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1. INTRODUCTION

A chemical reaction proceeding along a reaction path can be
described in its very first stage via a molecular vibration or a
combination of molecular vibrations.1�3 Amolecular vibration in
turn can be formulated in such a way that it is driven by a leading
parameter (an internal coordinate, a symmetry coordinate, a
puckering coordinate, etc.).4�6 Hence, by studying themolecular
vibrations of a molecule it is possible to define a reaction
coordinate for any change of a molecule or reaction complex.
This should provide a possibility of identifying and investigating
molecular changes, especially rearrangements, that previously
were not known or not well understood.

In this work, we investigate the in-plane vibrations of a planar
ring7,8 because they initiate in-plane deformations or rearrange-
ments of the ring molecule that conserve planarity and lead to
new ring forms or ring-opening and acyclic forms. Such processes
can be Jahn�Teller distortions,8,9 bond pseudorotation,9,10 or
the closely related bond shifting in annulenes.11�16 Bond pseudo-
rotation has been observed in the case of charged small ring
molecules whereas bond shifting is typical of larger annulenes.
In both cases, experimental and theoretical descriptions
have focused on stationary points of the associated potential
energy surfaces (PES) rather than exploring the PES along a
deformation or rearrangement path. The basic difficulty of
describing such a path stems from the definition of generally
applicable reaction coordinates. In this work, we will introduce a
new concept for describing intrinsic deformations as well as

rearrangements of planar rings. In deriving this concept, we will
be guided by the previous work on pseudorotation of puckered
rings and the description of this process with the help of ring
puckering coordinates.17�22

The new concept is based on a partitioning of the (3N � 6)-
dimensional configuration space of an N-membered ring mole-
cule (“N-ring”) into subspaces in which specific ring puckering or
ring deformation processes can take place. In view of the fact that
ring-puckering can be described in an (N � 3)-dimensional
subspace,17,21,22 deformations of a planar N-ring should take
place in a (2N � 3)-dimensional subspace spanned for example
by N bond lengths and N � 3 bond angles. Because there are
N bond angles in the planar N-ring, the choice of N � 3 bond
angles cannot be unique and therefore it is desirable to specify
a special set of (2N � 3) deformation coordinates that
complements in the case of a nonplanar N-ring the (N � 3)
puckering coordinates and helps to describe in-plane defor-
mations of theN-ring in a unique way. These ring deformation
coordinates (RDCs) can be obtained by analyzing the in-plane
vibrational modes and their symmetries for a suitable N-
membered reference ring, then utilizing the symmetry infor-
mation to define RDCs applicable to any N-ring, and finally
associating the electronic structure changes of a ring with
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specific ring deformations or dynamic deformation processes
such as bond pseudorotation or bond shifting. In this work, it
will be shown that RDCs are useful tools for (i) analyzing the
geometry of planar ring molecules, (ii) describing static and
dynamic ring distortions caused, for example, by a Jahn�Teller
effect, and (iii) calculating deformation surfaces for bond pseu-
dorotation, ring inversion, or bond stretch isomerization.

Results of this work are presented in the following sequence.
In section 2, we will define the N-membered reference ring, its
configurational space, its molecular vibrations, and its symmetry.
Utilizing this analysis, we will derive in section 3 RDCs and
present their mathematical foundation. In section 4, ring defor-
mations will be characterized with the help of the RDCs and the
concept of bond pseudorotation in Jahn�Teller systems will be

discussed. Application of the RDCs will be presented in the
following section 5.

2. SYMMETRY ANALYSIS OF RING VIBRATIONS

Conformational and deformational changes of an N-ring
molecule are described by utilizing, as a suitable reference, the
N-membered regular polygon (“N-gon”) of DNh symmetry,
which we locate in a reference plane called the mean plane
(following the nomenclature used for the derivation of ring
puckering coordinates17,21,22). The normal of the mean plane is
chosen to be the z-axis and the mean plane to be identical with
the x,y-plane. Furthermore, the geometrical center of the N-gon
is used as the origin of the coordinate system. Atom 1 (vertex 1)
of the polygon is located at the 9 o’clock position, which gives the
direction of the x-axis and the atoms of the polygon are
sequentially numbered clockwise around the ring (see the
example of a 5-gon in Figure 1).

In general, an N-gon undergoes 3N motions, which can be
classified with the help of the DNh character tables for N being
even or odd (Tables 1 and 2).23,24 Because of the positioning of
theN-gon in the mean plane and the fixing of the positions of the
origin and atom 1, translations and rotations described by the
irreducible representations Γ(translation) = A2u + E1u and
Γ(rotation) = A2g + E1g for N being even and Γ(translation) =
A2

00 + E10 and Γ(rotation) = A2
0 + E100 for N being odd,

respectively, are frozen (Table 1 and Table 2). There remain
3N � 6 vibrational motions for the N-gon that split into N � 3
(out-of-plane) puckering motions and 2N � 3 (in-plane)
deformationmotions. The puckering vibrations are characterized
by the irreducible representations Γ(N,even) = ∑m=2

N/2�1Em(u,g) +
B2(u,g) (for Em(u,g) m even, u; m odd, g; for B2(u,g) N/2 even, u;
N/2 odd, g) and Γ(N,odd) = ∑m=2

(N�1)/2Em00 (see also Table A1,
Supporting Information). The B2(u,g) representation produces
the out-of-plane displacementes leading to crown conformations
(puckered 4-ring with u inversion symmetry, chair of 6-ring with
g inversion symmetry, crown forms of 8-, 10-ring, etc.). All other
vibrational modes occur in pairs of E-symmetry. It has been
shown17,21,22 that the N � 3 out-of plane vibrations with

Figure 1. Definition of ring deformation vectors dk (included as arrows
in the small 5-gons centered at the vertices) for a 5-gon. Symbols used in
the text are indicated.

Table 1. Identification of Ring Motions Using the Character Table for the DNh Point Group for N Being Evena

DNh

(N even) E 2(CN)
n C2 N/2C2

0 N/2C2
00 0 2(SN)

n σh (N/2)σd,v (N/2)σv,d ring motion

A1g +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 breathing

A2g +1 +1 +1 �1 �1 +1 +1 +1 �1 �1 Rz
B1g +1 (�1)n (�1)(N/2) +1 �1 +1 (�1)(N/2)�n (�1)(N/2) +1 �1 deformation

B2g +1 (�1)n (�1)(N/2) �1 +1 +1 (�1)(N/2)�n (�1)(N/2) �1 +1 crown puckering

Emg +2 2 cos(2mnπ/N) 2(�1)m 0 0 +2 2 cos[(2m(N/2 � n)π)/N] 2(�1)m 0 0 m = 1: Rx, Ry
m = 2, ..., (N/2) � 1:

deformation; puckering

A1u +1 +1 +1 +1 +1 �1 �1 �1 �1 �1

A2u +1 +1 +1 � 1 �1 �1 �1 �1 +1 +1 Tz

B1u +1 (1)n (�1)(N/2) +1 �1 �1 �(�1)(N/2)�n (�1)(N/2)+1 �1 +1 deformation

B2u +1 (�1)n (�1)(N/2) �1 +1 �1 �(�1)(N/2)�n (�1)(N/2)+1 +1 �1 deformation; crown puckering

Emu +2 2 cos(2mnπ/N) 2(�1)m 0 0 �2 �2 cos[(2m

(N/2 � n)π)/N]

2(�1)m+1 0 0 m = 1: Tx, Ty; deformation

m = 2, ..., (N/2) � 1:

deformation; puckering
a n = 1, ..., (N/2) � 1; σd,v/σv,d is σd/σv for N/2 being odd and σv/σd for N/2 being even.



8733 dx.doi.org/10.1021/jp2041907 |J. Phys. Chem. A 2011, 115, 8731–8742

The Journal of Physical Chemistry A ARTICLE

symmetries of the DNh point group, if frozen at finite vibrational
displacements, define N � 3 basis conformations specified by
N � 3 puckering parameters, which split up in puckering
amplitudes qn and pseudorotation phase angles ϕn with n =
m = 2, ..., (N� 1)/2 forN being odd and n =m = 2, ..., (N� 2)/2
and a single amplitude qN/2 for N being even (see Supporting
Information, Table A1). In the case of puckering, n = 0 and n = 1
refer to overall movements of the ring such as translation along
the z-axis (n = 0) or rotation at axes perpendicular to the z-axis.21

There are 2N � 3 in-plane vibrations, of which the ring
breathing mode leads to a symmetry-conserving deformation of
the polygon (Γ(N,even) = A1g; Γ(N,odd) = A1

0, Tables 1 and 2)
and the remaining 2N � 4 vibrational modes invoke symmetry-
changing deformations of the N-gon. All deformation vibrations
have to be invariant under the σh-symmetry operation of theDNh

group. For N being odd, these are the vibrations with Em0
symmetry and for N being even, vibrations with B1g, B2g (both
forN/2 even), B1u, B2u (both forN/2 odd), Emg form being even,
and Emu for m being odd. Deformation vibrations frozen at finite
displacements in line with E-symmetry define ring deformation
pairs, which can be described by n pairs of suitable RDCs with
n = 1, ..., (N � 2). Each ring deformation pair is connected by a
dynamic ring deformation process that corresponds to in-plane
pseudorotation (see section 4).

In the case ofN being odd, there are (N� 1)/2 Em0-symmetrical
deformation pairs (m = n = 1, ..., (N � 1)/2) leaving (N � 3)/2
deformation pairs withm > (N� 1)/2, which also have to be of E0-
symmetry. Because there are no Em0 irreducible representation with
m > (N � 1)/2 in the DNh group, we define m0 = N � m for m >
(N� 1)/2 and specify themissing deformation vibrations to beEm00-
symmetrical. This implies that (N � 3)/2 ring deformation vibra-
tions (and the corresponding ring deformation processes) can mix
because they possess the same symmetry Em0 = Em00 (see section 4).

In the case of N being even, there are N/2 � 1 Em(u,g)-
symmetrical (u for m odd, g for m even) deformation modes.
One additional deformation mode can be formed after recognizing
that B1g- and B2g-symmetrical vibrations (N/2 even) both lead to a
lowering from DNh- to DN/2h-symmetry and accordingly form a
deformation pair for m = n = N/2 as do the B1u and B2u-
symmetrical vibrations for N/2 being odd. This leaves (N � 4)/
2 deformation pairs unspecified, which we determine, in a way
similar to that in the case of the odd-membered rings, by defining
m0 =N�m form = n >N/2, i.e.,m = n =N/2 + 1, ...,N� 2. Again,
this leads in (N � 4)/2 cases to the possibility of a mixing of
deformation vibrations with the same symmetry. In the following,

we will specify the deformation displacements of the vibrational
deformation modes by a suitable set of RDCs reflecting the
symmetries of the DNh group.

3. DERIVATIONOFRINGDEFORMATIONCOORDINATES

For the purpose of deriving a set of suitable deformation
coordinates, the planar N-gon is used as a reference for the
correspondingN-ring and specified by a set of initial coordinates.
The standard orientation of the N-gon is obtained by choosing
the geometrical center of the ring as origin of the coordinate
system:

∑
j
Rð0Þ
j ¼ 0 ð1Þ

whereRj
(0) denotes the position vector of atom j in theN-gon and

j = 1, ..., N. The reference plane is spanned by vectors R0 and R00
defined in eqs 2 and 3:

R0 ¼ ∑
j
Rð0Þ
j sin θj ð2Þ

R00 ¼ ∑
j
Rð0Þ
j cos θj ð3Þ

where the angle θj used to rotate position vector R1
(0) into vector

Rj
(0) is given by

θj ¼ 2πðj� 1Þ
N

ð4Þ

The reference plane is taken to be the xy-plane in the coordinate
system of the ring, which means that the unit vector u defined via
the cross product between R0 and R00

u ¼ R0 � R00

jR0 � R00j ð5Þ

points into the direction of the +z-axis. When atom 1 is
positioned on the �x-axis, the coordinate system of the “ring
standard orientation” is defined and the positioning of theN-gon
in the xy-plane is fixed, thus eliminating any overall rotations and
translations (Figure 1).

In the following, it will be useful to set j� 1 = k and renumber all
position vectors according to k = 0, ..., N � 1. The in-plane defor-
mation of theN-gon at point k can be given by a deformation vector

dk ¼ dxkxk þ dykyk ð6Þ

Table 2. Identification of Ring Motions Using the Character Table for the DNh Point Group for N Being Odda

DNh (N odd) E 2(CN)
n NC2

0 σh 2(SN)
n Nσv ring motion

A1
0 +1 +1 +1 +1 +1 +1 breathing

A2
0 +1 +1 �1 +1 +1 �1 Rz

A1
00 +1 +1 +1 �1 �1 �1

A2
00 +1 +1 �1 �1 �1 +1 Tz

Em0 +2 2 cos(2mnπ/N) 0 +2 2 cos

(2mnπ/N)

0 m = 1: Tx, Ty; deformation

m = 2, ..., (N � 1)/2: deformation

Em00 +2 2 cos(2mnπ/N) 0 �2 �2 cos

(2mnπ/N)

0 m = 1: Rx, Ry

m = 2, ..., (N � 1)/2: puckering
a n = 1, ..., (N � 1) � 1; σd,v/σv,d is σd/σv for N/2 being odd and σv/σd for N/2 being even.
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where xk, yk are the local unit vectors at point k, and dk
x, dk

y are the
associated coordinates. VectorsRk =Rk

(0) + dk specify the positions of
the atomsof anN-gon after deformation (see as an example a 5-gon in
Figure 1). The linear space Lk at point k is spanned by vectors xk and
yk. The deformation of the N-gon is a vector d of the linear space L,
which is a direct sumof allLk according toL=xk=0

N�1Lk, thus implying
that d = xk=0

N�1dk.
The analysis of the deformations of theN-gon depends on the

choice of a specific basis in L. We define xk
(n) and yk

(n) to be the
vectors xk and yk rotated by the angle ωk

(n) = 2π(n + 1)k/N, i.e.

xðnÞk ¼ xk cos ω
ðnÞ
k � yk sin ωðnÞ

k
ð7aÞ

yðnÞk ¼ xk sin ωðnÞ
k þ yk cos ω

ðnÞ
k

ð7bÞ
A set of all vectors xk

(n) and yk
(n) with fixed index n can be regarded as

a vector of space L, i.e., x(n) = xkxk
(n) and y(n) = xkyk

(n) are the
elements of L. The set of all x(n) and y(n), n = 0, ..., N � 1, form a
basis in L. Therefore, an arbitrary planar deformation, d = xkdk, of
the N-gon can be written as a linear combination of x(n) and y(n),

d ¼ ∑
N � 1

n¼ 0
Anx

ðnÞ þ Bny
ðnÞ ð8Þ

An ¼ N�1 ∑
N � 1

k¼ 0
dxk cos ω

ðnÞ
k � dyk sin ωðnÞ

k ð9aÞ

Bn ¼ N�1 ∑
N � 1

k¼ 0
dxk sin ωðnÞ

k þ dyk cos ω
ðnÞ
k ð9bÞ

The coefficientsAn andBn are the Fourier transforms of coordinates
dk
x and dk

y. Accordingly, the deformation vector for atom k can be
written as

dk ¼ ∑
n
dðnÞk ¼ ∑

n
Anx

ðnÞ
k þ Bny

ðnÞ
k ð10Þ

We shall refer to dk
(n) as the nth deformation mode at atom k.

One of the advantages of utilizing vectors xk
(n) and yk

(n) as basis
vectors is that the coefficients An and Bn do not depend on the
atom index k, and therefore the deformation vectors of the nth
mode at each atom of the N-gon have the same norm and phase.
Figure 2a,b gives schematic representations of the deformation
modes of a 3-gon and a 6-gon.

For n = 0 in eq 10, the breathing mode and the in-plane
rotation mode of the N-gon are obtained. Similarly, the modes
with n = N � 1 are always translations in the x and y directions,
respectively. Hence, the RDCs introduced separate out rotations
and translations of the N-gon. The deformation vectors x(0), y(0)

and x(N/2), y(N/2) for even N transform according to 1-dimen-
sional representations A and B, respectively, whereas all other
pairs x(n), y(n)) transform according to 2-dimensional represen-
tations E (compare with Tables 1 and 2 or Figure 2a,b). The
symmetry group of the N-gon after having encountered the nth
mode is found as follows. The breathing, rotational, and transla-
tional modes leave the symmetry group unchanged. The defor-
mation modes of the N-gon reduce its symmetry from DNh to
either Clh or Dlh (C1h � Cs, D1h � C2v), where l is the greatest
common divisor of n andN. Examples of the symmetry classifica-
tion are given in Figure 2a,b.

For the purpose of comparing finite deformations in different
N-gons, it is convenient to represent the nth deformation mode
in the form

dðnÞ ¼ tn cos τn 3 x
ðnÞ þ tn sin τn 3 y

ðnÞ ð11Þ
where tn = (An

2 + Bn
2)1/2 is the deformation amplitude and

τn = arctan(Bn/An) is the phase angle of the nth deformation
process. This implies that each deformation vector dk

(n) has the
length tn and that ∑kdk

(n) = 0 for n = 1, ..., (N� 2) of any N-gon.
The parameter T determined by

T2 ¼ ∑
n
tn
2 ¼ ∑

n
An

2 þ Bn
2

¼ 1
N∑n

ðdxnÞ2 þ ðdynÞ2 ð12Þ

represents a total planar deformation amplitude (Tg 0). For the
case n = 0, we specify the radius R of the circumscribed circle of
the deformed N-gon via the relationship

R2 ¼ A0
2 þ B0

2 ð13Þ
It is useful to define a breathing deformation amplitude

t0 = R � R0, which compares the radii of the circumscribed
cycles of reference N-gon and deformed N-gon. In this way,
all 2N � 3 deformation parameters are specified and their
contribution to the actual form of the N-gon can be studied.
Computer programs have been written that (i) determine
from the Cartesian or internal coordinates of an N-membered
ring puckering and deformation coordinates and (ii) build
from an input in terms of puckering and deformation coordi-
nates the Cartesian or internal coordinates needed for a
quantum chemical calculation.25,26

Figure 2. (a) 6 basic in-plane motions of a 3-gon. (b) 12 basic in-plane
motions of a 6-gon.
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4. CHARACTERIZATION OF RING DEFORMATION
MODES LEADING TO BOND PSEUDOROTATION

One can calculate the Cartesian coordinates of a deformed
N-gon for which its RDCs are known via eqs 14 and 15:

xk ¼ � R cos ωk þ ∑
N � 2

n¼ 1
tn cos½τn �ωðnÞ

k � ð14Þ

yk ¼ R sin ωk þ ∑
N � 2

n¼ 1
tn sin½τn �ωðnÞ

k � ð15Þ

and all zk = 0. In the case of a puckered N-ring, the out-of-plane
deviations are given by eqs 16 and 1717,21,22

zk ¼
ffiffiffiffi
2
N

r
∑

ðN � 1Þ=2

n¼ 2
qn cos½ϕn þ ωðnÞ

k � ðN oddÞ ð16Þ

zk ¼
ffiffiffiffi
2
N

r
∑

N=2 � 1

n¼ 2
qn cosðϕn þ ωðnÞ

k Þ

þ
ffiffiffiffi
1
N

r
qN=2ð � 1Þk ðN evenÞ ð17Þ

where one has to consider that in the case of puckering n starts
with 2 and therefore ωk

(n) = 2πnk/N. The projection of the
puckered ring into themean plane is given by coordinates {xk, yk}
and the associated RDCs of eqs 14 and 15. For the deformed
polygons shown in Figures 3 and 4 (see Supporting Information,
Figures A1�A4) eqs 14 and 15 have been used directly.

Figures 3 and 4 show the N � 2 deformation cycles n of an
N-gon with N = 3 and 4 where tn values of 0.3 Å (R = 1 Å) and
specific τn values have been used. Changing the latter in small
steps of 15� between 0 and 360�, as done in the case of the 3-ring,
provides an impression of how the ring smoothly deforms along
the nth deformation process. In other cases, 2N specifically
deformed N-gons of the nth deformation process have been
selected from the infinite number of ring forms generated by

increasing τn from 0 to 360�. Each deformation process can be
characterized by two basis forms in a way that a linear combina-
tion of these basis forms generates any other planar ring form in
the {tn,τn}-subspace. For this purpose, the basis deformation
vectors xn,yn can be used, which, however, do not lead always to
ring forms that can be easily recognizd by the chemist (e.g.,N = 3,
y1 specifies a Cs-symmetrical form rather than one of the six, easy
recognizable C2v-symmetrical forms; see Figure 2a for n = 1).
Instead, we specify as basis forms the high-symmetry forms with
τn = 0 and τn = lπ/N, where l is the largest common divisor of N
and n as specified in section 2. Each of these basis forms appears
N/l times along the deformation cycle in steps of Δτn = 2lπ/N.
Including the referenceN-gon, there are 2N� 3 basis forms that
can be used to generate any deformed N-gon via a linear
combination of properly weighted basis forms.

Inspection of the deformed N-gons in Figures 3 and 4 as well
as those for the larger N values given in the Supporting
Information reveals that the nth deformation mode changes
bond lengths and bond angles of theN-gon in such a way that the
impression of an (N � n)-membered planar ring is provided. In
general, an N-gon will approach an (N � 1)-gon if one internal
angleAj of theN-gon approaches 180� or, alternatively, one bond
length r approaches 0. Hence, a systematic search for widening
angles Aj (yielding Aj

+) or decreasing bond lengths rj (rj
�) makes

it possible to classify a deformation as an N � 1, N � 2, etc.
deformation, i.e., a deformation that gives the impression of
reducing theN-gon to an (N� 1)-gon, a (N� 2)-gon, etc. In this
connection it has to be considered that (i) meaningful bond
angle/bond length changes have to be distinguished from
negligible changes (see Supporting Information) and (ii) Aj

+

and rj
� changes occurring at the same N-gon vertex or at

subsequent N-gon verteces have to be counted only once. In
this way, deformation regularities are revealed (see Supporting
Information) that specify the nth deformation of an N-gon as
effecting n local, disconnected sides of the N-gon and in this way
approximating an (N� n)-ring, i.e., in the case of N = 5, mode n
= 1 leads to the approximation of a 4-ring, mode 2 to a 3-ring, and
mode 3 to a 2-ring. Because a digon contrary to higher polygons
does not exist, the deformation leads actually to a stretched or
compressed N-gon so that, especially in the case of larger N, the
impression of a circle (“digon”) deformed (by stretching or
compression) to an ellipse results. The analysis of ring deforma-
tion is summarized in the Supporting Information.

When the ring deformation mode n for aN-gon changes from
τn = 0 to τn = 360�, the ring form changes in a way than can be
viewed in different ways as becomes obvious from inspection of
Figure 3: (i) one can follow one particular bond (identified by the
numbers of the ring atoms bonded) along a deformation cycle:
This bond carrys out a bond stretching vibration (long�short�
long). (ii) Alternatively one can follow a bond of about constant
length during ring pseudorotation. This bond (e.g., bond 2�3 in
the 3-ring given by the light circles) switches at 60, 180, and 300�
its position (Figure 3) so that after a full pseudorotation cycle it
has moved through the ring to wind up at the starting position.
Hence bond pseudorotation is caused by continuous deforma-
tion of the ring and bond switching in steps of lπ/N degrees. Of
course, the choice of the reference bond is arbitrary in this
connection: Bond 1�2 would have its “rest” positions at 60, 180,
and 300� whereas the bond switches would take place at 0, 120,
and 240� in the case of the 3-ring. Apart from this it becomes
obvious when viewing the deformation cycles of the Supporting
Information that for larger N focusing on a specific bond is

Figure 3. Bond pseudorotation cycle of a 3-gon. The deformed ring
forms are shown for a fixed value of t1 and pseudorotation phase angle τ1
increasing in steps of 15� from 0 to 360�. The position of atom 1 is
indicated by a black dot (clockwise numbering of ring atoms). The basis
forms are given by τ1 = 0� and 60�. They are formed every 120�.
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problematic as all bonds in the ring are shifted. In this situation
the following approach simplifies the analysis: Because the
deformations traveling through the ring are caused by vibrational
modes of specific symmetry (see Tables 1 and 2), it is easier to
focus on the high symmetry forms and determine the changes
associated with a symmetry element such as a C2 axis passing
through atom 1 for τn = 0. Such an analysis reveals that it is better
to speak of in-plane pseudorotation as the process where the
maximum in-plane deviation from the N-gon is cycling through
the ring without leading to any angular momentum. Never-
theless, we will use in this work the term “bond pseudorotations”
as it is commonly used in the literature.

If bond pseudorotation takes place in a 2-dimensional deforma-
tion subspace and the cause for the internal process is a Jahn�Teller
instability, we will speak of the associated PES as a Jahn�Teller
surface. In those cases where pseudorotational subspaces are
associated with degenerate vibrational modes of the same symmetry
it is unlikely that a ring deformation processes is limited to one
subspace. Mixing will take place so that a deformation path is
defined in a larger deformation space rather than a single subspace.
The contributions from the various deformation parameters can be
related to special electronic effects that help to understand structural
and energetic preferences.

Besides pseudorotation a deformed ring may cross directly the
center of the cycle where the DNh-symmetrical form is located.
Considering that in chemistry any intramolecular rearrangement
that leads from the original configuration to the corresponding
mirror image is called inversion (inversion of the cyclohexane chair,
ammonia inversion, inversion of the configuration at an asymme-
trical C atom, etc.), one is tempted to call this processes also an
inversion. However, closer inspection of the deformation cycles
reveals that the inversion processes proceed between equivalent
forms related by a switching of bonds (see, e.g., Figure 3). Therefore,
one should correctly describe deformation processes through the
DNh-symmetrical form as inversions accompanied by bond-switch-
ing or “bond-switching inversions”, which for reasons of simplicity
we will call in the following just “inversions.”

5. APPLICATION OF THE RING DEFORMATION
COORDINATES

For the purpose of demonstrating the usefulness of the RDCs
introduced in this work, we will discuss Jahn�Teller and other

deformations in 3- and 4-rings. Calculations were carried out
with the ab initio programpackagesCOLOGNE2010,25CFOUR,27

and MOLPRO.28 We used restricted and unrestricted coupled
cluster theory with all single (S) and double (D) excitations and a
perturbative treatment of tritple (T) excitations, i.e., CCSD(T) and
UHF-CCSD(T)29 where the latter acronym is used to prevent
confusion with unitary CC theory.30,31 Multireference problems
were treated by using MR-AQCC (multireference averaged quad-
ratic couple cluster)32 and EOMIP-CCSD (equation-of-motion
ionization potential coupled cluster theory in the single and double
excitations approximation).33�35 All calculations were carried out
with the cc-pVTZ basis set.36 Geometry optimizations and fre-
quency calculations were based on the use of RDCs.37

5.1. Cycpropane Radical Cation (1). Removal of an electron
from the degenerate HOMO of cyclopropane (symmetric and
antisymmetric Walsh MOs) leads to the Jahn�Teller unstable
electron configuration 2E0, which can be stabilized by a e0-
symmetrical distortion to the C2v-symmetrical states 2A1 and
2B2 in the course of a first-order Jahn�Teller effect where the
state symmetry results from the fact that either the a1-symme-
trical or the b2-symmetrical Walsh MO is singly occupied.9,10

Early work on the problem38�44 was summarized, with specific
consideration of bond pseudorotation, in the literature.10 More
recent work concerns the description of the ionization process,
the resulting PE spectrum, and the dynamics of the Jahn�Teller
distortion45 as well as the vibronic spectra and the nonradiative
decay dynamics of 1.46

The cyclopropane radical cation is a multireference system,
which can no longer be correctly described by single determi-
nant theory such as DFT, HF or MPn with small n. UHF-
CCSD(T) is included because infinite order excitation effects
some nondynamic electron correlation,47,48 and therefore it is
able to provide a reasonable description, which, however, has to
be verified by true multireference (MR) methods. We used
EOMIP-CCSD33�35 because configuration mixing in the radi-
cal cation is dominated by determinants that are related to the
closed shell configuration of cyclopropane by a removal of one
electron. In addition, we employedMR-AQCCwith a two-state
averaging based on a CASSCF reference function with a
5-electron, 6-orbital active space (MR-AQCC(5,6)) (Table 3).
At all levels of theory, the 2A1 state of 1 is found as the global

minimum of the Jahn�Teller PES. UHF-CCSD(T), MR-

Figure 4. Pseudorotation cycles of the 4-gon.
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AQCC(5,6), and EOMIP-CCSD place the 2B2 state of radical
cation 1 2.43, 2.39, and 2.10 kcal/mol, respectively, above the 2A1

state (Table 3) so that it is safe to say that the barrier for bond
pseudorotation is 2.4 kcal/mol or somewhat smaller. The
calculated UHF-CCSD(T) Jahn�Teller PES is shown in Fig-
ure 5. It has the 3-fold symmetry required by theD3h-symmetrical
parent form of 1. Bond pseudorotation follows the dotted path
withminima at τ = 0, 120, and 240� and transition states at τ = 60,
180, and 300�.
The calculated deformation energy surface V(t1,τ1) of the

cyclopropane radical cation is of the general form

VOðt1;τ1Þ ¼ V00 þ V20t1
2 þ V40t1

4 þ ðV23t1
2 þ V43t1

4Þ cos 3τ1
ð18Þ

The calculated coefficients Vnm are listed in Table 4. They are
valid in a region 0.07 < t1 < 0.2 Å. For smaller values of t1 (t1 <
0.07), the Jahn�Teller bond pseudorotation potential increases
steeply to a value close to 21 kcal/mol (Table 3), which is best

described using an exponential function in connection with a
switching function:

VIðt1;τ1Þ ¼ A þ B expfCt1 þ Dt1 cos 3τ1g ð19Þ
so that the total potential function results as

Vðt1;τ1Þ ¼ VIðt1;τ1Þ SIðt1Þ þ VOðt1;τ1Þ SOðt1Þ ð20Þ
SIðt1Þ ¼ 1 for t1 e 0:7

¼ 0 for t1 > 0:7

SOðt1Þ ¼ 1 for t1 > 0:7
¼ 0 for t1 e 0:7

In view of the high barrier for inversion through the 3-gon
form 1 (EOMIP-CCSD: 20.26; MR-AQCC(5,6): 21.44; UHF-
CCSD(T): 20.92 kcal/mol, Table 3) yielding either the 120�- or

Table 3. Calculated Ring Deformation Coordinates of 3- and 4-Membered Ringsa,b

C3H6
+• a sym state ΔE R t1 τ1 C1C2 C2C3 C3C1 C1H C2H HC1H HC2H

EOMIP- CCSD C2v
2A1 0.00 0.9140 0.1395 0 1.477 1.825 1.084 1.081 117.6 118.4

C2v
2B2 2.10 0.9104 0.0963 180 1.667 1.410 1.079 1.082 120.3 118.3

D3h
2E0 20.26 0.8984 0 1.556 1.556 1.082 1.082 120.6 120.6

MR- AQCC(5,6) C2v
2A1 0.00 0.9181 0.1486 0 1.478 1.848 1.083 1.081 117.0 118.5

C2v
2B2 2.39 0.9134 0.0996 180 1.675 1.410 1.079 1.082 120.8 118.2

D3h
2E0 21.44 0.9002 0 1.559 1.559 1.081 1.081 120.6 120.6

UHF- CCSD(T) C2v
2A1 0.00 0.9204 0.1491 0 1.482 1.852 1.086 1.083 117.4 118.6

Cs
2A0 0.35 0.9198 0.1412 10 1.448 1.835 1.527 1.086 1.084 117.7 118.0

Cs
2A0 1.04 0.9183 0.1262 20 1.430 1.798 1.567 1.085 1.084 118.2 117.9

Cs
2A0 1.67 0.9171 0.1138 30 1.421 1.762 1.601 1.085 1.084 118.5 117.9

Cs
2A0 2.10 0.9163 0.1055 40 1.417 1.731 1.629 1.085 1.084 118.6 118.1

Cs
2A0 2.35 0.9158 0.1008 50 1.415 1.704 1.654 1.085 1.084 118.6 118.3

C2v
2B2 2.43 0.9157 0.0992 180 1.679 1.414 1.081 1.084 120.8 118.4

D3h
2E0 20.92 0.9028 0 1.564 1.564 1.084 1.084 120.8 120.8

C4H4 sym state ΔE R t2 τ2 C1C2 C2C3 C1H C2H C1C2C3

MR- AQCC(4,4) D2h rhombic
1A1 17.48 1.0251 0.0698 0 1.453 1.082 1.071 82.2

C2h
1A0 5.65 1.0238 0.0698 45 1.380 1.519 1.081 1.072 84.5

D2h
1A1g 0 1.0278 0.0698 90 1.355 1.552 1.077 90

D4h square
1A1g 7.77 1.0231 0 1.447 1.076 90

N2S2 sym state ΔE R t2 τ2 S1N2 N2S3 SS NN SNS

MR- AQCC(4,4) D2h rhombic
1A1 0 1.1685 0.0069 0 1.653 2.323 2.351 89.3

C2h rectangular
1A1g 0.36 1.1756 0.0069 90 1.650 1.677 2.352 2.352 90

D2h square
1A1g 0.08 1.1680 0 1.672 2.351 90

CCSD(T) D2h rhombic
1A1 0 1.1765 0.0097 0 1.664 2.372 2.333 90.9

C2h
1A0 0.15 1.1765 0.0097 45 1.654 1.673 2.339 2.367 89.3

C2h rectangular
1A1g 0.43 1.1762 0.0097 90 1.650 1.677 2.352 90

D2h square
1A1g 0.17 1.1758 0 1.663 2.352 90

N2S2
2� sym state ΔE R t2 τ2 S1N2 N2S3 SS NN SNS

CCSD(T) D2h rhombic
1A1 0 1.2867 0.0214 0 1.820 2.616 2.531 91.9

C2h rectangular
1A1g 1.07 1.2877 0.0214 90 1.791 1.851 2.576 90

D2h square
1A1g 0.38 1.2856 0 1.818 2.571 90

aRelative energies in kcal/mol, breathing radius R, amplitudes tn, and bond lengths in Å, phase angle τn and bond angles in degree.
bThe irrep. is B1 if the

C3 frame is lying in the xz plane or B2 if the C3 frame is lying in the yz plane.



8738 dx.doi.org/10.1021/jp2041907 |J. Phys. Chem. A 2011, 115, 8731–8742

The Journal of Physical Chemistry A ARTICLE

240�-form (Figures 3 and 5), this process is slow at room
temperature and can be excluded at lower temperatures whereas
bond pseudorotation is rapid at room temperature. The e0-
symmetrical Jahn�Teller deformation leads to an increase of
“breathing” amplitude t0 = R� R0 from 0 to 0.0156, 0.0179, and
0.0176 Å for EOMIP-CCSD, MR-AQCC(5,6), and UHF-
CCSD(T) (Table 3), which reflects the fact that the CC bonds
become longer by the value of t0 on the average. At the same time
the deformation amplitude t1 increases from 0 to 0.14 and 0.15 Å
for the 2A1-forms, which indicates the deformation of the
cyclopropane framework to a biradicaloid state close to the
trimethylene biradical, which, contrary to the latter, possesses
still some stabilizing interactions between the separated C atoms.
In the literature, some experimental results were discussed in
favor of the generation of the trimethylene biradical;41 however,
this could not be confirmed by quantum chemical calculations
and it is more likely that 1(2A1) had been observed, which is
known to be the starting point for the formation of the propenyl
radical cation.42,43 The 2B2 transition state for bond pseudorota-
tion has been considered because of its similarity with a
methylene-ethene π-complex to be a starting point for the
dissociation into methylene and the ethene radical cation,43

which would imply two transition states in sequence.
We note that different electronic factors caused by substitu-

ents can stabilize either the minima or the transition states of
bond pseudorotation. π-Donor�σ-acceptor substituents at C2
and C3 will lower the barrier so that 1 approaches a free
pseudorotor whereas π-acceptor substituents at C1 lead to a
stabilization of the minima forms thus increasing the barrier.
In view of the rapid bond pseudorotation with a barrier of just

2.4 kcal/mol, all measured properties, e.g., hyperfine structure
constants, are time-averaged properties, whichmake it difficult to
draw any conclusion with regard to the electronic structure of 1.
This problem can be solved with the help of the calculated
Jahn�Teller surface shown in Figure 5. By calculating the
property in question as a function of the pseudorotation phase
angle τ1, then assuming a Boltzmann statistic, and utilizing the

calculated potential of the Jahn�Teller-PES, we can determine
time-averaged properties, which can be directly compared with
measured data. In this way, it is possible to analyze the corre-
sponding measured data. This is the basis of the DORCO
method, which one of us has successfully used to determine
from time-averaged NMR spin�spin coupling constants the
puckering of a pseudoroting ring.49 Also the investigation of
dynamic processes involving both ground and excited states of
145,46 will be simplified by taking advantage of calculated
Jahn�Teller surfaces for the different states.
5.2. Cyclobutadiene (2). The description of bond pseu-

dorotation in the cyclopropane radical cation can be general-
ized to any other planar ring. Most interesting in this
connection are planar monocyclic polyenes with a positive
charge and a degenerate Jahn�Teller unstable ground state.37

Another example is the D4h-symmetrical cyclobutadiene mo-
lecule 2a that becuase of a pseudo-Jahn�Teller effect under-
goes distortion to the rectangular form 2a.9 There are
numerous quantum chemical investigations that have deter-
mined the energy difference between 2a and 2b and calculated
their geometries and other properties.50�63 However, none of
these investigations has considered the deformation surface of
2 and the possibility that the 4-ring can also undergo bond
pseudorotation.
For the 4-ring, there exist two different deformation cycles

shown in Figure 4: the first one is the kite-isoceles trapezoid cycle
(n = 1) and the second one the rhombus-parallelogram-rectangle
cycle (n = 2). Hence, the deformation surface is 5-dimensional
(2 pseudorotational subspaces and the 1-dimensional breathing
subspace with n = 0). Because of the high symmetry of 2,
deformations preferentially take place in parts of the subspaces
with n = 0 and n = 2. The observed bond shifting process of 2b
proceeds in the form of an inversion via the square form 2a
(Figure 4, n = 2). According to the MR-AQCC(4,4)/cc-pVTZ
calculations carried out in this work, the barrier for this process is
7.8 kcal/mol, in good agreement with recent calculations.50�55

Breathing (t0 expansion by 0.005 Å) and deformation for a fixed
τ2 = 90 or 270� and t2 = 0.070 Å take place at the same timewhere
the former process contributes just 7% to the total deformation.
Imposing the same t2-deformation on the cyclobutadiene rhom-
bus leads to a 0.003 Å contraction of the ring and an increase in
energy by 17.5 kcal/mol relative to 2b. This reflects the fact that a

Figure 5. Bond pseudorotation (Jahn�Teller) PES of the cyclpropy
radical cation spanned by RDCs {t1, τ1} (the deformation amplitude t1 is
0 at the center, which defines the position of the D3h-symmetrical form
1a; it increases radially as indicated on the left for the 90��270�
direction). An energy scale is given on the right. All calculations at the
UHF-CCSD(T)/cc-pVTZ level of theory.

Table 4. Calculatd Ring Deformation Surfacesa

C3H5
+•, 1 C4H4, 2 N2S2, 3 N2S2

2�, 4

V00 4.352 V00 7.497 V00 0.169 V00 0.377

V20 �392.494 V20 �450.877 V20 1789.550 V20 816.272

V40 14404.531 V40 137658.306 V40 �11495.326 V40 �14373.243

V23 0.721 V22 3134.050 V11 �34.884 V11 �35.258

V43 �5593.033 V42 �365686.575 V22 1027.009 V22 711.196

V62 18533094.659 V31 443.555 V31 644.052

A �0.863

B 21.794

C �0.158

D �22.138
aCoefficients Vnm in (kcal/mol) Å�n; A and B in kcal/mol; C and D in
(kcal/mol) Å�n. For 1, the potential is given in eqs 18 and 19. For all
other compounds, the first subscript of V indicates the power of the
deformation amplitude t and the second the prefactor m of the
deformation phase angle in cos mτ.
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b1g-symmetrical deformation changes the nonbonded rather
than the bonded distances in cyclobutadiene, which does not
lead to an effective separation of pseudodegenerate states 1B1g

and 1B2g and subsequent stabilization. The potential function
increases for increasing t2 in the 0�-to-180� direction of τ2
where this increase is quadratic, reaching a value of 21 kcal/
mol at t2 = 0.08 Å. This is in line with the fact that the square
form 2a is a first-order transition state for the bond shift
reaction. The t2-deformation of 2b applied for τ2 = 45�
(parallelogram, Figure 4) leads to an increase in energy of
just 5.6 kcal/mol, thus revealing that the parallelogram form is
stabilized relative to 2a. This reflects the fact that b1g- and b2g-
symmetrical deformations are equally mixed for τ2 = 45� and
that b2g-symmetrical deformation increases the energy differ-
ence between the pseudodegenerate states.
The calculated Jahn�Teller surface of 2 is shown in Figure 6,

and the corresponding potential, in Table 4. The MR-AQQCC-
(4,4) calculations reveal that at normal temperatures larger parts
of the Jahn�Teller surface are energetically accessible and that
bond shifting can also involve some bond pseudorotation at
slightly higher energies than that of 2a. Push�pull substituents
can change the surface and make rhombic forms accessible. In
recent work, Eckert-Maksic and co-workers51 have documented
the lowering of the barrier for inversion via 2a in the case of
cyano-substituted 2 and McMahon and co-workers50 have
shown that 1- and 1,3-cycano-substitution leads to the rhombic
forms of 2.
5.3. Disulfur Dinitride and Its Dianion (3 and 4). A priori

one should not expect disulfur dinitride 3 to adopt a square
form because S and N prefer different bond orbital arrange-
ments. However, X-ray studies have described the geometry of
N2S2 as being close to that of a square (NS bond lengths of
1.651 and 1.657 Å; NSN and SNS angles of 90.4 and 89.6�,
respectively64�66). This seems to be in line with the assump-
tion that 3 represents a H€uckel-aromatic 6π-electron
system.67 Calculations based on spin-coupled valence-bond
theory and the CISD methods,68,69 however, suggest biradical
character for 3 with a weak singlet-coupling across the 4-ring

between the S atoms in line with early suggestions based on
more qualitative considerations.70 This description has been
challenged by Schleyer and co-workers, who have pointed out
that a direct confirmation of biradical character in terms of
natural orbital occupation numbers has never been given.71

These authors find on the basis of the valence space optimized
doubles method that 3 is a 2π-aromatic molecule with a low
aromatic stabilization energy of just 6.5 kcal/mol, NS bond
orders of 1.25, and some weak biradical character of just
12%.71 Two of the six π-electrons are in the bonding MO
whereas the remaining π-electrons occupy nonbonding MOs
(see Figure 8).
The CCSD(T) equilibrium geometry of 3 calculated in this

work confirms a D2h-symmetrical rhombic form (τ2 = 0�) close
to the experimental geometry and the ideal square form 3a. The
small deviation from 3a is reflected by the calculated deformation
parameters t0 = 0.0007 and t2 = 0.0097 Å. By imposing an
incomplete bond pseudorotation to the rectangular form at
frozen t2, we obtain only a small increase in energy of 0.43
kcal/mol. The calculated pseudorotation surface shown in
Figure 7 is very flat. At room temperature, a heat content of
0.6 kcal/mol will make large parts of the deformation surface
accessible for 3, which can carry out ring inversions, bond
pseudorotation, librations, and other movements. Our calcula-
tions show, however, that these movements will not lead to a
major change in the electronic structure of 3, for example by
substantially increasing its biradical character.
If two electrons are added, thus leading to the disulfur dinitride

dianion 4, an 8π-electron system is obtained that might be
considered as being antiaromatic. However, antiaromaticity is
invoked by partial occupancy of a set of degenerate π-MOs,
which is not the case for 4 (Figure 8). Instead, anNS-antibonding
2b1u-symmetrical π-MO is doubly occupied (see Figure 8), thus
leading to a weakening of the NS bonds that lengthen from 1.664
Å in 3 to 1.820 Å in 4 (Table 3). Apart from this bond weakening,
4 has deformation properties similar to those of the neutral
molecule 3, as is reflected by the calculated deformation para-
meters and the deformation surface (Tables 3 and 4) that hardly
differs from that of 3 (Figure 7). The energy differences between

Figure 6. Bond pseudorotation (Jahn�Teller) PES of cyclobutadiene
calculated at the MR-AQCC(4,4)/cc-pVTZ level of theory. Minima are
located at τ2 = 90 and 270�. See Figure 2 for further explanations.
Compare also with Figure 1, n = 2.

Figure 7. Bond pseudorotation PES of N2S2 calculated at the CCSD-
(T)/cc-pVTZ level of theory. The minimum is located at τ2 = 0�,
t1 = 0.0097 Å of a flat surface. See Figure 2 for further explanations.
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the deformation forms listed in Table 3 differ by a factor of 2,
which still makes dianion 4 a floppy molecule with large
deformation motions.
5.4. Normal Coordinates and Deformation Coordinates.

Because the RDCs are derived from the normal vibrational
modes of a planar ring, the question may arise whether the use
of normal rather than deformation coordinates could lead to a
similar description of deformed rings. Indeed, such an approach
was performed by Liehr8,72 and is also described by Bersuker.9

There are a number of reasons why RDCs are superior to normal
coordinates when deformed ring molecules are described. Nor-
mal coordinates depend on the number N of ring atoms,
symmetry, atomic masses, interactions between ring and sub-
stituent atoms, and the deviation of the ring molecule from
planarity. There is no simple way of deriving normal coordinates
for C1-symmetrical ring systems with varying N so that they can
easily be used to carry out energy, geometry, or vibrational
frequency calculations for a given deformation. The RDCs
developed do not suffer from these problems: (i) They are
defined for any ring irrespective of its size by two simple
formulas. Each RDC has a clear mathematical and geometrical
meaning. (ii) They do not depend on symmetry, mass, or the
interactions of ring atoms and substituent atoms. (iii) Analytical
first and second energy derivatives in terms of RDCs are easily
determined and have already been used in the geometry optimi-
zations and vibrational frequency calculations presented in this
work. (iv) If a given deformation of the ring has to be investi-
gated, this can be easily specified utilizing the RDCs; all remain-
ing independent coordinates are then optimized. Any number of
energy points needed for determining the energy dependence of
bond pseudorotation or other deformation processes can be
specified for a ring molecule (irrespective of N, symmetry,
substituents, etc.). (v) Deformations of different rings become
comparable via their RDCs, which in turn can be associated with
electronic effects. (vi) RDCs quantify the electronic effects of
substituents on a ring molecule and facilitate the electronic
analysis of deformed rings.

The RDC complement the ring puckering coordinates of
Cremer and Pople,17 which have been extensively used in the
literature as they are superior to normal coordinates when the
pucker of a ring molecule is described. Any ring molecule can be
exclusively described by puckering and deformation coordinates,
which is always then of advantage when a conformational process
of a ring molecule or a ring form of specified pucker and
deformation has to be described.

6. CONCLUSIONS

In this work, we have developed a new way of describing in-
plane deformations of planar rings with a set of ring deformation
coordinates (RDC):
(1) The RDCs are directly derived from the in-plane normal

vibrationalmodes of the ring. For anN-ring, there are 2N� 3
RDCs that are sufficient to describe the geometry of a
planar ring without using bond lengths or bond angles. By
using the RDCs rather than bond lengths and bond
angles, we solve the redundancy problem of ring mol-
ecules with N bond lengths and N internal ring angles.

(2) The RDCs are defined with regard to the N-gon of unit
length as reference ring in a way similar to that of the
planar ring itself is the reference for the puckered ring.
The (2N� 3) RDCs partition the deformation space of
a ring molecule into a 1-dimensional “ring-breathing”
subspace, spanned by the breathing parameter R, and
(N � 2) 2-dimensional pseudorotational subspaces,
each spanned by a deformation amplitude t and a phase
angle τ.

(3) The pseudorotational subspaces n = 1, ..., (N� 2) define,
irrespective of N, ring deformations that are found to
change systematically with n: They deform the N-ring so
that the impression of anM =N� n ring is given. For the
largest value of n = (N� 2), the deformation withM = 2
is obtained, resembling an elliptically deformed circle
(2-gon). We note that the deformation vectors and the
corresponding RDCs are directly derived from the in-
plane vibrational modes, which lead to the same pattern.

(4) The two RDCs that span a 2-dimensional deformation
space can also be used to define, for each n, two basis
forms with high symmetry. All other deformed rings in the
2-dimensional subspace can be viewed as linear combina-
tions of the basis forms.

(5) Utilizing the RDCs and the pseudorotational subspaces
they span, dynamic deformation processes can be de-
scribed in a unique way. The investigation of 3- and
4-rings reveals that the double bond shift in rectangular
cyclobutadiene corresponds to a ring inversion of the
planar ring involving the square form whereas this process
in an odd-membered ring is better described as bond-
stretch isomerization via a DNh-symmetrical form, which
can involve more than one bond. Bond pseudorotation
turns out to be a constrained bond-stretching followed by
a bond-switching for high-symmetry forms.

(6) Any complete set of internal or Cartesian coordinates of a
planarN-ring can be transformed into (2N� 3) RDCs. In
turn, RDCs can be used to derive the internal or Cartesian
coordinates of the ring. Programs that carry out the
transformation are provided as free software.26

(7) The RDCs can be utilized to determine Jahn�Teller
surfaces or deformation surfaces in analytical form. This is

Figure 8. π-Molecular orbitals occupied by 6 electrons in N2S2 (black
arrows) and its dianion. The additional two electrons in the dianion are
given in blue.
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possible because any given deformation coordinate can be
frozen and the remaining deformation coordinates opti-
mized. In a separate work, we will present the analytical
energy gradient and Hessian expressed in deformation
coordinates.37

(8) Application of the RDCs made it possible to calculate the
Jahn�Teller or deformation surfaces for the cyclopropyl
radical cation, cyclobutadiene, disulfur dinitride, and
dianion of the latter thus gaining the following insights:
(a) Bond pseudorotation in a 3-ring is best viewed as a
combination of bond stretching and bond switching of
equally stretched bonds at the transition states of the
rearrangement. Bond pseudorotation is only hindered by
a barrier of 2 kcal/mol in the cyclopropyl radical cation. It
leads to a rearrangement of the ring from biradicaloid
minima with some trimethylene character to methylene�
ethene cation π-complexes as was already observed by
other authors.10 Appropriate substitution will lead to free
bond pseudorotation. (b) Cyclobutadiene can undergo
besides the well-known bond stretch isomerization via the
square form (inversion-process) also bond pseudorota-
tion involving rhombic forms. These rearrangements
require in the parent compound some additional energy
(slightly above the isomerization barrier of 7.8 kcal/mol)
but should become the preferred process in substituted
cyclobutadienes of lower than D2h-symmetry. (c) The
calculated deformation surfaces of disulfur dinitride and
its dianion reveal large deformational flexibility typical of
floppy molecules. This, however, does not lead to a
specific change of their electronic character: The mol-
ecules retain their 2π-aromatic nature without a signifi-
cant contribution of biradical character.

In conclusion, we see a broad application spectrum of the
RDCs developed in this work: (a) For the first time dynamic
Jahn�Teller processes can be described on the basis of calculat-
ing the corresponding PES. The same set of coordinates can also
be used to describe Jahn�Teller deformations in planar acyclic
molecules of the type AXn. (b) The RDCs provide also suitable
descriptors for opening/closure reactions of planar rings. (c) As
previously shown in the case of the puckering coordinates,21 the
deformation amplitudes can be used to express the degree of
deformation in percent and then to compare deformations in
ring systems of different structure and different size. Processes
leading to a crossing from one deformation subspace to another
can be described by introducing hyperspherical angles as done in
the case of puckering processes.21 (d) Ring substituents lead to a
deformation of the ring structure due to the electronic effects
they exert on the ring atoms. These deformations can be analyzed
in terms of RDCs, then associated with specific deformation
modes, and finally used to provide a detailed description of
electronic effects induced by the substituents. (e) The concept of
the RDCs can be extended to a description of processes such as
Berry pseudorotation73 or deformations in fullerenes caused by
ionization, electron attachment, or substitution.

Finally it should be noted that any puckered ring molecules
can be completely described by a set of N � 3 puckering
coordinates and 2N � 3 deformation coordinates without using
a single bond length, bond angle, or dihedral angle. In this way,
ring forms of exactly specified pucker and deformation can be
investigated. In work under progress, we will demonstrate the
advantages of such an approach.
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