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ABSTRACT: The analytic linear response formalism for the calculation of the effective contact densities ρ̅ in the context of the
normalized elimination of the small component (NESC) method is developed and implemented. The formalism is tested for the
calculation of contact densities and contact density differences in a series of mercury cations and mercury-containing molecules.
The calculations carried out at the NESC/SCF, NESC/MP2, and NESC/CCSD levels of theory demonstrate high sensitivity of
the contact density to the local coordination environment and the oxidation state of mercury. The NESC/MP2 results are in a
very good agreement with the NESC/CCSD ones, which suggests that the former method can be used as a cost-effective
alternative to high-level ab initio calculations.

1. INTRODUCTION
Mössbauer spectroscopy1 is currently one of the most powerful
analytic techniques in chemistry and physics.2−9 It is widely
used for characterization of samples rich in iron (57Fe), tin
(119Sn), and more than 40 other elements in the periodic table,
including zinc (67Zn), gold (197Au), mercury (199Hg and 201Hg),
and many rare earth elements (e.g., 151Eu), etc., have been
investigated utilizing this technique. Besides classical Möss-
bauer spectroscopy, in which γ-radiation, emitted by a specific
isotope nucleus, is used for the determination of the same isotope
in another sample, the use of synchrotron γ-radiation in nuclear
resonance scattering spectroscopy offers considerable advan-
tages when determining resonating nuclei in very low con-
centrations or under extreme conditions.10

Mössbauer spectroscopy is based on the phenomenon of
recoilless absorption of γ-radiation by the atomic nuclei
embedded in a crystalline or disordered solid environment.1

Because the frequency of the resonant γ-radiation depends on
the interactions of the resonating nucleus with its electronic
environment, Mössbauer spectroscopy provides information on
the local electronic structure often inaccessible to other
methods. Parameters of Mössbauer spectra such as the isomer
shift of the nuclear γ-transition, the quadrupole splitting, and
the magnetic hyperfine splitting are sensitive characteristics of
the chemical environment of the resonating nucleus.
The isomer shift δ of the Mössbauer spectrum measures the

difference between the energies of γ-transitions occurring in the
sample (absorber) and the reference (source) nucleus. The
nuclear charge radius changes during the γ-transition, and this
leads to changes in the electron−nuclear interaction energy.
The interpretation of the isomer shift11−13 leads to a simple
expression,

δ = α ρ̅ − ρ̅( )(a) (s) (1)

that relates δ (mm/s) to the so-called electron contact densities
ρ̅ at the position of the absorbing (a) and source (s) nucleus
(bohr−3). The calibration constant α depends on the internal
parameters of the nuclear γ-transition, not all of which can be
obtained experimentally or evaluated theoretically with a
sufficient precision. Typically, this constant is obtained from a
linear regression analysis of the theoretically calculated contact
densities against the experimental values of the isomer shifts.
There is a wealth of literature describing this approach, and the
interested reader may be referred to a recent review, ref 9, and a
recent monograph, ref 4, and references cited therein.
When calculating the contact densities, the effects of

relativity and electron correlation should be appropriately
taken into account. Traditionally, the contact density is
obtained within the nonrelativistic formalism as electron
density at the nuclear position, ρ(0), and the relativistic effects
not considered by the theory are absorbed by the calibration
constant α.2−4,13 This may however lead to inaccurate contact
density differences and to an unreliable interpretation of the
Mössbauer spectra, because, even for elements as light as 57Fe,
the ρ(0) densities and density differences deviate from the
relativistically obtained effective contact densities ρ̅.14 Although,
for 57Fe, the magnitude of relativistic effects is relatively small
and the empirically obtained values of the calibration constant
α are not very sensitive to the inclusion of relativity,15,16 a good
agreement with the experimentally estimated α(57Fe) was
achieved in relativistically corrected ab initio calculations.14

For heavier elements, the inclusion of relativity becomes
mandatory.
An approach that enables one to straightforwardly

incorporate relativistic and correlation effects into the
calculated contact densities ρ̅ was recently proposed by one
of us17 and is based on the use of linear response formalism of
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the isomer shift. Within this approach, the isomer shift
δ (and ρ̅) is treated as the electronic energy derivative with
respect to the nuclear charge radius.17 Initial application of this
formalism14,17−21 employed numeric differentiation of the elec-
tronic energy obtained in density functional or in high-level ab
initio wave function calculations. The use of numeric differ-
entiation is however computationally tedious and inefficient.
In the present work, a fully analytic approach to obtaining

effective ρ̅ within the linear response formalism will be
presented. The method developed in the present work employs
the exact two-component relativistic theory in the form of
the normalized elimination of the small component (NESC)
method.22−25 The analytic energy derivatives formalism for this
method has recently been developed.26 This formalism will be
adapted to the calculation of contact densities and will be applied to
obtain ρ̅ on the mercury nucleus in a series of organic and inorganic
mercury compounds. A few of these compounds were recently
studied by Knecht et al.21 with a variety of theoretical methods. The
current work will extend the results of previous works not only
by presenting a new, more efficient and accurate formalism
but also by exploring possibilities for the analytic determination
of mercury in its compounds by the use of Mössbauer
spectroscopy.

2. THEORY

In this section, we briefly outline the salient features of linear
response theory of the Mössbauer isomer shift developed in
ref 17. This formalism operates with the derivatives of the
electronic energy with respect to the nuclear charge radius
for obtaining the effective contact densities ρ̅ and isomer
shifts δ.
2.1. Linear Response Theory of Contact Density. The

physical origin of the Mössbauer isomer shift corresponds to
the variation of the nuclear charge radius during the nuclear
γ-transition. Because the electron−nuclear interaction depends
on the nuclear size, it will cause a slight variation of the energy
of the γ-transition in the nuclei of the same isotope immersed
in a different electronic environment.2,13 The energy shift ΔEγ

of the resonance γ-transition in the a-nucleus (absorbing
nucleus) with respect to the transition in the s-nucleus (source
nucleus) can be sensed by Mössbauer (or nuclear γ-resonance)
spectroscopy and is commonly expressed in terms of the
velocity (mm/s) necessary to achieve resonance absorption due
to the Doppler shift of the γ-radiation of the source nucleus;
see eq 2.2,9,13,17

δ = Δ − Δ
γ

γ γ
c

E
E E( )a s

(2)

where c is the velocity of light and Eγ is the energy of the
γ-quantum, Eγ ≫ ΔEγa, ΔEγ

s. By virtue of Green’s reciprocation
theorem,27 the electrons will experience exactly the same
energy shift caused by the nuclear charge radius variation.
Assuming (i) that a finite size nucleus is explicitly included in
the calculation of the electronic energy, (ii) that the nuclear
charge distribution is spherically symmetric, and (iii) that the
electrons remain in the same eigenstate of the electronic
Hamiltonian during the nuclear γ-transition, one can derive, to

the lowest order in the variation of the charge radius ΔRA of the
nucleus A, an expression

δ = ∂
∂

− ∂
∂

Δ
γ = =

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

c
E

E R
R

E R
R

R
( ) ( )

R R R R

a s
A

A A (3)

that relates the Mössbauer isomer shift to the derivatives of the
electronic energy of the absorbing (Ea) and source (Es) systems
with respect to the charge radius R of the resonating
nucleus.9,17 The linear response formula 3 can be modified
further by introducing the ρ̅ which, for a given nucleus in a
molecule or a crystal, is proportional to the derivative of the
electronic energy with respect to the charge radius of that
nucleus. By modeling the nuclear charge distribution by a
Gaussian-type function28,29 according to

ρ =
πζ

− ζ
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟r Z( )

1
e r

A A 2

3/2
/2 2

(4)

the nuclear attraction potential of eq 5 is obtained:

= −
ζ

⎛
⎝⎜

⎞
⎠⎟V r

Z
r

r
( ) erfA

A
(5)

In eq 5, r is the distance from the nucleus A, erf(x) is the error
function, and ζ is the parameter related to the root-mean-
square (rms) nuclear charge radius ⟨R2⟩1/2 of nucleus A as in

ζ = ⟨ ⟩R
2
3

2 1/2
(6)

Then, the effective contact density can be obtained by9,17

ρ̅ =
π ζ

∂ ζ
∂ζ ζ=ζZ
E1

2
1 ( )

A
A

0 (7)

in which ζ0 is the value of the parameter obtained from the
experimentally measured rms charge radius of the resonating
nucleus A. The effective contact density can be directly
compared to the density calculated as the expectation value of
the density operator and used in connection with eq 1.9,14,17−20

Note that in the previous works using this formalism,9,14,17−20

eq 7 was expressed in terms of the derivatives with respect to
the radius of a uniformly charged sphere R = (5/2)1/2ζ, which
led to a different prefactor in this equation. In the following
subsection, the formalism for calculating derivatives ∂E(ζ)/∂ζ
within the context of the NESC method will be presented.

2.2. NESC Analytic Derivatives Formalism. The NESC
method22 provides the electronic (positive-energy) solutions of
the Dirac equation30 by solving the following eigenvalue
equation:

̃ = ̃ ε+ +
+LA SA (8)

with the relativistic metric given by

̃ = + †
mc

S S
1

2
U TU2 (9)

The eigenvectors A + are normalized on the metric given by
eq 9 as A+

†S ̃A+ = I, which corresponds to the exact normaliza-
tion of the large component of the relativistic four-component
wave function.
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The NESC Hamiltonian L̃ is obtained iteratively by solving
the following equation:22,24

̃ = + − − +† †L TU U T U T W U V( ) (10)

where the elimination of the small-component operator
U, which connects the large A+ and the pseudolarge B+ com-
ponents of the modified Dirac wave functions via B+ = UA+,

22

can be obtained iteratively from22−25,31

= ̃ ̃ −− −U T SS L V( )1 1
(11)

or from the solution of the modified Dirac equation.22 The
latter one-step approach was first proposed by Dyall22 and used
later by Ilias ̌ and Saue32 and Zou et al.25 in practical imple-
mentations of the NESC method. The modified Dirac equation
in matrix form is given by

−

=
ε

ε

− +

− +

−
− +

− +

−

+

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝⎜⎜

⎞
⎠⎟⎟
⎛
⎝⎜

⎞
⎠⎟mc

V T
T W T

A A

B B

S

T

A A

B B

0

0 (2 )

0

02 1
(12)

where A− and B− are the large and the pseudolarge compo-
nents of the negative-energy (positronic) states with the eigen-
energies ε− and A+, B+, and ε+ belong to the positive-energy
(electronic) states.22 With use of the solutions of eq 12, the
elimination of U can be obtained as in

= = ̃+ +
†

+ +
† −

+ +
†U B A A A B A S( ) 1

(13)

where S̃−1 = A+A+
† is used.

In eqs 8−12, S, T, and V are the matrices of the overlap,
kinetic energy, and potential energy operators, and W is the
matrix of the operator (1/4m2c2)∇V(r)·∇ in the basis of
the atomic orbitals χμ(r).

22 The scalar relativistic approximation
is used throughout the paper with the velocity of light c =
137.035 999 070(98).33

Using the one-electron (1e) approximation of Dyall,22,34 the
NESC Hamiltonian obtained in the potential field of bare
nuclei is employed to obtain the energy of a many-electron
system according to

= + −E tr trPH P J K
1
2

( )e1 (14)

for the case of the Hartree−Fock method. In eq 14, J and K are
the matrices of the Coulomb and exchange operators, P is the
usual density matrix defined as P = CnC†, where C collects the
eigenvectors of the Fock operator, n is the diagonal matrix of
the orbital occupation numbers, and H1e is a renormalized
NESC one-electron Hamiltonian as given by

= ̃†H G LGe1 (15)

with G being the renormalization matrix according to35

= ̃− −G S S S S S( )1/2 1/2 1 1/2 1/2 1/2
(16)

The one-electron relativistic Hamiltonian eq 15 can be also
used in connection with the Kohn−Sham energy functional or
in the context of post-SCF (SCF, self-consistent field) and
multireference correlated ab initio methods. For simplicity, the
general formulas for the analytic energy derivatives will be
formulated in the context of the Hartree−Fock method.

Differentiating eq 14 with respect to an arbitrary parameter
λ (e.g., nuclear coordinates or charge radius of the nucleus),
one obtains26

Ω∂
∂λ

=
∂
∂λ

+ ∂′
∂λ

− − ∂
∂λ

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

E
tr

H
tr trP P J K

S1
2

( )e1
(17)

where Ω = CnεC† is the energy-weighted density matrix and
the prime at ∂′/∂λ implies that the two-electron integrals rather
than the density matrix need to be differentiated.
The first term in eq 17 can be explicitly written as

where new matrices P̃ = GPG† and D = L̃GP are introduced.
Differentiating eq 10 with respect to λ and inserting the
derivative into the first term of eq 18 yield

According to eq 30 of ref 26, the last two terms in eq 19 are
given by

∂
∂λ

+ ∂
∂λ

= + − ∂
∂λ

− ∂
∂λ

− ∂
∂λ

+ ∂
∂λ

†
†

†

†
†

⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

tr tr

tr
mc

tr

mc
tr

D
G

D
G

D D D
S

UD U
T

TUD
U

D U T
U

( )
1

2
( )

1

2

Z Z0 2 3 2 3

2 3 3
(22)

where

= − + −† † − − † †D D G GD S S G D DG( ) ( )0
1/2 1/2

(23)

= +† − −D S D S S DS1
1/2 1/2 1/2 1/2

(24)

= ̃ + ̃− −D D S S S S DZ Z2 1
1/2 1 1 1/2

1 (25)

= ̃ ̃− −D S S D S SZ3
1 1/2

1
1/2 1

(26)

and D0Z, D1Z, and D2Z are obtained from matrices D0, D1, and
D2 as

∑ ∑= +† † −C C C C m mD D( ) ( ) ( )qZ ij
r s

q rs
k l

ik kr sl lj k l
, ,

1/2 1/2 1

(27)

where C and m are the eigenvectors and the eigenvalues of the
matrices S (q = 0, 2) and S1/2S ̃−1S1/2 (q = 1) (see ref 26 for
detail).
Collecting the terms in eq 19, one obtains for the gradient of

the one-electron NESC energy
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where the matrix P0 is defined as

= ̃ − − −† †
mc

P P T U T W D U T[ ( )]
1

2
0 2 3

(31)

In ref 26, the derivative ∂U/∂λ in eq 30 was obtained
approximately using recurrence formulas, eqs 41 and 42 of ref
26, which provided sufficient accuracy for the geometric
derivatives of the NESC total energy. In the present work, the
∂U/∂λ derivatives are obtained exactly using the first-order
response of the modified Dirac eq 12 as explained below.
Denoting the matrix operator on the left-hand side of eq 12

as D̃, the metric matrix on the right-hand side as M̃, the four-
component wave function as Φ, and the matrix of the eigen-
values as ε, differentiating eq 12 with respect to a perturba-
tion λ, and multiplying the resulting equation by Φ† from the
left, one arrives at

ε ε ε Φ Φ Φ Φε− + = ̃ − ̃λ λ λ † λ † λO O D M (32)

in which the relationships Φ†DΦ̃ = ε and Φ†MΦ̃ = I were
used, and ελ, D̃λ, and M̃λ denote the derivatives of the
respective matrices with respect to the parameter λ. In eq 32, an
operator Oλ is introduced, which connects the derivative of the
four-component wave function with Φ as in

Φ Φ=λ λO (33)

Operator Oλ plays the central role for obtaining the derivatives
∂U/∂λ. Its matrix elements are given in

Φ Φ Φ Φ

Φ Φ
=

ε − ε ̃ − ̃ ε ≠

− ̃ =
λ

− † λ † λ

† λ

⎧
⎨⎪

⎩⎪
O

i j

i j

D M

M

( ) (( ) ( ) ) for

1
2

( ) for
ij

j i ij ij j

ii

1

(34)

Note that the diagonal elements of Oλ are obtained by
differentiating the normalization condition of the four-
component wave function Φ and that Oλ is a nonsymmetric
matrix.
Next, eq 33 is rewritten in terms of individual components of

the four-component wave function Φ. Because we are
interested in the positive-energy (electronic) states only, we
will focus on the large and pseudolarge components of the
electronic states.

=

=
* +

* +

−
λ

+
λ

−
λ

+
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− +

− +

λ λ

λ λ

−
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+
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−
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+
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⎝⎜⎜

⎞
⎠⎟⎟
⎛
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⎟⎟
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A A

B B

O O

O O

A O A O

B O B O

1 2

3 4

2 4

2 4 (35)

As can be seen from eq 35, response of the large and
pseudolarge components of the electronic states involves
mixing with the positronic states via the negative−positive
block O2

λ of the response operator Oλ.
Differentiating eq 11 with respect to λ and substituting eq 35,

one obtains for ∂U/∂λ

∂
∂λ

= −

= − ̃

−
λ

−
λ

+
−

−
λ

−
λ

+
†

U
B O UA O A

B O UA O A S

( )

( )

2 2
1

2 2 (36)

In explicit form, the O2
λ matrix elements are given by

Φ Φ Φ Φ= ε − ε ̃ − ̃ ελ + − − † λ † λ +O D M( ) ( ) (( ) ( ) )ij j i ij ij j2
1

2 2

(37)

where index i runs over positronic states, index j over electronic
states, and the following negative−positive blocks of the D̃ and
M̃ matrices are introduced

Φ Φ̃ = ∂
∂λ

+ ∂
∂λ

+ ∂
∂λ

+ ∂
∂λ

− ∂
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−
†

+ −
†
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A

B
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(38)

Φ Φ̃ = ∂
∂λ

+ ∂
∂λ

† λ
−
†

+
−

−
†

+mcM A
S

A B
T

B(2 )2
2 1

(39)

We now inspect eq 30, which gives the contributions of the
∂U/∂λ operator to the NESC energy derivative. These contri-
butions are always given by traces of matrix products,

∂
∂λ

= − ̃

= ̃ −

= ′

−
λ

−
λ

+
†

+
†

− −
λ

λ

tr tr

tr

tr

P
U

P B O UA O A S

A SP B UA O

M O

( )

( )

0 0 2 2

0 2

2 (40)

which can be reformulated according to eq 40 by introducing a
new matrix M′ = A+

†S̃P0(B−−UA−). Because the elements of
the O2

λ operator are expressed in terms of quadratic forms of
the general type C−

† (∂X/∂λ)C+, where C = A, B, and ∂X/∂λ is
a matrix of the derivatives of molecular integrals, the trace in eq
40 can be transformed as in eq 43,

where Z is a matrix with the elements given by the term in
parentheses in eq 42. Thus, the contributions of the Uλ

operator into the energy gradient can be conveniently
formulated in terms of traces of matrix products. After some
algebraic transformations, one arrives at eq 44 for the
contribution of the ∂U/∂λ derivatives to the NESC energy
gradient (eq 30),

∂
∂λ

= ∂
∂λ

+ ∂
∂λ

+ ∂
∂λ

+ ∂
∂λ

P
U

P
V

P
W

P
T

P
S

tr tr tr tr

tr

V W T

S

0 0 0 0

0 (44)

where the new matrices P0x with x = V,W, T, S are given below.

∑=
′

ε − ενμ + μ − ν + −
M

P A A( ) ( ) ( )V
i j

j i
ji

j i
0

, (45)

∑=
′

ε − ενμ + μ − ν + −
M

P B B( ) ( ) ( )W
i j

j i
ji

j i
0

, (46)

∑= −
ε ′

ε − ενμ + μ − ν

+

+ −
M

P A A( ) ( ) ( )S
i j

j i
j ji

j i
0

, (47)
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− +
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+ μ − ν + −
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⎛
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2
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T
i j

j i j i
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0
,

2
(48)

Thus, eqs 28−31 together with eqs 24−27 and eqs 44 and 48
complete derivation of the exact NESC analytic gradient. These
equations can be used in connection with an analytic gradient
geometry optimization or in connection with the first-order
response formalism for obtaining various molecular properties.
Using the derivatives of molecular integrals with respect to

the nuclear charge radius or with respect to the parameter ζ of
the Gaussian charge distribution (4), one obtains the energy
derivatives entering eq 7 for the effective contact density ρ̅A at
the specific nucleus A. Of all of the integral derivatives with
respect to the nuclear charge radius entering eqs 28−30 and 44
only the derivatives of the electron−nuclear attraction integrals
V and of the W integrals will have nonzero values. These
derivatives can be easily calculated using the formalism
developed by Taketa et al.36 It is also worth noting that the
application of the derivative formalism developed requires only
a fraction of time needed for a single SCF iteration, because the
final formulas are given in terms of traces of matrix products
and scale, therefore, as N3 with the matrix leading dimension N.

3. DETAILS OF CALCULATIONS
The formalism described in section 2 was implemented in the
COLOGNE2011 suite of programs.37 In the calculations for
mercury compounds, the values of the rms nuclear charge radii
of all elements were taken from compilation by Visscher and
Dyall.29 Two sets of calculations were carried out: (i) the
calculations of the Hg atom and the molecules HgF, HgF2, and
HgF4 at the NESC/SCF level using two large uncontracted
basis sets; (ii) the calculations of the Hg atom and the mole-
cules HgF, HgF2, HgF4, HgCl2, HgCl4

2−, Hg(SH)4, Hg(SH)4
2−,

and Hg(CH3)2 at the NESC/SCF, NESC/MP2, and NESC/
CCSD levels of theory using the SARC basis set38 for mercury
and the 6-31+G* basis set39 for all other atoms. In the first set
of calculations, the triple-ζ (TZ) and quadruple-ζ (QZ) basis
sets of Dyall40 in uncontracted form and modified as proposed
by Knecht et al.21 were used for Hg and the uncontracted
aug-cc-pVTZ and aug-cc-pVQZ basis sets of Dunning41 for the
F atoms. In the second set of calculations, the SARC basis set
for Hg was modified as follows: the two most tight primitive
functions from the first s-type basis function were uncontracted
and the basis set was augmented by five tight s-type primitive
functions obtained in a geometric progression. The contact
densities ρ̅Hg obtained with this basis set were stable with regard
to further basis set extension and closely matched the densities
calculated using large uncontracted basis sets from the first set
of calculations.
The molecular geometries of HgF, HgF2, and HgF4 were

taken from ref 21, and the geometries of HgCl2, HgCl4
2−,

Hg(SH)4, Hg(SH)4
2−, and Hg(CH3)2 were optimized at the

NESC/MP2 level using the NESC analytic gradient techni-
que.26 During the NESC/MP2 geometry optimization, the
4f-, 5s-, 5p-, 5d-, and 6s-electrons of mercury and the valence
electrons of other elements were correlated. When calculating
the contact densities at the NESC/MP2 and NESC/CCSD
levels, all electrons were correlated. The open shell species were

calculated using the spin-unrestricted formalism. Atomic units
of energy and density are used throughout this work.

4. RESULTS AND DISCUSSION
The formalism developed in section 2 was tested for the
calculation of the derivatives ∂E(ζ)/∂ζ, which enter eq 7. The
test calculations were carried out at the NESC/SCF level for
the Hg atom with the use of the TZ and QZ basis sets as
described in seciton 3. The analytic derivatives ∂E(ζ)/∂ζ were
compared with the numerically obtained derivatives. When
calculating the numeric derivatives, an increment of 0.1 fm for
the nuclear charge radius was used in connection with the five-
point central difference formula for obtaining the first
derivatives.
The results presented in Table 1 reveal that the relative

deviation of the analytic derivatives from the numerically

obtained ones is in the range of 10−6 to 10−7. The analytic
derivatives show a much weaker basis set dependence than
the numeric ones, yielding almost the same value for
the two basis sets employed. This is understandable because, in
the numeric differentiation, one takes differences between very
large numbers (total energies) obtained in the NESC/SCF
calculations with a finite convergence criterion (a convergence
criterion of 10−10 for the density matrix was used). In this
respect, the analytic derivatives offer (besides the speed of
calculation) the additional advantage of increased numeric
stability.
In the last row of Table 1, the analytic derivatives obtained

when neglecting the ∂U/∂λ terms in eq 30 are shown. Note
that these terms vanish identically if one considers the
electronic states completely decoupled from the positronic
states (see eq 36). Surprisingly, the neglect of this coupling
does not lead to a substantial deterioration of the calculated
derivatives. Thus one can expect that, for properties less
sensitive to the effect of relativity than the contact density (e.g.,
for geometric derivatives), the ∂U/∂λ terms may be safely
neglected as is confirmed by the work of Zou and co-workers.26

As a further test of the formalism developed, the effective
contact densities of a set of mercury fluorides, HgF, HgF2, and
HgF4, were calculated employing two large basis sets, TZ and
QZ, at the NESC/SCF level of theory. The contact densities
ρ(0) for these compounds have been previously calculated by
Knecht et al.21 using the full four-component relativistic
formalism. Note that in ref 21 the contact densities were
obtained as the density values at the center of the finite size
nucleus. In Table 2, the effective densities ρ̅ obtained in
this work are compared with the densities obtained by
Knecht et al.21

Table 1. Comparison of the Numeric and Analytic
Derivatives ∂E(ζ)/∂ζ (au/bohr) for the Mercury Atoma

TZ QZ

numeric 89 355.024 989 89 354.919 025
analytic, with
∂U/∂λb

89 355.004 948
(2.2 × 10−7)c

89 355.024 006
(1.1 × 10−6)

analytic, no ∂U/∂λd 89 353.262 924
(1.9 × 10−5)

89 353.282 090
(1.8 × 10−5)

aThe derivatives are calculated at the SCF level with the use of TZ
and QZ basis sets. bAnalytic energy derivatives with the ∂U/∂λ terms
(eq 30) included. cRelative deviation from the numerically estimated
derivative. dAnalytic energy derivatives without the ∂U/∂λ terms.
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The data of Table 2 reveal that ρ̅Hg obtained with the use of
the analytic formalism are less sensitive to the choice of the
basis set than the ρ(0) densities from ref 21. Note that ρ̅ should
not be identical to ρ(0), because the latter do not include the
nonuniformity of the electron distribution inside a finite-size
nucleus. A difference of ca. 10% between the effective contact
densities and ρ(0) was already mentioned in ref 21. A similar
deviation of ca. 10% was also observed for the contact density
differences.21 These observations are confirmed by the data in
Table 2. As was analyzed by Knecht et al.,21 the effect of spin−
orbit interaction contributes ca. 5% to the total densities and
density differences of the Hg atom and therefore does not play
a significant role. These contributions are much smaller than
the density differences for different compounds, and they, most
likely, are not important for the interpretation of the isomer
shifts in mercury compounds. Noteworthy is that general
trends in the variation of the contact density differences yielded
by the spin-scalar NESC formalism employed in this work
are the same as those obtained in the full four-component
relativistic calculations.21

By using a more compact SARC basis set for mercury
(augmented as described in section 3), a larger set of mercury
compounds was investigated. The molecules listed in Tables 3

and 4 were selected because they cover a wide range of values
of the contact density varying from the value in the neutral to
the doubly charged mercury atom (see Table 4).

Molecular geometries of HgF, HgF2, and HgF4 were taken
from ref 21. Geometries of the other molecules in Tables 3
and 4 were optimized using the NESC/MP2 method in
connection with the SARC basis set38 (augmented as descri-
bed in section 3) for Hg and the 6-31+G* basis set39 for all
other atoms.
Utilizing the geometries listed in Table 3, the effective

contact densities on mercury were calculated with a variety of
methods. For comparison, the ρ̅ were also calculated in
mercury atomic cations, Hg+ and Hg2+, which represent the
most commonly occurring oxidation states of mercury in its
compounds. The contact energy differences calculated with
respect to the neutral mercury atom, Δρ̅ = ρ̅Hg − ρ̅mol, are listed
in Table 4. The density differences account for a sufficiently
wide range of values varying from ca. 40 bohr−3 for Hg(CH3)2
to ca. 180 bohr−3 for HgCl4

2−.
From the calculated values of the density differences on the

cations Hg+ and Hg2+, one might expect that Δρ̅ values of Hg-
containing molecules cluster around these values for the
respective oxidation states of mercury. However, the molecular
Δρ̅ values are scattered across the whole range (e.g., Hg(II) in
Hg(CH3)2 and HgCl4

2−), thus revealing significant influence of
the chemical environment (ligands) on the contact density. For
the same type of ligands and oxidation state of mercury, there is
a strong dependence on the geometry of the coordination
sphere, e.g., in HgCl2 and HgCl4

2−. Thus, the contact density
and the isomer shift can be used as sensitive characteristics of
the local molecular structure of mercury compounds.
The results in Table 4 are presented in graphical form in

Figure 1 where the contact density differences Δρ̅ = ρ̅Hg − ρ̅mol
obtained using the NESC/SCF and the NESC/MP2 methods
are plotted against the NESC/CCSD contact density differ-
ences. As the CCSD method is the most accurate computa-
tional scheme employed in this work, one may anticipate that
(provided that all the other aspects of the molecular models
chosen are correctly set up) this method is capable of yielding
the contact density differences and the isomer shifts in good
agreement with the experimental results. Because measured
isomer shifts for Hg-containing molecules are relatively scarce,
see pp 373−376 of ref 4, use of the high-level theoretical results
as a reference provides a means to assess the performance of
other theoretical schemes.
It is obvious from the diagrams in Figure 1 that the NESC/

MP2 method performs reasonably in comparison with the
considerably more expensive NESC/CCSD approach. The
values of Pearson’s correlation coefficient r2 for the linear
regression analysis of the NESC/SCF and NESC/MP2 results
are 0.974 and 0.998, respectively. The NESC/MP2 contact
density differences line up closely along the ideal correlation
line (dashed line in Figure 1), whereas the NESC/SCF data
are more scattered. From the NESC/SCF diagram, a group of

Table 2. Comparison of the Effective Contact Densities ρ ̅ (bohr−3) on the Mercury Atom Obtained in This Work with the ρ(0)
Densities from Ref 21a

TZ QZ

this work ref 21 this work ref 21

Hg 2 104 242.499 2 363 827.39 2 104 242.948 2 363 929.12
HgF 95.957 114.54 95.946 114.48
HgF2 117.033 127.85 116.951 127.92
HgF4 92.393 98.09 92.347 98.09

aThe absolute contact density is given for the Hg atom whereas for molecules the contact density differences ρ̅Hg − ρ̅mol (ρ(0)Hg − ρ(0)mol from
ref 21) are listed.

Table 3. Molecular Geometries Used in This Work for
Mercury-Containing Molecules

molecule symmetry molecules geometric parameter reference

HgF C∞v rHg−F = 2.007 Å 21
HgF2 D∞h rHg−F = 1.914 Å 21
HgF4 D4h rHg−F = 1.885 Å 21
Hg(SH)4 C4h rHg−S = 2.3685 Å

rS−H = 1.3457 Å this worka

∠HgSH = 96.4°
Hg(SH)4

2− S4 rHg−S = 2.5401 Å
rS−H = 1.3463 Å this work
∠HgSH = 93.4°

HgCl2 D∞h rHg−Cl = 2.2364 Å this work
HgCl4

2− Td rHg−Cl = 2.5042 Å this work
Hg(CH3)2 D3d rHg−C = 2.0779 Å

rS−H = 1.0947 Å this work
∠HgCH = 110.4°

Hg(H2O)6
2+ S6 rHg−O = 2.3459 Å

rO−H = 0.9792 Å this work
∠HgOH = 128.7°

aThis work: Geometries optimized using the NESC/MP2 method
with the SARC basis set for mercury and 6-31+G* for all other atoms.
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molecules containing Hg(II), HgCl2 (8), HgF2 (4), Hg(SH)4
2−

(7), and HgCl4
2− (9), can be identified (the points slightly

above the ideal correlation line) which show a good correlation
with the NESC/CCSD results. However, the contact density
differences for other compounds (and other oxidation states of
Hg) follow a different trend. This implies that when
parametrizing the isomer shift using eq 1 in connection with
the SCF contact densities, one may need to introduce different
calibration constants α for different oxidation states of mercury.
A similar situation is often observed when parametrizing the
isomer shift on 57Fe against the contact densities from density
functional calculations.16,42 Using the contact densities from
correlated methods is however free of such a deficiency, and
a single calibration constant can be obtained for a specific
element.14,17,19

In practical calculations of large molecular models, the MP2
method can be recommended as a cost-efficient alternative to
the high-level CCSD method. This conclusion is in contrast to
a conjecture made by Knecht et al.21 who found that, for a
limited subset of molecules in Table 4 (HgF, HgF2, and HgF4),
MP2 did not yield a good correlation with the CCSD data.
Using an extended set of molecules (as in the present work),
which cover a broad range of contact density variations, helps
to perform a more balanced assessment of the accuracy of
various computational schemes.

5. CONCLUSIONS

In this work, the fully analytic linear response formalism of the
effective contact density, eq 7, is developed in the context of the
exact two-component relativistic method, the normalized
elimination of the small component.22 The formalism
developed can be applied in connection with high-level wave
function ab initio methods as well as with methods of density
functional theory. The linear response formalism employs the
one-electron approximation for the inclusion of relativistic
effects,22,34 which considerably facilitates its implementation in
the existing nonrelativistic quantum chemistry codes.
The linear response formalism is tested in the calculation of

the effective contact densities ρ̅ in a series of mercury
compounds. The selected molecules represent a broad range
of values for the contact density, which enables one to make an
unbiased judgment on the performance of the various quantum
chemical computational approaches. With use of the SCF,
MP2, and CCSD methods in connection with the NESC
approach, it is found that (i) electron correlation plays a
substantial role for the correct assessment of the changes in the
contact density in dependence of the electronic environment of
the Hg atom as reflected by Δρ̅, (ii) the NESC/MP2 method is
capable of providing Δρ̅ values in good agreement with the
NESC/CCSD method, and (iii) the contact density differences
on the Hg atom are sensitive to the local chemical environment

Table 4. Effective Contact Densities (bohr−3) on the Mercury Atom Calculated with the Use of SARC Basis Seta

entryb NESC/SCF NESC/MP2 NESC/CCSD

Hg 2 104 944.971 2 105 047.821 2 105 035.382
1 Hg+ 112.876 127.943 121.136
2 Hg2+ 278.394 305.695 293.217
3 HgF 98.086 81.294 76.872
4 HgF2 121.352 108.368 104.387
5 HgF4 96.586 109.453 96.264
6 Hg(SH)4 88.214 84.369 81.143
7 Hg(SH)4

2− 161.635 146.332 144.369
8 HgCl2 108.118 94.572 91.592
9 HgCl4

2− 190.637 180.683 174.841
10 Hg(CH3)2 49.001 43.610 42.184
11 Hg(H2O)6

2+ 240.820 245.550 237.066
aThe absolute contact density is given for the mercury atom, whereas contact density differences ρ̅Hg − ρ̅mol are listed for molecules.

bEntry numbers
help to identify data points in Figure 1.

Figure 1. Contact density differences Δρ̅ = ρ̅Hg − ρ̅mol (e bohr
−3) calculated for mercury compounds in Table 4 using the NESC/SCF (left panel)

and the NESC/MP2 (right panel) methods versus Δρ̅ calculated using the NESC/CCSD method. See Table 4 for entry numbers.
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and to the oxidation state of Hg. The latter finding suggests
that Mössbauer spectroscopy can be successfully used to
characterize mercury in its molecular environment and to
obtain valuable information on the electronic structure of
Hg-containing molecules. We hope that this may encourage a
wider use of Mössbauer spectroscopy in experimental investiga-
tion of mercury compounds.
The NESC analytic derivatives formalism, outlined in sec-

tion 2, can be easily adapted to obtain other linear response
properties of molecules. Substituting the appropriate molecular
integral derivatives in eqs 28−30 and 44, the electric field
gradient and the magnetic hyperfine structure constants can be
easily calculated. Work is in progress for implementing the
calculation of these parameters, which should ultimately lead to
a possibility of complete and accurate theoretical character-
ization of the Mössbauer spectra of compounds of all the
elements across the periodic table.
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