HB as they occur
when π -systems are involved.

Conclusions

Local vibrational modes provide a sensitive tool to detect and
characterize HB in complexes DHA. For this purpose, the local
stretching force constants of both the DH and HA bond have
to be determined. The stretching force constants register all
changes in the electron density distribution between donor D
and acceptor A.They provide a global rather than a local measure
of bonding, the latter of which is used when the electron or
energy density distribution is analyzed at the bond critical point.
The vibrational analysis based on local modes and carried out in
this work reflects the total bond strength and therefore provides
important insights into HB:

1. Local mode stretching force constants can be used to order
HBs according to their strength. In this work, FH and the anion
FF2 typical of charge-assisted HB are selected to obtain suitable
reference bond orders of n = 1 and n = 0.5 and to derive a
power relationship between local mode stretching force constant
ka and bond order n. We note that if the choice of the reference
bond orders is done differently, different bond orders will result,
however the relative ordering of HBs according to their strength
will not change.

2. By combining the bond orders derived from local mode
properties with the Cremer-Kraka criterion of covalent bonding
based on the energy density at the bond critical point,[38–40] HBs
with dominant covalent character can be distinguished from
HBs with dominant electrostatic character.

3. When comparing the HB orders obtained in this work with
bond distances, density properties, or HB binding energies, the
deficiencies of the latter properties as possible bond strength
descriptors become obvious.Electron and energy densities do not
provide reliable bond descriptors as long as they are calculated
at single points in the bond region rather than being integrated
over the whole bond region. However, a quantum mechanical
definition of the bond region does not exist. Similarly, bond
distances can only function as bond strength descriptors if they
can be transformed into an effective bond distance eliminating
the influence of core shells, atomic charges, electron spin, or bond
bending. There is no general way of obtaining such effective
bond lengths. Finally, HB binding energies are depending on both
the HB strength and the stabilization energies of the separated
monomers, which makes them unsuitable as bond strength
descriptors.

4. For the purpose of quantitatively assessing the strength of a
HB both the change in the DH bond order and the n value of the
newly generated HA bond has to be considered. If this is done,
HB binding energies correlate with bond orders (R2 = 0.969) for
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a large variety of HBs involving charged assisted covalent HBs
with D and A from either the second or the third period, weak
electrostatic HB, resonance assisted HBs, or double HBs in cyclic
systems. The remaining scattering of data points reflects the
shortcomings of binding energies as bond strength descriptors.

5. Local vibrational modes and their properties provide a gen-
erally applicable tool for describing weak interactions such as
HBs. This tool will work with any quantum chemical method
nowadays available to calculate normal mode frequencies. In
this work, we have used DFT and the ωB97X-D functional in
connection with the aug-cc-pVTZ basis set, which is known to
lead to HB results close to those obtained with CCSD(T).[84]

6. It is important to note that the local modes obtained in this
work by solving the basic equations of vibrational spectroscopy,
can also be determined once the experimental vibrational fre-
quencies of a molecule or complex are known. In this way, the
local mode approach of Konkoli and Cremer[8] represents a new
dimension of describing HB or weak noncovalent interactions in
general. Of course, for most HB complexes it is unlikely that all
3K-L vibrational frequencies can be accurately measured. How-
ever, there are procedures that help to complement measured
vibrational frequencies to a complete set utilizing either scaled
harmonic or anharmonically corrected quantum chemical fre-
quencies thus opening a wide range of application possibilities
for the use of local mode properties.
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