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ABSTRACT: Based on the normalized elimination of the small component relativistic
formalism, a new approach to the calculation of hyperfine structure parameters of paramagnetic
molecules is developed and implemented. The new method is tested in the calculation of the
isotropic hyperfine structure constant for a series of open-shell molecules containing mercury.
The results of calculations carried out in connection with ab initio methods of increasing
complexity demonstrate the high accuracy of the formalism developed. In view of its
computational simplicity, the new approach provides the basis for an efficient and accurate calculation of the HFS parameters of
large molecules.

1. INTRODUCTION
The hyperfine structure (HFS) of the electron paramagnetic
resonance (EPR) spectrum provides valuable information on
the electronic structure and molecular geometry of para-
magnetic species.1,2 The HFS of paramagnetic resonance
spectra arises from the interaction between the magnetic
moment of (the) unpaired electron(s) and the magnetic
moment of magnetic nuclei. Commonly, the HFS tensor is split
into an isotropic (Fermi-contact) part and an anisotropic (spin-
dipolar) part, whereby the latter averages to zero as a result of
molecular tumbling in the gas or liquid phase. Although the
theory underlying hyperfine structure is well understood,1−3

the practical calculation of the HFS parameters proves to be a
challenging task.3,4 The isotropic HFS constant is typically
associated with the electron spin-density in the vicinity of the
magnetic nucleus, an accurate description of which often
requires the use of high-level ab initio methods.5−7

Apart from the necessity of accurately describing electron
correlation, relativity has also to be taken into account when
calculating the HFS parameters, especially in the case of
molecules containing heavy elements.3,8−12 Due to the
computational complexity of high-level relativistic ab initio
methods,13 density functional theory methods are most often
used in connection with the relativistic treatment of HFS
constants.8,10−12 Previously, two of us have developed, with the
help of the infinite-order regular approximation,14,15 a
relativistically corrected ab initio approach for the calculation
of HFS constants.9 In the current work, a new formalism based
on the use of the exact two-component relativistic theory, the
normalized elimination of the small component (NESC)
method,16 will be presented. The new approach utilizes the
recently developed methodology for obtaining NESC analytic
derivatives,17,18 which makes it possible to efficiently calculate
HFS constants using high-level ab initio computational
schemes. In section 2, the theory of the NESC method and
its analytic derivatives will be briefly outlined and applied to the

calculation of the HFS constants. The new formalism for the
determination of HFS constants will be applied to a series of
open-shell molecules containing mercury and the results of
these calculations will be described in section 4 where the high
accuracy of the new approach will be demonstrated.

2. THEORY
When using the NESC method,16 one solves the following
eigenvalue equation,

ε̃ = ̃+ +
+LA SA (1)

which yields the positive-energy (electronic) solutions of the
Dirac equation.19 The positive-energy eigenvectors A+ are
normalized according to A+

†S ̃A+ = I on the metric S̃ given by eq
2,

̃ = + †
mc

S S U TU
1

2 2 (2)

which corresponds to the exact normalization of the large
component of the relativistic 4-component wave function.
In the NESC method, the decoupling between the electronic

and the positronic solutions of the Dirac equation is achieved
by the elimination of the small-component of the electronic
four-component wave function16 using the operator U, which
connects the large A+ and the pseudolarge B+ components of
the modified Dirac wave function via B+ = UA+.

16 The operator
U can be obtained, in matrix form, simultaneously with the
NESC Hamiltonian L̃ by iteratively solving the following
system of equations.16,20−23

= ̃ ̃ −− −U T SS L V( )1 1
(3)

Received: February 7, 2012
Revised: March 16, 2012
Published: March 16, 2012

Article

pubs.acs.org/JPCA

© 2012 American Chemical Society 3481 dx.doi.org/10.1021/jp301224u | J. Phys. Chem. A 2012, 116, 3481−3486

pubs.acs.org/JPCA


̃ = + − − +† †L TU U T U T W U V( ) (4)

Alternatively, a one-step approach based on the modified Dirac
equation16 (5) can be utilized for obtaining U and L̃.
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In the one-step approach, proposed for the first time by Dyall16

and used later by Ilias ̌ et al.24 and Zou et al.23 in practical
implementations of the NESC method, the elimination of the
small component operator U is obtained as in eq 6,

= = ̃+ +
†

+ +
† −

+ +
†U B A A A B A S( ) 1

(6)

where S̃−1 = A+A+
† is used. In eqs 5 and 6, A− and B− are the

large and the pseudolarge components of the negative-energy
(positronic) states with the eigenenergies ε− whereas matrices
A+, B+, and ε+ belong to the positive-energy (electronic)
states.16

In eqs 1−5, S and V are the usual matrices of the overlap and
potential energy operators in the basis of the atomic orbitals
χμ(r). Matrices T and W are associated with the kinetic energy
operator ((σ̂·π)2/2m) and the operator (1/4m2c2)(σ ̂·π)V(r)·
(σ ̂·π),16 in which the external magnetic field B(r) = ∇ × A(r)
caused by the vector-potential A(r) couples to the electron
linear momentum p = −i∇ via eq 7.

π = +p A r( ) (7)

In the equations given above, c is the velocity of light (c =
137.035999070(98) au)25 and σ̂ is the vector of the Pauli
matrices, σ ̂ = (σ̂x, σ̂y, σ̂z).

26

Using the one-electron (1e) approximation of Dyall,16,27 the
NESC Hamiltonian obtained in the potential field of bare
nuclei is employed to obtain the energy of an open-shell many-
electron system according to eq 8

∑ ∑= + −
σ

σ

σ σ

σ σσ σσ

′

′ ′E P H P J Ktr
1
2

tr ( )1e
, (8)

for the case of the Hartree−Fock method. In eq 8, σ labels the
spin state of electron, α or β, Jσσ′ and Kσσ′ are the matrices of
the Coulomb and exchange operators, Pσ is the density matrix
for the spin manifold σ defined as Pσ = Cσnσ(Cσ)†, where Cσ

collects the eigenvectors of the respective Fock operator, nσ is
the diagonal matrix of the orbital occupation numbers, and H1e
is a renormalized NESC one-electron Hamiltonian as given by
eq 9,

= ̃†H G LG1e (9)

with G being the renormalization matrix according to eq 10.28

= ̃− −G S S S S S( )1/2 1/2 1 1/2 1/2 1/2
(10)

The one-electron relativistic Hamiltonian of eq 9 can also be
used in connection with the Kohn−Sham energy functional or
in the context of post-SCF and multireference correlated ab
initio methods. In the following, we will refer to the SCF
formalism for simplicity.

Generally, the first derivative of the energy (8) with respect
to an external perturbation λ is given by eq 1117
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(11)

where Ωσ = Cσnσεσ(Cσ)† is the energy-weighted density matrix
and the prime at (∂′/∂λ) implies that the two-electron integrals
rather than the density matrix need to be differentiated.
Provided that the two-electron integrals and the overlap matrix
are independent of the perturbation, derivative eq 11 is entirely
defined by its first term,
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where new matrices P̃σ = GPσG† and Dσ = L̃GPσ are used and
the summation with respect to the spin index σ is implied. The
formalism for obtaining derivatives in eq 13 has been developed
in our previous works17,18 and, for brevity, only the final
formulas will be presented in the following.
The derivative in eq 13 is given by
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where the matrices Dq
σ and Dqz

σ (q = 0, 1, 2, 3) originate from
the derivative of the renormalization matrix G and are given by
eqs 18−22,

= −

+ −

σ σ σ

σ σ

† † −

− † †
D D G G D S

S G D D G

(( ) ( ) )

( )

0
1/2

1/2 (18)

= +σ σ σ† − −D S D S S D S( )1
1/2 1/2 1/2 1/2

(19)

= ̃ + ̃σ σ σ− −D D S S S S DZ Z2 1
1/2 1 1 1/2

1 (20)

= ̃ ̃σ σ− −D S S D S SZ3
1 1/2

1
1/2 1

(21)

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp301224u | J. Phys. Chem. A 2012, 116, 3481−34863482



∑ ∑= +σ σ † † −C C C C m mD D( ) ( ) ( )qZ ij
r s

q rs
k l

ik kr sl lj k l
, ,

1/2 1/2 1

(22)

Matrices C and m represent the eigenvectors and the
eigenvalues of the matrices S (q = 0, 2) and S1/2S̃−1S1/2 (q =
1) (see ref 17 for detail).
The matrices P0x

σ with x = V, W, T, S originate from
differentiation of the U operator with respect to λ and are given
by eqs 23−26,

∑
ε ε

=
′

−
σ
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σ

+ − + −
M
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which are derived from the first-order response of the modified
Dirac equation (5) with respect to λ (see ref 18 for detail).
Note that, as was first analyzed by Dyall,16 the first-order
response of the modified Dirac wave function is described
entirely in terms of mixing between the electronic and
positronic solutions of eq 5.
In eqs 23−26, matrix σM′ is defined by eq 27,

′ = ̃ −σ σ
+
†

− −M A SP B UA( )ji 0 (27)

where P0
σ takes the form of eq 28.

= ̃ − − −σ σ σ† †
mc

P P T U T W D U T[ ( )]
1

2
0 2 3

(28)

The equations given above can be used for calculating the
analytic gradient of the NESC energy for geometry
optimization or for obtaining various molecular properties
from the first-order response formalism. Because the final
expressions for the NESC energy derivative are given in terms
of traces of matrix products, the application of this formalism in
practical calculations requires only a fraction of the time needed
for a single SCF iteration and computing times scale with the
third power of the number N of basis functions used, i.e., N3.
HFS of paramagnetic resonance spectra originates from the

interaction of the electron spin (and/or orbital angular
momentum of the electron) with the nonuniform magnetic
field B(r) resulting from the magnetic nucleus. In non-
degenerate ground states of molecules, the orbital angular
momentum is quenched and the vector-potential, which
couples to the electron spin via the kinetic energy operator

and the operator W (for definitions, see the text before eq 7), is
given by eq 29,

μ
=

× −

| − |c
A r

r R
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1 ( )K K

K
2 3

(29)

where μK is the magnetic moment of the nucleus K at position
RK. Provided that the wave function satisfies the Hellmann−
Feynman theorem, the hyperfine tensor AK is given by the
derivative of the total energy with respect to the nuclear
magnetic moment μK and can be computed using eqs 14−17.
When the kinetic energy operator ((σ·(p + AK(r)))

2/2m) is
differentiated with respect to μK, the usual Fermi-contact
operator (30) and the spin-dipole operator (31) are obtained,
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where α is a Cartesian component (x, y, or z) of a vector. The
derivative of the W matrix with respect to the nuclear magnetic
moment was derived in refs 29 and 9. There it was shown that
the Fermi-contact part of the derivative can be calculated as in
eq 32,

μ
∂
∂

= +
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α α
− −W
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3
4
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1
,

FC
,

FC 1

(32)

with HK,α
FC being the matrix of the operator (30). Finally, in the

context of the spin-unrestricted formalism, the isotropic HFS
constant can be computed according to eq 33.
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The constants ge, gK, μB, and μK are the electron and nuclear g-
factors as well as the Bohr and nuclear magnetons, respectively.
The quantity ⟨Sz⟩ is the expectation value of the z-component
of the electron spin, P̃T

σ and P̃W
σ are the matrices in parentheses

in eqs 14 and 15, respectively, and the matrices P̃T
s and P̃W

s are
obtained by substituting the spin-density matrix Ps = Pα − Pβ in
the respective expressions. Note that, when using the post-SCF
correlated methods, the relaxed density matrices should be used
in connection with eqs 14, 15, and 33.

3. DETAILS OF THE HFS CALCULATIONS
The formalism described in section 2 was implemented in the
COLOGNE2011 suite of programs30 and applied in the
calculation of isotropic hyperfine structure constants for a series
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of mercury compounds. The calculations were carried out at
the NESC/SCF, NESC/MP2, NESC/CCSD, and NESC/
QCISD levels of theory. The finite nucleus model with the rms
nuclear charge radii taken from the compilation by Visscher and
Dyall31 is used throughout this work. Open-shell species are
treated within the spin-unrestricted formalism and the spin−
orbit (SO) interaction is neglected in the calculations.
According to Alekseyev et al.,32 the SO plays only a minor
role for the ground state of HgH and Hg+. Because the lowest
excitation energy in other mercury compounds, considered in
this work, remains sufficiently large, on the order of ca. 30 000
cm−1 or more, and the molecules have a nondegenerate ground
state, it is unlikely that the SO makes a substantial contribution
to the ground state energy and density.
The molecular geometries of HgH, HgF, HgCN, HgCH3,

HgCH2CH3, and HgAg were optimized using the NESC
analytic derivatives formalism17 in connection with the NESC/
MP2 method. During the NESC/MP2 geometry optimization,
the 4f-, 5s-, 5p-, 5d-, and 6s-electrons of mercury and the
valence electrons of all other elements were correlated. The
SARC basis set33 was used for mercury, the 6-311+G(2df,p)
basis set34 for the first-row atoms, and the TZVpp basis set of
Ahlrichs and May35 for silver. When the HFS constants were
calculated, the SARC basis set was modified as follows: the two
most tight primitive functions from the first s-type basis
function were uncontracted and the basis set was augmented by
two tight s-type primitive functions obtained in a geometric
progression. This modification leads to a sufficient stability of
the calculated HFS constants AHg

iso with regard to further basis
set extension. For comparison, calculations at the SCF and
MP2 level were also carried out for some molecules using the
fully uncontracted triple-ζ basis set of Dyall36 on mercury
(augmented by two tight s-type and one p-type primitive
functions18) combined with the uncontracted aug-cc-pVTZ
basis set of Dunning.37 All electrons were correlated during the
calculation of the HFS constants using NESC/MP2, NESC/
CCSD, and NESC/QCISD.

4. RESULTS AND DISCUSSION
The mercury compounds selected for this study have an open
electronic shell with a single unpaired electron in a
predominantly σ-type molecular orbital. Because the mercury
atom, in its ground state, has a doubly occupied 6s orbital,
formation of the chemical bond in these compounds is possible
due to a partial ionization of mercury by the ligand atom or
group. Depending on the electronic structure and electro-
negativity of the ligand, the open-shell orbital varies from
covalent to strongly ionic,38 thus providing a challenging set of
molecules, which can be used for benchmarking. The NESC/
MP2 optimized molecular geometries of the compounds
employed in this study are collected in Table 1, where the
available experimental data are also reported. Although the
optimized Hg−X bond lengths slightly (ca. 0.01 Å) deviate
from the experimental data, we employed only the optimized
molecular geometries in the HFS calculations to eliminate
geometry effects in the benchmark set of molecules.
The correctness of the implementation of the formalism

developed in section 2 was tested by the NESC/SCF
calculations reported in Table 2. The nonrelativistic data in
the fourth column of Table 2 were obtained by setting the
velocity of light to a very large value (108 au). The AHg

iso values
(in MHz) obtained in this way coincide to the fourth decimal
digit with the values calculated using the traditional non-

relativistic formalism, within which the HFS constant is
calculated as the expectation value of the FC operator (30).
As seen from Table 2, relativity has an enormous effect on

the AHg
iso constants. It is therefore worth investigating whether

coupling between the electronic and positronic states, as
manifested in the terms originating from differentiation of the
operator U with respect to external perturbation, eq 23−26,
makes a sizable contribution to the calculated HFS constants.
Inspection of columns 2 and 3 of Table 2 reveals that this
contribution is surprisingly small, ca. 1.9%. This finding is
consistent with the results of our previous work on the NESC
calculation of the contact densities18 and with the theoretical
analysis of Dyall.16 According to Dyall, the negative-energy
states make a contribution of the order O(c−3) to the first-order
NESC wave function. Such a contribution is sufficiently small
and can be neglected in the situations where the calculation of
the negative-energy eigenstates of the modified Dirac equation
(5) may become tedious as in the case of large molecules.
The relativistic AHg

iso value for Hg+ reported in the first
column of Table 2 is in a good agreement with the value 42366
MHz obtained by the four-component multiconfigurational
Dirac−Fock calculation of Brage et al.42 Note, however, that
the SARC basis set was contracted using a Douglas−Kroll

Table 1. Molecular Geometries (in Å and deg) of Hg-
Containing Molecules Optimized Using the NESC/MP2
Method (Details of Basis Sets in Section 3)

molecule symmetry geometric calc parameters exp

HgH C∞v rHg−H = 1.722 1.735;a 1.741b

HgF C∞v rHg−F = 2.017 2.007c

HgCN C∞v rHg−C = 2.069
rC−N = 1.146

HgCH3 C3v rHg−C = 2.208
rC−H = 1.087
αHgCH = 106.1

HgCH2CH3 Cs rHg−C1 = 2.272
rC1−C2 = 1.509
rH1−C1 = 1.089
rH2−C2 = 1.092
rH3−C2 = 1.096
αHgC1C2 = 109.1

HgAg C∞v rHg−Ag = 2.672
aTaken from ref 39. bTaken from ref 40. cTaken from ref 41.

Table 2. Isotropic Hyperfine Structure Constants AHg
iso

(MHz) for the Mercury Atom Obtained in This Work Using
the NESC/SCF Method with the Exact Treatment or the
Neglect of the (∂U/∂λ) Term and the Nonrelativistic
(nonrel) Formalisma

molecule exact (∂U/∂λ) no (∂U/∂λ) nonrel

HgH 8238 8396 4226
HgF 23188 23634 8286
HgCN 17341 17675 6420
HgCH3 4060 4138 2989
HgCH2CH3 1357 1383 1902
HgAg 2713 2765 1658
Hg+ 43400 44236 13734
Hg+ b 38312 38318 12505

aThe augmented SARC basis set is used for mercury, TZVpp for silver,
and the 6-311+G(2df,p) basis set for all other atoms (see section 3 for
more details). bUncontracted SARC basis set is used on mercury atom.
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quasirelativistic Hamiltonian in connection with a point-like
nucleus model.33 As the comparison with AHg

iso obtained using a
fully uncontracted SARC basis set (the last row of Table 2)
reveals, the contraction of the SARC basis set leads to an
increase of the magnitude of the HFS constant and therefore
we recommend the recontraction of the SARC basis using the
NESC method. This, however, exceeds the scope of the present
investigation, and in the following, the standard SARC basis set
will be augmented by two tight s-type primitive functions as
described in section 3. Noteworthy is that adding more tight
functions leads to only an insignificant variation of the
calculated HFS constants (on the order of 1.7% when four
tight s-functions are added).
The results of the correlation corrected AHg

iso calculations are
presented in Table 3 where they are compared with the
available experimental data. For the purpose of testing the effect
of the basis set on the calculated HFS constants, calculations at
the NESC/SCF and NESC/MP2 level for HgH, HgF, HgCN,
and HgCH3 are also carried out using a large uncontracted basis
set as described in section 3. The latter values deviate on the
average by ca. 7% from the ones obtained using the SARC basis
set, which is comparable with the uncertainty in the
experimental values. Although not being specifically designed
for the calculation of hyperfine parameters, the SARC basis set
yields a reasonable description of this property and, as this basis
set is sufficiently compact, it can be used for calculations of
large molecules.
Generally, the NESC/QCISD and the NESC/CCSD

methods in connection with SARC basis set yield AHg
iso in very

good agreement with experiment. With the exception of HgH
and HgF molecules, the deviation of the calculated constants
from the experimental data lies within a few percent. Inclusion
of the electron correlation leads to a contraction of the atomic
inner shell electrons toward the nucleus, thus increasing the
HFS constant value.9 This increase is counterbalanced by the
increasing bond ionicity, which depletes the unpaired electron
density from the 6s orbital of Hg, thus reducing the HFS
constant value. A delicate balance between these effects can
only be achieved with the use of highly correlated methods and
may require to go beyond the CCSD or QCISD level of
calculation for obtaining very accurate theoretical HFS
constants.
Note that the experimental data reported in Table 3 are

obtained from measurement on molecules embedded in inert
gas matrices. As has been previously pointed out in ref 9, the
effect of the inert gas matrix on the experimentally measured

HFS constants may reach to as much as 6−10%. To the best of
our knowledge, a systematic study of this effect has not been
carried out yet. With the development of an exact yet practically
feasible relativistic approach, such as the NESC derivative
method presented in this work, this effect can be studied in
finer detail, which should strengthen the predictive power of
the theoretical calculation of HFS constants of heavy elements.

5. CONCLUSIONS

Based on the analytic derivative formalism of the NESC
method, a new approach to the calculation of relativistically
corrected hyperfine structure constants has been developed and
implemented. The new approach can be used in the context of
wave function ab initio theory, both at the correlated and
uncorrelated level, as well as in the context of density functional
theory. In the present work, the new method for the calculation
of HFS constants was tested in ab initio calculations of the
isotropic HFS constant AHg

iso for a series of mercury compounds.
The results of benchmark calculations show high reliability of
the approach developed, which is capable of yielding AHg

iso values
within a few percent of measured HFS constants.
In the NESC analytic derivatives formalism, the final

formulas for the HFS constants are formulated in terms of
traces of products of matrices, thus leading to computational
costs that scale with the cubic power of the number of basis
functions. This is the why computational requirements are
modest compared to those of a single SCF iteration and the
formalism developed can be easily applied to study HFS
constants for very large molecules. In view of the fact that the
formalism presented in this work provides an essentially exact
account of relativistic effects on the theoretical HFS constants,
it represents a promising tool for testing the performance of
various density functional methods. Work on this topic is
underway and will be published elsewhere.
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