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Møller–Plesset perturbation
theory: from small molecule
methods to methods for thousands
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The development of Møller–Plesset perturbation theory (MPPT) has seen four dif-
ferent periods in almost 80 years. In the first 40 years (period 1), MPPT was largely
ignored because the focus of quantum chemists was on variational methods. Af-
ter the development of many-body perturbation theory by theoretical physicists
in the 1950s and 1960s, a second 20-year long period started, during which MPn
methods up to order n = 6 were developed and computer-programed. In the late
1980s and in the 1990s (period 3), shortcomings of MPPT became obvious, espe-
cially the sometimes erratic or even divergent behavior of the MPn series. The
physical usefulness of MPPT was questioned and it was suggested to abandon
the theory. Since the 1990s (period 4), the focus of method development work
has been almost exclusively on MP2. A wealth of techniques and approaches has
been put forward to convert MP2 from a O(M5) computational problem into a low-
order or linear-scaling task that can handle molecules with thousands of atoms. In
addition, the accuracy of MP2 has been systematically improved by introducing
spin scaling, dispersion corrections, orbital optimization, or explicit correlation.
The coming years will see a continuously strong development in MPPT that will
have an essential impact on other quantum chemical methods. C© 2011 John Wiley &
Sons, Ltd. WIREs Comput Mol Sci 2011 1 509–530 DOI: 10.1002/wcms.58

INTRODUCTION

P erturbation theory has been used since the early
days of quantum chemistry to obtain electron

correlation-corrected descriptions of the electronic
structure of atoms and molecules. In 1934, Møller
and Plesset1 described in a short note of just five pages
how the Hartree–Fock (HF) method can be corrected
for electron pair correlation by using second-order
perturbation theory. This approach is known today
as Møller–Plesset perturbation theory, abbreviated as
MPPT or just MP in the literature. MPPT, although in
the beginning largely ignored, had a strong impact on
the development of quantum chemical ab initio meth-
ods in the past 40 years. Another publication from
the early days of quantum chemistry turned out to
be very relevant for MPPT: this is the 1930 paper of
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Hylleraas2 on the description of two-electron prob-
lems with the help of perturbation theory. Second-
order and third-order corrections to the energy can be
determined by minimizing the Hylleraas functionals
presented in this paper. This is more expensive than
the one-step procedure Møller and Plesset suggested,
but has the advantage of a free choice of the orbitals
(e.g., localized rather than canonical HF orbitals) to
be used in the MP calculation.

Since 1934, MPPT has seen different stages of
appreciation, development, and application. For al-
most 40 years, quantum chemists largely ignored
MPPT because the major focus in the early days of
quantum chemistry was on variational theories with
upper bound property such as HF or configuration
interaction (CI). MPPT does not provide an upper
bound for the ground state energy of the Schrödinger
equation and therefore was considered as not reli-
able. Also, the early attempts of Hylleraas2 to de-
termine the energy of He and two-electron ions was
not considered successful, which also gave a negative
impression on the performance of perturbation
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theory. Quantum chemistry rediscovered perturba-
tion theory in the 1960s, thanks to the work done by
Brueckner, Goldstone, and other physicists on many-
body perturbation theory (MBPT) to describe the in-
teractions between nuclear particles (for a description
of these developments, see review articles by Cremer3

and Kuzelnigg,4 or text books on MBPT5, 6). This
work revealed that Rayleigh–Schrödinger perturba-
tion theory (RSPT) and by this also MPPT (the latter
is a special case of RSPT) is easier to carry out than its
rival Brillouin–Wigner perturbation theory (BWPT)
(BWPT requires knowledge of the exact energy and
therefore its energy corrections can only be iteratively
determined). In addition, RSPT as well as MPBT are
size extensive, i.e., the energy correction calculated at
a given perturbation order n all scale with the num-
ber (N) of electrons of an electronic system, whereas
BWPT contains nonphysicalNp terms (p > 1) as a
consequence of the iterative procedure of calculating
perturbation energies.3–6

From the mid-1970s on, MPn theories were
rapidly developed and programed for computer in-
vestigations of atoms and molecules.7–20 This devel-
opment strongly benefited from the competition of
the Bartlett group in Florida and the Pople group
in Pittsburgh in their development of MPn methods.
The first approached MPPT from MBPT using di-
agrams and the linked cluster theorem,3–6 whereas
the latter favored a somewhat easier to understand
algebraic approach, which became popular among
chemists, thanks to the rapid distribution of newly
developed MPn methods in form of Pople’s computer
programs. In this way, MP2,7, 8 MP3,9, 10 MP4,10–13

and MP514–16 could be used by quantum chemists
shortly after they had been worked out. The last de-
velopment of an MPn method exclusively based on
perturbation theory took place in the mid 1990s.
The Cremer group worked out all 36 terms of MP6
and programed a generally applicable method.17–20

At that time it was stated20 that MP7 or MP8 with
141 and 583 unique terms, respectively, were outside
the reach of normal development procedures, which
is still valid.

Since the early 1990s, there were frequent re-
ports on the oscillatory behavior of MPn energies and
other properties. With the help of full CI (FCI) calcu-
lations, one could show that even in the case of closed
shell systems, the MPn series sometimes exhibit er-
ratic behavior or does not converge at all, which led
to questions as to the physical relevance of MPn cor-
relation energies. In the direct comparison of MPPT
with coupled cluster theory (CC) on one side and den-
sity functional theory (DFT) on the other side, MPn
proved to be inaccurate (compared with CC) and ex-

pensive (compared with DFT). There were voices that
suggested to abandon MPPT altogether with the ex-
ception of MP2, which could be used for quick esti-
mates of electron correlation effects.

The past 20 years have seen a development that
indeed focused primarily on MP2, where two major
goals were pursued: (1) to accomplish linear or at
least low-order scaling for MP2, which in its conven-
tional form scales as O(M5) (M: number of basis func-
tions); (2) to increase the reliability of MP2 results.
These developments have been extremely successful
and, contrary to all prophecies of doom from the
1990s, MPPT has to considered, by the year 2010,
as a method that can handle large molecules with
thousands of atoms, has become rather accurate due
to various improvements, and is an important tool for
multiconfigurational, relativistic, DFT hybrid, quan-
tum mechanics/molecular mechanics (QM/MM), and
model chemistry methods.

THE BASIS OF MØLLER–PLESSET
PERTURBATION THEORY

In perturbation theory, one transforms the
Schrödinger equation defined for the exact Hamilto-
nian Ĥ into an eigenvalue equation for an effective
Hamiltonian Ĥeff. For this purpose, the Hilbert space
associated with Ĥ is split into a model space P
spanned by one (or more) reference function(s) (e.g.,
the HF wavefunction) and an orthogonal space Q
(Figure 1). The corresponding projection operators
P̂ and Q̂ project out of the exact wavefunction �,
model function �(0) and correlation function χ .
Furthermore, operators P̂ and Q̂ are used to derive
the effective Hamiltonian in form of the Feshbach–
Löwdin Hamiltonian.3, 6 Applying the latter to the
model function, one obtains the exact energy of the
Schrödinger equation, i.e., despite the fact that one
works only in model space and, accordingly, has to
solve a much simpler problem, perturbation theory
promises an exact energy. However, the difficulties
are in the details: the Feshbach–Löwdin Hamiltonian
contains an inverse of the form (E − Q̂ĤQ̂)−1, which
has to be expanded in a suitable form to calculate the
exact correlation energy stepwise, i.e., order by order
hoping that the perturbation series converges rapidly.
In BWPT, this is done by keeping the exact energy E
in the inverse, where of course E is not known, thus
requiring an iterative solution. BWPT is exact for a
two-electron problem, but it has, however, beside
the computational burden, the problem of not being
size-extensive.3, 4, 6

RSPT reformulates the inverse in such a way
that the (known) zeroth-order energy E(0) replaces
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FIGURE 1 | Schematic representation of model space P and orthogonal space Q, projection operators P̂ and Q̂, and the relationship between
exact wavefunction � (equal to the perturbed wavefunction), unperturbed wavefunction � (0), and correlation function χ . The consequences of
intermediate normalization are indicated.

the exact energy E.3, 6 The orders of RSPT energy
can be written with the help of a suitable operator
resolvent in a compact form containing a principal
term and an increasing number of so-called renor-
malization terms. The latter cancel with physically
not meaningful parts of the principal term so that
all nth-order energy corrections of the perturbation
series become size-extensive. Utilizing MBPT and the
linked cluster theorem,3–6 an even more compact form
results that contains only one term that is limited to
linked diagrams, i.e., the interaction diagrams from
quantum field theory, which identify the physically
meaningful terms.3, 4, 6

The Møller–Plesset Perturbation Operator
MPPT differs from other RSPT approaches (e.g., the
Epstein–Nesbet one3–6) by the choice of the pertur-
bation operator V̂.1 Møller and Plesset suggested to
use an HF calculation as the starting point of the per-
turbation expansion and accordingly they defined the
zeroth-order problem as

Ĥ(0)�
(0)
0 = E(0)

0 �
(0)
0 (1)

(the subscript of E and � refers to the ground state
and will be dropped in the following; (n) gives the
order of MPPT) where the zeroth-order Hamiltonian
Ĥ(0) is expressed by the sum of Fock operators:

Ĥ(0) =
∑

p

F̂ (p) =
∑

p

ĥ(p)

+
∑
p,i

[ Ĵi (p) − K̂i (p)] (2)

with ĥ(p) being the one-electron operator associated
with the kinetic and nucleus–electron attraction part

of electron p, Ĵi (p) and K̂i (p) being the Coulomb and
exchange operator that form the HF potential and are
expressed in terms of spin orbitals ψi :

Ĵi (1)ψ j (1) =
[∫

dr2ψ
�
i (2)

1
r12

ψi (2)
]

ψ j (1) (2a)

K̂i (1)ψ j (1) =
[∫

dr2ψ
�
i (2)

1
r12

ψ j (2)
]

ψi (1) (2b)

(1 and 2 denote positions r1 and r2 of electrons 1 and
2). As zeroth-order wavefunction, the HF wavefunc-
tion is taken: �(0) = �HF. The corresponding eigen-
value is given by the sum of orbital energies:

E(0) = Eorb =
occ∑
i

εi (3)

[occ, number of occupied orbitals; vir, number of vir-
tual (unoccupied) orbitals]. Hence, the HF wavefunc-
tion spans the model space P. The Q-space is spanned
by the substitution functions �s , which are generated
by single (S), double (D), triple (T), etc. excitations
of electrons from occupied spin orbitals ψi , ψ j , · · · to
virtual orbitals ψa, ψb, · · · (ψp, ψq, · · · denote general
spin orbitals). Functions �s = �a

i ,�
ab
i j ,�abc

i jk , · · · are
orthogonal to �HF , which simplifies the calculation
of different energy corrections. The MP perturbation
operator is given by

V̂ = Ĥ − Ĥ(0) =
∑
p≥q

1
rpq

−
∑
p,i

[ Ĵi (p) − K̂i (p)] (4)

Applying the perturbation operator, the first-order
correction energy for E(0) results as

E(1)
MP = 〈�(0)|V̂|�(0)〉 = V00 = −1

2

∑
i j

〈i j ||i j〉 (5)
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where the double bar integral is an antisymmetrized
two-electron integral of the general type (given in
Dirac notation):

〈pq||rs〉 =
∫ ∫

ψ∗
p(1)ψ∗

q (2)
1

r12
[ψr (1)ψs(2)

−ψs(1)ψr (2)]dτ1dτ2 (6)

where τ denotes integration over space and spin co-
ordinates of the spin orbitals ψ .

Equation (5) reveals that the HF energy is iden-
tical to the MP1 energy:

E(HF) = E(MP1) =
occ∑
i

εi − 1
2

occ∑
i j

〈i j ||i j〉, (7)

i.e., HF is correct up to first-order MPPT, which was
first observed by Møller and Plesset.1 This holds also
for dipole moment, electron density, and other one-
electron properties1 and is known as MP theorem.

Second-order Møller–Plesset (MP2)
Perturbation Theory
The MP2 correlation energy correction is given by Eq.
(8)1, 7, 8:

E(2)
MP =

∑
s>0

V0s Vs0

E0 − Es
(8)

where S substitutions (�s = �a
i ) do not contribute

because < �(0)|V̂|�a
i >= 0 as a consequence of the

Brillouin theorem. Finite matrix elementsV0s are only
obtained for D excitations (�s = �ab

i j ) (T, Q, etc. ex-
citations are excluded because of the Slater–Condon
rules. Compare with Figure 2).3

When applying Slater–Condon rules, the
second-order correction takes the following form:

E(2)
MP = 1

4

occ∑
i j

vir∑
ab

〈i j ||ab〉aab
i j (9)

with

aab
i j = (εi + ε j − εa − εb)−1〈ab||i j〉 (10)

being the amplitudes of the D excitations. In the
closed-shell case, the formula for the MP2 correla-
tion energy is slightly different [see Resolution of the
Identity and Density Fitting: RI/DF-MP2 Eq. (17)]
because of the occupation of space orbitals φi used in
this case by two electrons rather than just one elec-
tron in the case of spin orbitals ψi . The cost factor
of an MP2 calculation is of the orderO(M5) because
M4 electron repulsion integrals (ERIs) have to be cal-
culated at the HF level, a subset of which has to be
transformed from basis function to spin-orbital rep-
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FIGURE 2 | Schematic representation of matrix elements and the
substitution functions that make a contribution at MPn
(n = 2, 3, 4, 5, 6). V̂ denotes the perturbation operator, 0 the
reference �(0), S �a

i , D �ab
i j , T �abc

i j k , Q �abcd
i j kl , P �abcde

i j klm , and H

�
abcdef
i j klmn .

resentation, which, if one ERI index is transformed at
a time, requires 4 × M5 operations.3

MP2 theory accounts for dynamical, i.e., short-
range pair correlation effects. In general, it is difficult
to distinguish between dynamical and nondynamical
correlation effects. Because the D excitations of MP2
theory do not couple, i.e., the correlation of electron
pairs takes place in the available molecular space in-
dependent of each other, correlation effects are often
exaggerated by MP2. Cremer and He21 have distin-
guished between molecules with a balanced distribu-
tion of electrons and electron pairs (type A systems
made up by less electronegative atoms from the left of
the periodic table) and those with a strong clustering
of electrons in a confined part of the molecular space
due to the presence of strongly electronegative atoms,
multiple bonds, transition metals, or anions (type B
systems). For type A systems, MP2 accounts for about
70% of the total correlation energy, whereas for type
B systems, 95% of the total correlation energy is ac-
counted for (see Figure 3), which in the latter case is
a result of exaggerating electron pair correlation.21

Owing to the fact that the mean-field orbitals of
HF are not reoptimized at the MP2 level, all deficien-
cies of these orbitals are carried over to MP2, which
can lead to problems in connection with symmetry
breaking or spin contamination at the unrestricted
MP2 (UMP2) level. This has to be kept in mind when
trying to improve MP2 results or using MP2 in con-
nection with other methods.
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FIGURE 3 | Average MPn correlation energies given in percent of the FCI correlation energy for 14 class A and 19 class B examples.21

Third-order Møller–Plesset (MP3)
Perturbation Theory
The MP3 correlation energy is given by7, 9

E(3)
MP =

∑
s>0

∑
t>0

V0s V̄stVt0

(E0 − Es)(E0 − Et)
(11)

where

V̄st = Vst − δstV00 (12)

Again, just D excitations contribute (�s,�t : �ab
i j );

however, the D excitations are coupled, thanks to
the matrix element V̄st (see also Figure 2). Working
out the MP3 correlation energy leads to

E(3)
MP = 1

4

occ∑
i j

vir∑
ab

〈i j ||ab〉bab
i j (13)

The calculation of the third-order D amplitudes bab
i j

requires O(M6) steps and it determines the cost factor
of MP3. Due to the coupling between D excitations,
pair correlation effects for type B systems are reduced
at MP3 (see Figure 3). This is also reflected by the
fact that (especially for type B systems) relative MP3
energies often revert trends found at MP2, which has
led to the impression that MP3 calculations seldom
lead to an improvement of MP2 results. This of course
has to do with the fact that MP3 provides a more
realistic description of pair correlation.

Fourth-order Møller–Plesset (MP4)
Perturbation Theory
The formula for the MP4 correlation energy11–13 com-
bines three different substitution functions �s,�t,
and �u, which according to Slater–Condon rules im-
plies contributions from both S, D, and T excitations:

E(4)
MP =

∑
s>0

∑
t>0

∑
u>0

V0s V̄suV̄utVt0

(E0 − Es)(E0 − Et)(E0 − Eu)

−
∑
s>0

∑
t>0

V0s Vs0V0tVt0

(E0 − Es)(E0 − Et)2
(14)

By working out this formula in terms of double-bar
integrals and partitioning it according to the scheme
given in Figure 2, the MP4 correlation energies can
given by:

E(4)
MP = E(4)

S + E(4)
D + E(4)

T + E(4)
Q (15)

In this formula, the S contribution corrects some of
the changes in the orbitals due to electron correlation
effects (the mean field orbitals are no longer optimal
in view of the perturbation of the Ĥ(0)-problem). Pair
correlation effects are further corrected in the D term
of MP4. As new correlation effect, three-electron cor-
relation (T excitations) is included. These correlation
effects are normally small as compared with pair cor-
relation effects; however, due to the large number of
three-electron correlations, they add a significant con-
tribution to the total correlation energy, especially in
the case of type B systems with multiple bonds or a
strong clustering of electrons in a confined region of
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molecular space. The Q-term in MP4 results from dis-
connected, rather than connected, four-electron cor-
relations, i.e., from the independent but simultane-
ous correlation of two electron pairs. Compared with
MP3, MP4 includes new correlation effects in the per-
turbation description and therefore the correlation
energy is distinctly improved (Figure 3). For type A
systems, 91% of all correlation effects are accounted
for. However, for type B systems, it is 100%, again,
due to some exaggeration of correlation effects.21

The most expensive part of MP4 is the calcula-
tion of the T contributions, which scales with O(M7).
Therefore, one has suggested to carry out MP4(DQ)11

or MP4(SDQ) calculations12 in those cases where in T
correlation effects may play a minor role as, e.g., in the
case of type A systems. Costs are reduced in this way
toO(M6). Considering that CC methods such as Cou-
pled Cluster with Single and Double (CCSD) excita-
tions contain infinite-order effects in the SD space and
disconnected T, Q, and higher correlation effects for
somewhat higher cost (caused by the iterative solution
of the CT equations), there seems to be little need for
MP4(DQ) and MP4(SDQ) calculations nowadays.

Fifth-order and Sixth-order Møller–Plesset
(MP5 and MP6) Perturbation Theory
It took 9 years after the development of MP4 in
198013 to set up a program to calculate the nine
unique MP5 contributions to the correlation energy,
although an analysis of MP5 was published already in
the mid-1980s.14 Bartlett and coworkers15 were the
first to accomplish this task, followed 1 year later by
Pople and coworkers.16 The MP5 correlation energy
(see Figure 2) can similarly be partitioned as the MP4
energy (for a review on MP5 and MP6, see Ref 20).
Figure 2 reveals that the new correlation effects intro-
duced at MP4 couple at the MP5 level. This coupling
leads to 14 terms of the type SS, SD, etc., where terms
such as SD and DS are identical. The final equation
for the MP5 correlation energy contains nine unique
coupling terms20:

E(5)
MP = E(5)

SS + 2E(5)
SD + E(5)

DD + 2E(5)
ST + 2E(5)

DT

+ E(5)
TT + 2E(5)

DQ + 2E(5)
TQ + E(5)

QQ (16)

The calculation of these terms requires O(M8) com-
putational steps wherein the TT term is the most ex-
pensive one. Actually, the QQ term of MP5 implies
O(M10) operations; however, it can be considerably
reduced in cost by breaking up multiple summations
and using intermediate arrays.20 MP5 correlation cal-
culations (Figure 3) reveal that a coupling of T cor-
relation effects can lead to a reduction of these con-

tributions. Similar trends are observed for S and Q
correlation effects. MP5, similarly as MP3, is less at-
tractive for correlation studies than MP4 or MP2.

MP6 was developed by He and Cremer17–20 in
the mid-1990s. As an even-order MPn method, it
includes new correlation effects resulting from con-
nected Q and disconnected pentuple (P) and hextuple
(H) correlation effects. The principal MP6 term can
be partitioned, in view of the coupling scheme given
in Figure 2, into 55 ABC terms (A, B, C: S, D, T, Q,
P, H), of which 36 are unique. He and Cremer19 pro-
gramed all 36 MP6 terms using 57 intermediate ar-
rays to reduce costs from original O(M12) to O(M9).
They also programed the less costly MP6(M8) and
MP6(M7)methods [scaling with O(M8) and O(M7)]
by excluding terms of higher costs from the MP6
calculation.19 Terms such as TQT, QQQ, or TQQ
are the most expensive ones in a MP6 calculation.20

MP6 adds substantial correlation corrections to type
B systems such as difluoroperoxide, FOOF.22 How-
ever, some of these corrections may be reduced by
coupling effects introduced at MP7.

Table 1 provides a summary of the ab initio
development work as it took place in the heydays of
MPPT. Also included are the calculation of high-order
MPn energies with the help of CC and FCI theory (see
Advantages and Disadvantages of MPn Perturbation
Theory).

MPn Perturbation Theory with larger
order n
MP7 contains 221 ABCD terms (coupling between
S,D,T,Q,P,H excitations) of which 141 are unique,
whereas MP8 has 915 ABCDE terms (S up to sev-
enfold and eightfold excitations; 583 unique terms).
Clearly, traditional development work determining
each term of a given MPn method as done for MP6
by He and Cremer19 is no longer possible. An alterna-
tive approach to MPn is provided by CC and FCI the-
ory. From a CCD calculation, one can extract MP2,
MP3, and M4(DQ) correlation energies, from CCSD
MP4(SDQ) and from CCSD(T) or CCSDT-1 the full
MP4 energy: MP4(SDTQ). CCSDT is lacking just the
QT term at fifth order (easily obtained by the identical
TQ term) and part of the QQ term, which can be cal-
culated with little extra work. The MP6 correlation
energy can be obtained by a noniterative inclusion of
Q excitations into CCSDT, thus avoiding the O(M10)
dependence of CCSDTQ. In this way, Kucharski and
Bartlett23 determined MP6 energies. Similarly, total
MPn correlation energies with higher and higher or-
ders n can be extracted from the iteration steps of
an FCI calculation (see Table 1). Hence, it became
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TABLE 1 Development of MPn Perturbation Methodsa

Method Year Authors Cost Ref

MP2 1974 Bartlett and Silver O (M 5) 7
1975 Binkley and Pople 8

MP3 1974 Bartlett and Silver O (M 6) 7
1976 Pople et al. 9

MP4(DQ) 1978 Bartlett and Purvis O (M 6) 11
MP4(SDQ) 1978 Krishnan and Pople O (M 6) 12
MP4 = MP4(SDTQ) 1980 Pople and coworkers O (M 7) 13
MP5 = MP5(SDTQ) 1989 Bartlett and coworkers O (M 8) 15

1990 Pople and coworkers 16
MP6(M7) 1996 He and Cremer O (M 7) 19
MP6(M8) 1996 He and Cremer O (M 8) 19
MP6 = MP6(SDTQPH) 1996 He and Cremer O (M 9) 18

MPn from CC or FCI

MP6 from CCSDT(Q) 1995 Kucharski and Bartlett O (M 9) 23
Up to MP65 from FCI 1996 Olsen et al. 26
Up to MP169 from FCI 2000 Schaefer and coworkers 29

possible to investigate the convergence behavior of
the MPn series24–29 once modern versions of FCI were
programed (Advantages and Disadvantages of MPn
Perturbation Theory).

ADVANTAGES AND DISADVANTAGES
OF MPn PERTURBATION THEORY

MP2 is the least costly ab initio method to correct
HF results for correlation effects. This holds also
for higher MPn methods, provided one focuses on
a special correlation effect as, e.g., connected three-
electron (MP4) or connected four-electron correla-
tions (MP6). Correlation effects can be easily an-
alyzed using the partitioning of MPn energies into
S, D, T, · · · contributions, comparing changes in re-
sponse densities from order to order or describing the
dependence of other correlation-corrected response
properties on n.30–33 These studies reveal a number of
shortcomings of MPn, which can be summarized as
follows:

1. Far reaching disadvantages result from the
fact that MPn correlation corrections are cal-
culated using HF mean-field orbitals with all
their shortcomings. Symmetry breaking and
the spin contamination at UMPn are con-
nected to this problem.

2. Another disadvantage results from the MPn
series itself. The inclusion of new correla-

MP2
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MP4

MP5

MP6

HF

P
ro
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rt

y

FIGURE 4 | Typical oscillatory behavior of calculated MPn
response properties on the order n.

tion effects at even orders n and a cou-
pling of these correlation effects at the next
higher odd order can lead to an oscillatory
behavior of molecular energies and other
properties with increasing order n (Figure
4). This makes predictions of higher order
MPn results problematic and excludes a re-
liable simple-minded extrapolation to FCI
energies.21, 30–33

3. FCI studies aimed at an investigation of
the MPn convergence behavior revealed that
even for closed-shell systems, especially of
type B, the MPn series is erratic and, in
the worst case, divergent. For some time,
it was speculated that this was a result
of unbalanced basis sets; however, large,
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well-balanced basis sets lead to the same con-
vergence problems.24–29

4. MPn energies and other properties converge
rather slowly to the complete basis set (CBS)
limit results (corresponding to an infinitely
large basis set).34–36

5. Conventional MPn theory is carried out with
canonical (delocalized) orbitals, which con-
tradicts the fact that dynamical electron cor-
relation is in most cases a local phenomenon.
It is obvious that some kind of local MPn the-
ory could be much more cost-efficient than
standard MPn.

6. MPn with a finite n lacks the infinite-order
effects of CC methods, which make the lat-
ter much more accurate than MPPT. It also
does not account for nondynamical electron
correlation as CCSD(T) or CCSDT and even
DFT does (although in a nonspecific way).

Several of these disadvantages and shortcomings are
different consequences of the same basic deficiency of
the MPn series: the perturbation operator V̂ should
be tailored newly for each electronic system inves-
tigated with MPn, which of course cannot be done
with standard MPPT. In the following, we will fo-
cus first on the sometimes erratic (or even divergent)
convergence behavior of the MPn series because this
is most revealing and provides a physical insight into
the usefulness and physical relevance of MPPT.

On the basis of the FCI calculations carried out
with VDZ basis sets augmented with diffuse func-
tions, Olsen et al.26 reported in 1996 that the MPn
series can diverge for simple closed-shell molecules
such as Ne, HF, or H2O (all class B systems). Schaefer
and coworkers29 confirmed and extended these obse-
rvations by investigating MPn results for properties
such as bond lengths or stretching frequencies. They
found that for most class B systems augmentation of
a cc-pVDZ basis set with diffuse functions leads to
oscillatory or divergent behavior of the MPn series.

For the purpose of explaining the convergence
behavior of the MPn series, one describes the per-
turbed problem with the help of a strength param-
eter z that switches on the perturbation: Ĥ(z) =
Ĥ(0) + zV̂. For z → 1, energy and wavefunction of
the Schrödinger equation are obtained. Convergence
of the MPn series can only be fulfilled if the en-
ergy spectra for Ĥ(0) and the model space P do not
overlap with that of the Q-space. However, if an
eigenvalue of the Q-space intrudes the model space,
it can undergo an avoided crossing with a P-space
eigenvalue of the same symmetry.26, 28 Depending on

where the avoided crossing is located, one speaks
of back-door (−1 ≤ z < 0) and front-door intruder
states (0 < z ≤ 1). In most cases investigated, a back-
door intruder state was found that reduces the con-
vergence radius of the MPn series to a value smaller
than 1 and thereby causes divergence.37

Goodson and coworkers,38–40 using methods of
functional analysis in the complex plane, found (in
confirmation with an earlier study of Stillinger41)
that a singularity exists on the negative real axis of
z (see Figure 5). The singularity corresponds to the
unphysical situation of an attractive interelectronic
Coulomb potential and is associated with an ionized
electron cluster free from the nucleus. In the case of a
truncated basis set (corresponding to an approximate
Hamiltonian), the ionization process to the contin-
uum state cannot be described and accordingly the
MPn series seems to converge. Augmenting the basis
set by diffuse functions improves the description, the
singularity appears, autoionization and divergence of
the MPn series are observed.38–40 In the caseof the
Ar atom, singularity and autoionization state were
also found for positive z, indicating that the diver-
gence problems of the MPn series are not exclusively
connected to a negative strength parameters. Sergeev
and Goodson40 have described different MP singular-
ities (branching points, intruder states, etc.) causing
varying sign patterns in the MPn series. Their conclu-
sion is that a divergent MPn series is not necessarily
useless.40 It always depends on how convergent be-
havior affects low-order MPn results and how diver-
gent or erratic convergent behavior can be summed
using approximants or other means that lead to rea-
sonable FCI energies. In a recent publication, Herman
and Hagedorn42 emphasize that the process of under-
standing MPn singularities is still at its beginning.

MPPT is based on the assumptions that the per-
turbation operator V̂ describes a change in the un-
perturbed problem that is small enough to guarantee
convergence. Various procedures have been applied
to accelerate or to enforce convergence.32, 33, 37, 43–45

(For a review up to 2004, see Ref 46.) These reach
from extrapolation techniques to Pade approximants,
summation techniques, Feenberg scaling, and sophis-
ticated redefinitions of the model space. For example,
He and Cremer32 found when comparing the per-
formance of Pade approximants, extrapolation for-
mulas, and Feenberg scaling that the latter approach
leads to the best reproduction of FCI energies (within
0.15 mhartree or better), provided that MPn up to
MP6 energies could be used. Feenberg scaling,43 first
suggested in 1956, is based on the idea of scaling up
or down the weight of the unperturbed problem with
a scaling parameter λ dependent on the electronic
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FIGURE 5 | The complex plane of the strength parameter z switching on the perturbation represented by V̂ . Unperturbed (model) system and
perturbed (real) system are located at z = 0 and z = 1, respectively. Singularities (poles) of two MPn series are schematically indicated by balls.
For the right one, the radius of convergence Rc is larger than 1 and accordingly the MPn series is converging. In the other case, Rc < 1 and the
MPn series is diverging (see text).

system considered. If the corrections for the correlated
electron–electron interactions become too large, the
weight of Ĥ(0) is increased, i.e., HF electron–electron
interactions are scaled up for the purpose of decreas-
ing the perturbation. Reversely, the weight of the
low-order MPn corrections are enhanced by scaling
down (scaling up) Ĥ(0) (V̂). The original first-order
Feenberg scaling43–45 minimizes the MP3 correlation
energy to effectively improve the first-order correc-
tion to the wavefunction. Cremer and coworkers37

generalized this approach to second-order and mth-
order Feenberg scaling by minimizing the fifth-order
or (2n + 1 =) mth-order MP energy and improving
the second-order or mth-order correction to the HF
wavefunction. Results obtained in this way reproduce
FCI energies with increasing accuracy.

Goodson and Sergeev47, 48 started from MP4,
used Feenberg scaling, and then summed the result-
ing series applying a quadratic approximant to ob-
tain with this MP4-qλ method energies better than
CCSDT. Such methods will be successful if the dom-
inant branching singularity is suitably modeled. Cur-
rently, research is continuing to investigate the con-
vergence behavior of the MPn series, which in the year
2010 is still not solved in the sense that singularities
of the MPn series can be reliably predicted for a given
electronic system in dependence of the basis set used.

The many disadvantages of MPn combined with
the relatively high computational cost and its limited
accuracy have caused the larger part of the quantum
chemical community to abandon MPPT and to use
CC and DFT methods instead. There have been voices

that suggest that only lower order MPn methods such
as MP2 should be used in quantum chemistry because
the physical foundation of higher order MPn meth-
ods is not guaranteed. As a matter of fact, the major
thrust of MPn development work has focused, in the
past two decades, on the development of low-order
MPn methods (MP2 and to some limited extent also
MP3) that can compete with HF as timings are con-
cerned and DFT with regard to accuracy. More than
a dozen different techniques and methods have been
developed to accomplish these goals, which will be
discussed in the following sections.

DEVELOPMENT OF MPn METHODS
WITH LOW-ORDER OR
LINEAR-SCALING PROPERTIES

In the 1980s, MP2 was carried out in quantum chem-
ical programs almost exclusively by algorithms that
started from the HF canonical orbitals, had the ERIs
stored on disk, and required a O(M5) transforma-
tion before calculating the MP2 correlation energy
in a conventional way. This made calculations CPU
time, core memory, and disk space consuming. Any
increase in the size of the basis set by a factor of
10 (M′ = 10M), e.g., investigating larger molecules
led to a 100,000-fold increase in the computational-
time. This excluded the use of MP2 for correlation-
corrected calculations on large molecules with hun-
dreds, if not to say thousands, of atoms. In the past
two decades, this situation has been dramatically
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improved due to a multitude of developments, some
of which will be discussed in the following subsec-
tions Direct and Semidirect MP2 to Fragment Molec-
ular Orbital Approach: FMO-MP2. These develop-
ments focused on (1) making MP2 calculations inde-
pendent of hardware limitations (direct and semidi-
rect MP2 methods), (2) facilitating the calculation and
transformation of the ERIs [Resolution of the Iden-
tity (RI)/density fitting (DF), Cholesky decomposition
(CD), pseudospectral(PS), dual basis (DB) methods],
(3) simplifying the calculation of the MP2 energy by
using other than canonical orbitals [Laplace transfor-
mation (LT); atomic-orbital-based; local MP (LMP)
methods), or (4) partitioning the molecular problem
in smaller, easier to handle parts (divide and con-
quer (DC), fragment molecular orbital (FMO) meth-
ods]. In the past two decades, powerful MP2 methods
with linear-scaling properties have been developed. If
exploiting in addition the power of cluster or mas-
sively parallel computing by adjusting MP2 programs
to modern computer hardware, these techniques and
methods make it possible to carry out MP2 investiga-
tions for large molecules with thousands of atoms.

Direct and Semidirect MP2
In the late 1980s, Pople and coworkers49 and indepen-
dently Almlöf and Saebø50 demonstrated that MP2
energy calculations can be carried out in an integral
direct fashion (direct MP2) without storing partially
or fully transformed ERIs on disk. In this way, MP2
calculations became independent of the available disk
space. Later, an alternative approach was used that
stored partly transformed ERIs (semidirect MP2).51

The optimal choice of a direct or semidirect MP2
algorithm depends on the extent of utilizing the per-
mutational symmetry of ERIs (apart from utilizing
molecular symmetry), the effective prescreening of in-
tegrals for the purpose of eliminating small ERIs (ex-
ploiting the sparsity of the ERI supermatrix), and the
time savings achieved when calculating the MP corre-
lation energy.52 Clearly, these factors have also to be
related to the size and architecture of a fast memory as
well as the degree of vectorization and parallelization
of the available hardware. For different purposes, op-
timal direct or semidirect solutions have been found
as is documented in a multitude of publications, only
some of which can be mentioned here.49–52

Resolution of the Identity and Density
Fitting: RI/DF-MP2
The evaluation of two-electron four-index ERIs and
their subsequent transformation correspond to the

major time-consuming factors in conventional MP2
calculations. The calculational work can be reduced
by factorizing four-index ERIs into three-index and
two-index integrals.53, 54 These ideas were already
pursued by Boys, Shavitt, and others as is summarized
by Van Alsenoy55 in a 1988 review. Their realization
in the case of closed-shell MP2 was first carried out
by Feyereisen et al.53

E(2)
MP =

occ∑
i j

vir∑
ab

<ia| jb>[2 < ia| jb> − <ib| ja>]
εi + ε j − εa − εb

(17)

(Mulliken notation of ERIs). With the help of an or-
thonormal auxiliary basis set {χA}, the resolution of
the identity (RI) is given by

I =
∑

A

|A >< A| (18)

where Eq. (18) is only approximately fulfilled in the
case of a finite set with M′ functions. Inserting the
identity before the operator 1/r12 of an ERI, the MP2
correlation energy takes the form:

E(2)
MP =

occ∑
i j

vir∑
ab

M′∑
A,B

<ia A><A| jb>[2<iaB><B| jb> − <ibB><B| ja>]
εi + ε j − εa − εb

(19)

In Eq. (19), < ia A >, etc. represent three-index over-
lap integrals and < A| jb >, etc. represent three-index
ERIs, i.e., the cost of calculating the MP2 energy
is reduced by an order of M. The original idea of
Feyereisen et al.53 has been improved by Almlöf
and coworkers,54 Kendall and Früchtl,56 and Werner
et al.57 The approach has to be viewed as fitting a
density distribution with a linear combination of basis
function taken from an auxiliary basis54 that can be
optimized for this purpose.58 If the residual function
is minimized, several options corresponding to dif-
ferent metrics are possible. Almlöf and coworkers54

demonstrated that the largest efficiency of factorizing
two-electron repulsion integrals is gained while using
a Coulomb metric. For the exchange integrals, the ef-
ficiency gain is smaller because a factorization of the
exchange matrix similar to that of the Coulomb ma-
trix is not possible. The same is true for the integrals
needed for MP2.

It has been pointed out57 that the RI technique
involves a summation over states, whereas the pro-
cedure used is best described as DF and as such is
based on a criteria absent for the RI technique. As
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both terms are found in the literature, the acronyms
RI/DF and RI/DF-MP2 will be used in this work.

Although the errors introduced by the RI/DF
technique are nonnegligible in terms of absolute en-
ergies (about 0.1 mHartree/atom), the corresponding
errors in relative energies are normally smaller than
0.1 kcal/mol. RI/DF is also justified by the fact that
time savings can be as large as 1–2 orders of mag-
nitude as compared with the costs of a conventional
MP2 calculation, especially if large molecules are in-
vestigated (use of large basis sets) and RI/DF is com-
bined with other techniques (see below) so that the
linear scaling objective can be reached.57

Cholesky Decomposition: CD-MP2
Cholesky decomposition (CD) and RI/DF are closely
related.59–62 Beebe and Linderberg59 already pro-
posed in 1977 to reduce the rank of the ERI super-
matrix Vμν,ρσ with the help of a Cholesky decompo-
sition:

Vμν,ρσ =< μν|ρσ >≈
M′∑
I

LI
μν LI

ρσ (20)

The supermatrix V is expressed in terms of the
Cholesky product L L† (†: transposed) where the
lower triangular matrix L possesses the same dimen-
sion as V at the start of the procedure. However,
columns of L can be deleted in case of (approximate)
linear dependence of the columns of V, which is done
in an iterative procedure utilizing recursive formulas
and controlling accuracy by a suitable integral ac-
curacy threshold [using the difference between exact
ERI and approximate ERI in Eq. (20)]. In this way,
M′ < M in Eq. (20) is achieved and the number of
ERIs to be calculated is strongly reduced. CD can be
considered as a RI/DF method without an auxiliary
basis set.

Aquilante et al.60, 61 improved the original CD
approach by constraining the Cholesky vectors to in-
clude only products of basis functions centered at
the same atom (1C-CD method) so that a molecule-
specific CD procedure is obtained. In a variant, de-
noted as aCD, 1C-CD L-vectors are precomputed for
isolated atoms. 1C-CD and aCD are very close to the
original CD approach with only insignificant losses in
accuracy.60, 61

The relationship between CD and RI/DF can be
demonstrated by deriving Cholesky vectors for the
latter. The major difference between the two meth-
ods is that CD represents an integral fitting using the
basis functions of the MO calculation, whereas RI/DF
is a density fitting method using a preoptimized aux-
iliary basis set for this purpose. Despite these similar-

ities, Ahlrichs and coworkers62 see some advantages
for RI/DF methods. However, a final judgment on
the performance question is far from being at hand
because both CD and RI/DF have to prove their use-
fulness in combination with other cost-reducing tech-
niques, which may be sensitive to the inclusion of an
auxiliary basis set.

Pseudospectral Approach: PS-MP2
Although not directly obvious, pseudospectral (PS)
methods can be seen as another way of reducing the
number of ERIs to be calculated. First of all, they
are hybrid methods in the sense that they approxi-
mate conventional spectral results by using both basis
functions (function space) and grid representations in
three-dimensional Cartesian space (physical space).63

The less costly one-electron integrals are analytically
calculated in function space, whereas the calculation
of ERIs is transformed to physical space taking ad-
vantage of the local character of the Coulomb po-
tential. The density of electron 1 is determined by
calculating Ng grid points. Then the interaction of
this density with the density of electron 2 expressed
by a basis function product χρχσ is determined by Ng

three-index integrals (g refers to agrid point at posi-
tion rg). If the ERIs are expressed in this way, time
savings can be achieved for the calculation and the
transformation of ERIs in the course of a PS-MP2 or
PS-MP3 calculation as was demonstrated by Martinez
and Carter.64 For example, the summation over grid
points is facilitated by eliminating those points that
contribute only insignificantly, which pays out espe-
cially for large basis sets. An additional improvement
of the scaling properties of PS-MP methods can be
achieved by combining the PS methodology with local
correlation methods to be be discussed in the section
Local Character of Electron Correlation: LMP2.

Dual Basis Approach: DB-MP2
For the description of electron correlation, a signif-
icantly larger basis set is required than that for an
HF calculation. This is consideredin the dual basis
(DB) approach, first proposed by Jurgens-Lutovsky
and Almlöf.65 In DB-MP2,66 the density matrix of
the smaller HF basis is projected onto that of the
larger one to build up the corresponding F matrix.
With the help of a one-step procedure, the HF energy
of the larger basis set is approximated and, if needed,
corrected by a perturbative singles contribution based
on Fia (occupied, virtual part of the F-matrix for the
large basis). The MP2 part is calculated convention-
ally using the coefficients obtained for the orbitals of
the large basis.
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DB-MP2 energies differ only slightly from
canonical MP2 energies. Costs for the HF-part of the
DB-MP2 calculation are reduced by a factor of 8–10.
However, by applying the RI/DF approximation, ad-
ditional cost reductions can be achieved so that the
overall time savings for accurate, large-basis calcula-
tions can be be more than 90%.67

Laplace Transformation: LT-MP2
The energy denominator of the MP2 expression is a
major stumbling block for expressing the correlation
problem with other than canonical orbitals. In 1991,
Almlöf68 suggested to use a Laplace transform (LT)
technique to eliminate the denominator of the MP2
energy expression [Eq. (9)]:

(εi + ε j − εa − εb)−1

=
∫ ∞

0
dt exp[(εi + ε j − εa − εb) t] (21)

where t is an auxiliary parameter. The MP2 correla-
tion energy is obtained in the form of Eq (22):

E(2) = 1
4

∫ ∞

0
dt

occ∑
i j

vir∑
ab

< i j ||ab >2

× exp[(εi + ε j − εa − εb)t] (22)

The t-dependence of the integrand can be transferred
to the orbitals: ψi (t) = ψi (0) exp( 1

2εi t) and ψa(t) =
ψa(0) exp(− 1

2εat), thus leading to

E(2) =
∫ ∞

0
e(2)(t) dt (23a)

with

e(2)(t) = 1
4

occ∑
i j

vir∑
ab

< i(t) j(t)||a(t)b(t) >2 (23b)

LT-MP2 provides extra flexibility in the choice of the
orbitals, which is no longer constricted to canonical
orbitals. By appropriate orbital rotations one can ex-
press the MP2 correlation energy, e.g., in terms of
any set of basis functions (atomic orbitals; see Use
of Atomic Orbitals: AO-MP2) or localized molec-
ular orbitals (LMOs) (see Local Character of Elec-
tron Correlation: LMP2). Use of the LT technique
is facilitated by substituting the integration over the
exponential function in (22) by a finite sum over a
relatively small number τ of grid points α.68, 69 An-
other advantage of the LT transformation (which can
also be used for higher orders of MPn theory) is the
fact that the MP2 energy can be expressed as a func-
tional of the HF density matrix as was first shown by
Surjan122: E(2) = E(2)[PHF]. This implies that the MP2

energy can be directly calculated from the density ma-
trix PHF without knowledge of the MOs. Because the
functional form of E(2)[PHF] depends on the form of
the Fock operator, the functional is not universal.

Use of Atomic Orbitals: AO-MP2
Utilizing the LT of the MP2 denominator, atomic or-
bital (AO)-MP2 formulations based on AOs (basis
functions) rather than MOs have been developed by
Häser,70 Ayala and Scuseria,71 and Ochsenfeld and
coworkers.72, 73 For the AO-LT-MP2 method, the
closed-shell correlation energy of Eq. (17) is expressed
as

E(2)
AO−LT−MP2 =

τ∑
α

e(α)
J K (24)

where e(α)
J K is specified by Eqs. (25) (called contraction

step) and (26) (called transformation step):

e(α)
J K = 2e(α)

J − e(α)
K =

∑
μν ρσ

< μν|ρσ >(α)

× [2 < μν|ρσ > − < μσ |ρν >] (25)

<μν|ρσ>(α) =
∑

μ′ν ′ρ ′σ ′
P (α)

μμ′ P
(α)
νν ′<μ′ν ′|ρ ′σ ′>P (α)

ρρ ′ P
(α)
σσ ′

(26)

(for details, see Refs 70–73, especially the review by
Ochsenfeld et al.72) The occupied (underlined) and
virtual pseudodensity matrices (overlined) are defined
as

P (α)
μν = |ω(α)|1/4

occ∑
i

Cμi exp[εi t(α)]Cνi

= |ω(α)|1/4{exp[t(α)PoccF]Pocc}μν (27a)

P
(α)
μν = |ω(α)|1/4

vir∑
a

Cμa exp[−εat(α)]Cνa

= |ω(α)|1/4{exp[−t(α)PvirF]Pvir}μν (27b)

(ω(α), weight factor; τ , 5–8 in most cases68, 69).
AO-LT-MP2 approaches lead to a computa-

tional overhead arising from the calculation of τ ex-
ponential values and a more expensive transforma-
tion step. However, computational savings are gained
while calculating large molecules due to the fact that
the AO-formulation enables effective ERI screening
or other elimination techniques for small ERIs.71–73

Additional computational savings are gained by us-
ing only half-transformed ERIs and reordering sum-
mations within contraction and transformation.73
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Frozen core and frozen virtual approximations can be
applied and the accuracy of the calculation effectively
controlled. In this way, a calculation of 16 stacked
DNA basepairs with 1052 atoms (10,674 basis func-
tions) was recently carried out.73

Local Character of Electron Correlation:
LMP2
The correlation domain concept is based on the idea
that dynamic electron correlation is short ranged by
nature; however, the canonical HF MOs used to de-
scribe electron correlation are delocalized and thereby
they complicate the description of dynamical electron
correlation. The steep increase in scaling of MPn cor-
relation methods is a consequence of using the HF
wavefunction and the delocalized canonical HF or-
bitals as a starting point rather than being inherent in
the correlation problem. This was already recognized
in the 1960s and since then repeated attempts have
been made to set up local correlation methods.

Localization of MOs to bond, lone pair, and
core electron orbitals significantly increases the spar-
sity of the transformed integrals, thereby reducing
storage and calculational requirements. Localized
MOs (LMOs) describe that domain of the molecule
where short-range correlation takes place and there-
fore it is attractive to formulate MPn methods in
terms of LMOs. This idea was pioneered by Pulay and
Saebø74–76 and later extended or varied by Werner
and coworkers,57, 77, 78 Schütz and coworkers,77, 78

Head-Gordon and coworkers,79–82 and others; not all
can be cited here.

Pulay and Saebø74, 75 used the Hylleraas func-
tional (for real functions) to obtain the second-order
energy E(2):

E(2) = 2<�(1)|Ĥ − E(0)|�HF>

−<�(1)|Ĥ(0) − E(0)|�(1)> = min (28)

which implies a minimization process, in which the
MP2 amplitudes are optimized. In this connection,
E(2) is expressed as a sum of pair correlation energies
ei j :

E(2) =
∑
i≥ j

ei j (29)

described by LMOs rather than canonical MOs. This
approach increases the calculational costs, leads how-
ever to the advantage of describing pair correlation in
correlation domains. Weak electron pairs that con-
tribute to the correlation energy less than a given
threshold, e.g., 3 mhartree or less, can easily be iden-
tified and discarded.74, 75

Another advantage is that the virtual (correla-
tion) space can be spanned by projected basis func-
tions χμ [projected atomic orbitals (PAOs) because
the occupied space has to be projected out] where each
occupied LMO is associated with just those PAOs that
are located in the spatial vicinity of the LMO. In this
way, a local correlation space or pair domain is gen-
erated, which includes covalent virtual pairs |aibj >

(|a > close to |i >; |b > close to | j >) and ionic virtual
pairs |aibi > and |a j bj > (both |a > and |b > close to
the same occupied LMO), thus drastically reducing
each pair domain of canonical MP2 (all virtual pairs
are included).

The AOs are orthogonalized with regard to the
occupied LMOs; however, they are nonorthogonal
among each other. Nonorthogonality is important in
the context of LMP2 because it helps to remove the
localization tails. Further advantages result for the
integral transformation from basis function to LMO
space because integral prescreening can be effectively
used and/or distant pairs can be treated by a mul-
tipole expansion.77 LMP2 recovers a large percent-
age (more than 98%) of the canonical MP2 correla-
tion energy. The LMP methods have been extended
to third and fourth order,74, 75 various versions in-
cluding AO-based MP2 theory and a splitting of the
Coulomb operator in short- and long-range part78

have been presented, and LMP2 has been combined
with the RI/DF technique.57 In this way, low-order
scaling77, 78 or fast linear-scaling LMP2 versions have
been obtained.57

A different approach to LMP2 has been taken
by Head-Gordon and coworkers79–82 who developed
the local diatomics-in-molecules and triatomics-in-
molecules (DIM and TRIM) MP2 methods. DIM-
MP279 is a single-step procedure, based on a
parameter-free description of the local correlation
space and formulated in terms of nonorthogonal
atom-centered orbitals in both the occupied and the
virtual spaces. The expression of MP2 in terms of
nonorthogonal orbitals is more complicated than the
canonical one; however, it can be simplified by im-
posing that the local MP2 energy becomes invariant
to rotations of the AO basis on each atom. Costs are
reduced to cubic scaling, and 99.8% of the canoni-
cal MP2 energy is recovered. TRIM-MP2 extends the
D excitation pattern from an exclusive local (atomic)
one as in DIM to a more general one that also includes
nonlocal D excitations.81

Divide and Conquer Approach: DC-MP2
A divide and conquer (DC) strategy was originally
suggested by Yang83 for DFT and later developed as
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DC-MP2 by Kobayashi et al.84–86 for MPPT. The ap-
proach is based on the partitioning of large electronic
systems into many small fragments, the independent
quantum chemical description of each fragment, and
finally the recombination of the fragment results to get
the energy for the original electronic system.83 DC-
MP2 has the advantage of reducing computational
cost to a linear dependence on the size of the system
and providing a suitable starting point for paralleliza-
tion of a MP2 program. If a molecule is partitioned
into N subsystems, N local eigenvalue problems have
to be solved. This implies the determination of a sub-
system density matrix with the help of a suitable parti-
tioning matrix, which describes each basis function as
being located inside the subsystem, its buffer region,
or outside both subsystem and buffer region.83–85

DC-MP2 scales with O(Nm5), i.e., the number
m of basis functions in a subsystem and the number
N of subsystems, where for large molecules m << N.
This leads to large time savings (e.g., m = 10, N =
100; 107 << 1015) and enables linear scaling with
the size of a large molecule.85

Fragment Molecular Orbital Approach:
FMO-MP2
Fragment molecular orbital (FMO) theory was de-
veloped over the past 10 years by Fedorov, Kitaura,
and coworkers.87–90 A large molecule is divided into
N fragments and all molecular properties of the tar-
get molecule are then calculated from the fragments
and a limited number of their conglomerates, e.g.,
their dimers (FMO2) or trimers (FMO3). The FMO2
energy87

E =
N∑
I

EI +
N∑

I>J

(EI J − EI − EJ ) (30)

(EI , monomer energies; EI J , dimer energies) is cal-
culated by variationally optimizing each monomer in
the Coulomb field of the total molecule (environment)
and neglecting exchange and charge-transfer effects
between the monomer and the environment, which
are assumed to be of local nature. FMO is variational
only with regard to the monomers, whereas the dimer
(or trimer) corrections are determined in a perturba-
tional sense. Dangling bonds between fragments are
electrostatically saturated, thus excluding the neces-
sity of other capping means. The FMO2-MP2 corre-
lation energy, E(2)

FMO2, is calculated in a similar way88:

E(2)
FMO2 =

N∑
I

E(2)
I +

N∑
I>J

[E(2)
I J − E(2)

I − E(2)
J ]

+ corr. Terms (31)

The correction terms are based on the electrostatic
potential and response densities of monomers and
dimers. Time savings are similar as in the case of DC-
MP2, where again additional time savings are gained
by excluding dimer (or trimer) terms for distantly sep-
arated monomers. Calculations with 3000 and more
basis functions have been carried out. In those cases
where conventional MP2 energies are available, er-
rors in the FMO2-MP2 energy are in the mHartree
range.88

Parallelization of MP2 Programs
Rapid developments in computer hardware in the
form of either multicore, cluster, or massively parallel
processors had a strong influence on quantum chem-
ical program design. Common to these developments
is the degree and the mode of parallelization that has
been improved, whereas the processor clock speed
has remained essentially the same. There is a distinct
trend to combine more cores per motherboard in the
next years and consequently quantum chemical pro-
gram development has and will have to adjust to this
trend.

The parallelization of quantum chemical codes
up to the year 2008 and the availability of parallelized
quantum chemical programs have been discussed in
a recent monograph by Janssen and Nielsen,91 who
devoted extra chapters to the parallelization of the
MP2 and LMP2 methods (see also Ref 92 of the same
authors). There, the relevant work of Pulay,93 Nagase
and coworkers,93, 94 are summarized. An efficient par-
allel algorithm has been developed for RI/DF-MP2 to
perform energy calculations for large molecules on
distributed memory processors.94 Impressive accom-
plishments have been made using massively paral-
lel vector computers. For example, Mochizuki et al.,
utilizing earlier program developments,95 have car-
ried out FMO-MP2 calculations on an influenza HA
antigen–antibody system comprising 14,086 atoms
(921 residues) with 78,390 basis functions.96 Calcula-
tions were completed within 53 min using 4096 vec-
tor processors, where the cost factor relative to the
FMO-HF calculation was just 2.7.96

Combination Methods and Linear Scaling
In the past two decades, a wealth of new methods and
techniques has been developed to speed up the lower
order MPn methods. In the case of MP2, either the
prefactor or the actual O(M5) scaling problem itself
has been effectively reduced. By combining some of
the 10 procedures described above, even more pow-
erful MP2 algorithms result, varying of course with
regard to the accuracy of the calculated MP2 energy,
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the ease of implementing analytical energy derivatives
for MP2 response property calculations, or the degree
of parallelization of the corresponding programs. It
would require an extra section to discuss these possi-
bilities with regard to advantages and disadvantages,
which is beyond the scope of this review. Therefore,
just a few examples are mentioned here.

Low- or even linear-scaling efficiency72 has
been obtained by combination methods such as RI/
DF-LMP2,57 RI/DF-TRIM,82 PS-LMP2,97 DB-DC-
MP2,86 FMO-LMP2,98 FMO-RI/DF-MP2,99 FMO-
CD-MP2,100 RI/DF-AO-LT-MP2,101 or RI/DF-CDD
(Cholesky-decomposed pseudodensity)-LT-MP2.102

These methods have helped to apply MP2 to
larger and larger molecules. Recently, Ochsenfeld and
coworkers123 have applied multipole-based integral
estimates (MBIE)-SOS-AO-LT-MP2 to an RNA sys-
tem comprising 1664 atoms and 19,182 basis func-
tions, making this one of the largest ab initio calcula-
tions ever done. FMO-MP2 calculations have been
carrid out for even larger systems (see Paralleliza-
tion of MP2 Programs). So far it was not possible
to assess the accuracy of FMO-MP2 calculations of
huge molecular systems that are not amenable to
comparative calculations yielding accurate MP2 en-
ergies. Currently, it is difficult to make a judgement
on the usefulness of FMO-MP2 for the investigation
of biomolecules and other large systems. Considering,
however, the manifold of MP2 techniques available
today, it is reasonable to expect that routine MP2
calculations for biomolecules with 10,000 and more
atoms become feasible within the next 5 years.

IMPROVEMENT OF LOW ORDER MPn
METHODS

Low-order MPn methods do not reach the accuracy
of CCSD(T) and other high-order CC methods. Of-
ten MP2 or MP3 are even less reliable than modern
DFT hybrid methods based on empirical corrections.
Therefore, a second goal of the MPn development
work of the past two decades has been the improve-
ment of the MP methodology. Improvements were
first strictly in an ab initio sense; however, in the
last decade, they adopted an empirical touch, ob-
viously influenced by the developments in the area
of DFT, which were often based on just observa-
tion rather than first principles due to the inherent
problems of density functionals. Today, one can say
that these empirical corrections of MPn theory trig-
gered more solid development work, which otherwise
may not have taken place. This is especially true for
spin scaling (section Spin-Scaled MPn), its rational-

ization in terms of Feenberg scaling, and the follow-
up work on orbital-optimized MP2 (section Orbital-
Optimized MP).

Spin-Scaled MPn
HF theory includes exchange correlation, i.e., same-
spin electron correlation as a result of the Pauli princi-
ple and the antisymmetrization of the wavefunction.
Accordingly, MP2 is biased toward same-spin (ss)
excitations and ss-electron correlation.103 Analyzing
this situation, Grimme developed spin-component-
scaled (SCS) MP2, in which ss-correlation effects are
scaled back by a factor of 3 ( fss = 1/3), whereas
opposite-spin (os) correlation effects are increased by
the factor fos = 1.2.103 In a second paper, Grimme103

extended spin-scaling to SCS-MP3. Both SCS-MP2
and SCS-MP3 yield improved molecular properties
such as atomization energies, bond lengths, or vibra-
tional frequencies.103–105

In view of the small fss-value of Grimme,103 and
Head-Gordon and coworkers106 suggested to com-
pletely suppress the ss-component of the MP2 cor-
relation energy. Although their spin-opposite scaled
(SOS) MP2 method is based on fos = 1.3 and fss = 0
(exchange integrals are eliminated), the accuracy of
SCS-MP2 is not lost. The advantage of SOS-MP2
approach is that by dropping the more difficult ex-
change (ss)-part, MP2 speed up techniques such as
RI/DF and LT106 are more easily applied to convert a
O(M5) into a O(M4) scaling method. Lochan et al.107

pointed out that both SCS- and SOS-MP2 fail to cor-
rectly describe long-range correlation between two
nonoverlapping systems. For the purpose of leaving
short-range scaling intact, but at the same time in-
troducing a desired long-range scaling factor fos = 2
that recovers the asymptotic MP2 interaction energy
of distant closed-shell fragments, they split the elec-
tron interaction operator 1/r12 in a short-range and
a long-range part and scaled the latter to correct the
long-range behavior of MP2 correlation. This modi-
fied opposite spin (MOS)-MP2 method performs bet-
ter than SOS-MP2 for a variety of problems involving
both short-range and long-range interactions.107

It soon became obvious that the scaling factors
depend on the electronic system considered. In some
cases, scaling factors opposite to those originally sug-
gested lead to better results. This has led to a funda-
mental analysis of spin scaling in terms of Feenberg
scaling108 and to the development of MPn method
improvements that may lead to a more systematic
improvement of MPn theory (see section Orbital-
Optimized MP). Apart from this, it could be expected
that the benefits of spin scaling would have an impact
on other ab initio methods such as CC theory. Several
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steps have been made in this direction, and a devel-
opment as in the case of low-order MPn methods is
foreseeable.

Dispersion Corrected MPn
Various authors have pointed out that MP2
has a tendency of overestimating dispersion
interactions.109, 110 In view of the importance of van
der Waals interactions in general and dispersion in-
teractions in specific in many fields of chemistry, at-
tempts have been made to improve the MPn descrip-
tion of dispersion interactions either by spin scaling,
the addition of a Lennard–Jones term or in form of
hybrid methods. As an example for the first group of
dispersion-corrected MPn methods, the SMP3 (scaled
MP3) and MP2.5 (average of MP2 and MP3 corre-
lation correction) methods may be mentioned.111, 112

These methods intend to reproduce CCSD(T) results
for the S22 benchmark set of noncovalently bonded
interaction complexes109 according to:

E[CCSD(T), large] ≈ E[SMP3, large]

= E[MP2, large] + fMP3 E(3)[small] (32)

(large and small refers to the size of the basis set)
where the second term on the right side approximates
the CCSD(T) correction, �E[CCSD(T), small] =
E[CCSD(T), small] − E[MP2, small], of a given
problem calculated with a small basis set. Because ba-
sis set and correlation corrections are separated, the
method corresponds to a scaled MP method taking
advantage of the oscillating behavior of the MPn se-
ries (MP2 overestimating, MP3 underestimating pair
correlation due to a coupling of D excitations in the
latter method).

An empirically corrected MP2 method, dubbed
MP2 + �vdW, has been worked out by Tkatchenko
et al.113 They improved the long-range interaction
potential of MP2 by adding correction terms of the
Lennard–Jones type, Cn/Rn (Cn, dispersion coeffi-
cient; R, distance between monomers). In this way,
a reasonable agreement with CCSD(T) binding ener-
gies is obtained.113

Cybulski and Lytle110 and later Heßelmann114

have developed MP2 dispersion-corrected methods
(henceforth called MP2C for MP2 coupled) that focus
directly on the deficiencies of supermolecular MP2 in-
teraction energies as described by intermolecular per-
turbation theory. The uncoupled HF (UCHF) disper-
sion energy contained in the MP2 dispersion energy
can overestimate dispersion by 15% and more.110 Be-
cause of this, these authors replaced the UCHF dis-
persion energy with the coupled dispersion energy
of a time-dependent HF (TDHF) or time-dependent

DFT (TDDFT) approach.114 MP2C offers consider-
able improvements in the case of dispersion-only com-
plexes as well as for H-bonded complexes (deviation
from CCSD(T)/CBS 0.25 kcal/mol in case of the S22
set).115

Orbital-Optimized MP
MPPT based on the HF wavefunction as reference
suffers from the shortcomings of the mean-field or-
bitals. A remedy of these problems can be achieved
by optimizing orbitals at the MP level and using
those for the calculation of the MP correlation en-
ergy. These ideas were pursued already in the 1980s
by various authors such as Adamowicz or Bartlett
who used an energy-optimizing principle based on
the second-order Hylleraas functional to obtain im-
proved virtual orbitals. In 2009, Neese, Grimme
et al.116 followed a similar approach to develop an
orbital-optimized spin-component scaled MP2, OO-
SCS-MP2, method. In the minimization process, the
mean-field orbitals are adjusted to MP2 correlation,
thus largely suppressing some of their shortcomings.
Neese et al.116 combine the OO-MP2 procedure with
spin-component scaling and the RI/DF technique in
form of OO-RI/DF-SCS-MP2. Errors in calculated
RI/DF-SCS-MP2 radical stabilization energies are re-
duced by a factor of 3–5 [reference: CCSD(T)/CBS
energies], whereas time requirements are enlarged by
a factor of 8–12.

Lochan and Head-Gordon117 had already de-
veloped, in 2007, an OO-MP2 method for the pur-
pose of alleviating the shortcomings of mean-field or-
bitals in open-shell calculations. OO-MP2 enhanced
the stability of MP2 results by leading to a better han-
dling of spin contamination and symmetry breaking
problems.117 Recent work by Kurlancheek and Head-
Gordon118 demonstrates that orbital optimization at
OO-MP2 is an effective means to cure violations of
N-representability by UMP2 (i.e., natural orbital oc-
cupation numbers larger 2 or smaller 0).

Explicitly Correlated MP
It is a general observation that MP2 results con-
verge slowly only to complete basis set (CBS) limit
results, which can be expressed by saying that the
true form of the MP2 Coulomb hole is difficult to
assess from truncated basis set calculations. In 1929,
Hylleraas showed in his seminal work on the helium
atom that the correlation cusp is correctly described
by introducing the distance r12 between two electrons
into an explicitly correlated electronic wave function.
For decades, explicitly correlated or r12 calculations
were limited to few electron systems because of the

524 Volume 1, Ju ly /August 2011c© 2011 John Wi ley & Sons , L td .



WIREs Computational Molecular Science Møller–Plesset perturbation theory

mathematical difficulties in calculating M6 or M8

three-electron and four-electron integrals required for
the exact minimization of the Hylleraas functional for
the second-order correlation energy. (For a recent re-
view, see Klopper.119)

Kutzelnigg and Klopper119 solved the three-ERI
and four-ERI problem with the help of the RI ap-
proach and developed MP2-R12 that corresponds to
a MP2 theory inwhich the first-order pair functions
contain terms linear in the interelectronic distances
rpq. Explicitly correlated methods such as MP2-R12
speed up the convergence of the one-electron basis so
that already quadruple zeta basis sets provide a reli-
able estimate of the CBS limit energy. MP-R12 has
been improved in the last years to MP2-F12 by using
the Slater-type geminal correlation factor exp(−ζr12)
rather than linear r12 terms.120 MP2-F12 outperforms
other correlation factors tested. The method has led
to the most accurate MP2 correlation energies ob-
tained so far. Both MP2-F12 and MP2-R12 have been
employed to estimate MP2 CBS limit energies. Cur-
rent developments concentrate on reducing the high
costs of MP2-R12 or MP2-F12 by utilizing RI/DF,
where a breakthrough has been obtained recently
by Werner and coworkers121 who used LMP2-F12.
There is strong indication that in the near future the
combination of MP2-F12 with RI/DF and correla-
tion domain techniques will become a powerful tool
for getting reliable correlation-corrected energies and
other molecular properties.

CONCLUSIONS AND OUTLOOK

Whenever a new MPn method is developed, a num-
ber of concomitant tasks have to be solved: (1) Re-
stricted closed-shell, unrestricted, and restricted open-
shell versions of the new method have to be made
available; in the case of UMPn, the need and possi-
bility of spin-Projected UMPn (PUMPn) versions also
have to be checked. (2) For each of these versions,
analytical energy derivatives have to be worked out
for the calculation of response properties. (3) Direct
(semidirect), parallelized, and low order scaling ver-
sions have to be made available. (4) Also, it has to
be checked and the necessary steps have to be taken
to combine the new method with GVB, CASSCF, and
multireference methods. (5) An important area is the
use of MPn in relativistic theory. (6) Similarly, the
method may have some relevance for getting better
double-hybrid DFT methods or might be combined
with TDDFT. (7) There is also the possibility of us-
ing a new, more accurate MPn methods in connection
with model chemistry approaches such as Pople’s Gm
or related approaches. In short, any useful new MPn

method may trigger a dozen or more follow-up de-
velopments, most of which are not routine and may
require months of additional programming work.

Owing to space limitations, this review cannot
report on the work on PUMPn, restricted open-shell
MP (ROMP), and other related methods. The prob-
lems of spin contamination and orbital symmetry
breaking in UMPn theory have been investigated for
years and this has helped understanding the problems
connected with MPPT. Similarly, there is no space
available to describe the development of multirefer-
ence MPn methods, relativistic MPn, double-hybrid
DFT, and other methods, which would require long
sections or additional review articles focusing espe-
cially on one of these topics. Furthermore, it would
have been useful to give an account on high-accuracy
MPn properties, the use of MPn methods in model
chemistry methods, or the discussion of typical MPn
results. Also, not touched by this review is the use
of MPPT in connection with molecular vibrational
problems. These topics have to be left to other re-
views in this volume or forthcoming reviews in other
publication media.

In this review, the four different, partly over-
lapping stages of MPPT development during the past
80 years have been outlined. The first one was char-
acterized by little interest or even disregard of MPPT.
Then, after a revival of MPPT triggered by the suc-
cess of MBPT in nuclear physics, the actual sturm
and drang time of MPn in quantum chemistry fol-
lowed, closely connected with the names of Bartlett
and Pople. At the end of the 1980s, doubt and criti-
cism as to the physical meaning of MPn led to a short
period of turning away from MPPT and replacing it
by the more attractive CC and DFT methods. But al-
most simultaneously the focus on MP2 and the con-
version of the method into a linear scaling method
brought about a new interest into MPPT. Improve-
ment of MP2, especially in the last decade, has made
MP2 one of the two or three major tools (the other
being HF and DFT) while investigating very large
molecules.

In the years to come, quantum chemists have to
master the huge task of selecting the most useful MPn
method (first MP2, later perhaps MP3) out of a mul-
titude of possibilities, thanks to linear scaling prop-
erties, that can be used for the investigation of large
molecules with thousands of atoms. This method has
to fulfill a number of properties:

1. It must be size-extensive.

2. It must reproduce conventional MP2 proper-
ties as closely as possible; in any case, calcu-
lated trends (relative energies, etc.) must be
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identical to those obtained with conventional
methods.

3. The determination of analytical energy
derivatives must be straightforward.

4. Time savings must apply to both the method
itself and the calculation of energy deriva-
tives. In this connection, it is relevant that
some of the techniques discussed above offer
significant advantages when calculating the
analytical energy gradient and higher deriva-
tives.

5. The method in question must provide a con-
tinuous representation of the PES (this re-
quirement is overlapping with 3; however, is
more general then the latter).

Clearly, orbital-optimized MPn methods and
MPn-F12 methods will play a prominent role in the
future. A method such as RI/DF-LMP2-F12 has al-
ready been found to be both affordable and very
accurate,121 in which the linear scaling properties are
achieved by applying local F12, local RI/DF, and lo-
cal RI, the latter for the F12 part. Up to 87 atoms
and 3128 basis functions were calculated. (Werner
and coworkers121 suggest in this connection that the
method is a suitable starting point for future RI/DF-
LCCSD(T)-F12 calculations.) If, at the same time, bet-
ter than mean-field orbitals can be used, MP2 theory
will become a powerful tool in the hands of the quan-
tum chemists.

The coming years have to clarify which of the
methods suggested is the best linear scaling MP2
method fulfilling requirements 1–5. This method may
strongly change the way QM/MM methodology is
set up and how large molecules will be investigated
in the future. Probably, the MM part will be used ex-
clusively for the description of the solvent, whereas
biomolecules such as proteins or DNA can be fully
described at the MP2 level, improving perhaps the de-
scription of the core by employing CC theory. MP3,
previously considered to be a superfluous method,
can turn out to replace MP2 more and more. There
is no doubt that what takes place currently in single-
reference MPPT will have a stronger impact on mul-
tireference MPPT, relativistic MPPT, and DFT-MPPT
hybrid methods. It is also clear that many of the
techniques developed for MP2 will be transferred to
CC methods. It could be that, once low-scaling MP3
is found to be more attractive than MP2, another
paradigm shift from MPPT to CC theory could occur
because a method such as CCSD is only somewhat
more costly than MP3, but includes contrary to MP3,
orbital relaxation and infinite order effects. The first
steps in this direction have already been done. Now
in the year 2010, a huge development task is ahead
of quantum chemists, which involves probably more
research groups than ever before. It is not difficult
to foresee that within the next 3–5 years, this review
will become outdated because a wealth of new MPn
methods will emerge from what is available today in
MPPT.
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