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4.1
Introduction

Empirical relationships relating bond lengths to the corresponding bond stretching
frequencies or bond stretching force constants were first derived in 1920s (see
Table 4.1 for a summary) and have ever since been a topic of research on the nature of
the chemical bond [1-67). It is remarkable that in a time of easily accessible quantum
chemical results, there remains a need for empirically based estimates of either
bond lengths or stretching frequencies. There are three primary reasons why such
empirical rules and relationships are still valuable tools for modern research:
(1) Established relationships between bond properties add to our understanding of
the chemical bond, especially if they can be rationalized on a quantum mechanical
basis because bonding between atoms is a quantum mechanical phenomenon.
(2) There are experimental situations in which it is relatively easy to measure one
bond property but difficult to obtain other bond properties. For example, it is easier to
measure the vibrational spectra of a compound than to carry out a structural analysis.
This is especially true for solid materials that do not crystallize, molecules on a
surface, or molecules in some form of aggregation. If quantum chemical calculations
are feasible only for model systems rather than the actual targets of chemical
research, then vibrational spectroscopy may be the only tool for obtaining informa-
tion that provides an insight into bond properties. (3) In the realm of computational
chemistry, there is also a need for empirical relationships. They may be used to
determine suitable bonding force fields for molecular mechanics utilizing force
constant — bond length relationships. For quantum chemical geometry optimization,
there is the need to set up a guess matrix of energy second derivatives (the Hessian
matrix corresponding to the force constant matrix of a molecule), which is best done
with the help of available geometry information and a suitable force constant — bond
length relationship. For example, the standard procedure to calculate the geometry
of a molecule is based on an initial guess of the energy Hessian derived with the
help of the Badger rule {42, 55]. It is due to these three reasons that there is ongoing
research exploring the relationships between bond length r, bond stretching
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4.1 Introduction

frequency w or force constant k, bond order N, and bond dissociation energy D as is
documented by a significant number of research papers on this topic (for recent
work, see Refs [56-67]).

Investigations focusing on relationships between bond properties such as r, k, w,
N, and D are summarized in Table 4.1. Originally, such relationships were estab-
lished for diatomic molecules and later extended to polyatomic molecules. Attempts
have been made to verify and rationalize these relationships via model potentials for
diatomics as, for example, Morse potentials, modified Morse potentials, double-
reciprocal potentials (see entry 13, Table 4.1), single-reciprocal exponential potentials
(entry 15, Table 4.1), or more complex forms of the potential (entry 29, Table 4.1).
These relationships eventually led to the formulation of universal diatomic poten-
tials [68, 69] that attempt to define energy and spectroscopic properties of a universal
bond, which can be considered the equivalent of “the hydrogen atom in atom
spectroscopy” [70]. Clearly, the derivation and rationalization of fundamental rela-
tionships between various bond properties led to a better understanding of the
chemical bond. Therefore, it is appropriate to sketch the major steps in this
development stretching now over almost 90 years.

After preliminary work by Kratzer [1], Birge [2], and Mecke (3], Morse [4] was the
first to derive an empirical relationship between bond length and bond stretching
frequency in 1929 (entry 4, Table 4.1) for diatomic molecules. Badger criticized
the Morse relationship as being too limited in its practical application [6]. In 1934, he
proposed a new relationship (entry 6) for diatomic molecules that relates the
stretching force constant k to an effective bond length R obtained as the difference
between equilibrium bond length r. and an empirical parameter d;; characteristic of
the distance of closest contact between the bonded atoms. The experimental data
available to Badger suggested that dj; is the same for all atoms of period i bonded to
atoms of periodj. In 1935, Badger [9] generalized the relationship between k. and r to
polyatomic molecules by introducing an additional parameter (entry 7, c; or cum),
which also depends on the location of the bonded atoms in the periodic table. Despite
numerous alternative relationships suggested by various authors (entries 8-30;
interesting extensions by Huggins (11), Linnett (15), Gordy (20), Guggenheimer
(22)), the Badger rule was widely used until the early 1960s. In 1961, Herschbach
and Laurie [31] pointed out that the Badger rule was not providing reliable predictions
for heavier elements. Therefore, they suggested two major extensions of the Badger
rule (see entry 31), one of which expresses the bond length r. as a logarithmic
function of the stretching force constant again using parameters that depend just on
the periods i and j of the bonded atoms rather than the properties of these atoms
themselves. The other extends Badger’s rule also to cubic and quartic force constants
thus confirming that both harmonic and fundamental stretching frequencies can be
related to effective bond lengths. A cautious extension to polyatomic molecules
was also discussed for bonds of similar type, that is, which do not suffer “an abrupt
change” [31] in their properties when compared in a series of molecules.

The extension of the Badger-Herschbach-Laurie equations to metal-metal bonds
required extensive reparameterization as carried out by Harvey in 1996 (entry 54) or
the use of more elaborate exponential functions (Miskowski et al., entry 47). In 2000,

11
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Cioslowski and coworkers [58] investigated the applicability of Badger-type equations
to a test set of 108 diatomic molecules. They found that in a large number of cases the
Badger rule does not lead to satisfactory predictions of stretching force constants and
therefore cannot be considered a reliable tool for setting up the initial guess Hessian
matrix in quantum chemical geometry optimizations. This result was contrasted by
an investigation of Ohno and coworkers (entry 61), who could derive a simplified
Badger-type equation by using effective bond lengths in the study of 74 CX bonds
(X=C, 51, Ge, N, P, As, O, S, Se, F, Cl, Br) contained in polyatomic molecules. Kraka
and Cremer [67] made a similar observation when investigating some 46 isoelec-
tronic CO and CF ™ bonds. For the purpose of resolving these contradictory claims on
the applicability of the Badger-Herschbach-Laurie equations between bond length
and bond stretching force constant, there is the need to reinvestigate the physical
basis of Badger-type relationships and to obtain a reliable assessment of their
predictive value. We will approach this problem in two steps by first considering
diatomic and then polyatomic molecules. We will identify those physical effects
that influence the length of a chemical bond and, by doing so, clarify whether a
relationship between bond length and stretching force constant exists. Then, we will
determine those vibrational properties that lead to a description of chemical bonds in
polyatomic molecules. Clearly, these cannot be the normal modes measured in
infrared or Raman spectroscopy because they are in most cases delocalized, that is,
they reflect the movement of larger structural units of the molecule (if not to say the
whole molecule) rather than that of a specific bond within the molecule. In view of
the limited usefulness of measured vibrational data, it is questionable whether an
extension of the Badger rule to polyatomic molecules, as it was attempted in the past,
can be successful on a larger scale. To solve this problem, we will discuss the
difference between localized and delocalized vibrational modes, how the former can
be derived from the latter, and how they lead to an extension of the Badger rule
applicable to molecules.

4.2
Applicability of Badger-Type Relationships in the Case of Diatomic Molecules

A more general type of the Badger rule is given by Equation 4.1 [41, 71, 87]
ke(re—d)f = ¢ (4.1)

where the quantity (r.—d) is the effective bond length R, d and ¢ are constants
depending on the nature of atoms A and B, and the exponent p can take values
between 2 and 8 thus embedding the original Badger rule (Table 4.1: entries 6, 7, 9)
with p = 3. Alternative relationships with p = 2 (Table 4.1: entries 1, 28-30), p = 4 (2,
3,38),p=5(17),p =6 (4,5,8,12, 15, 16, 36, 39), or noninteger values of p between
2 and 6 (e.g, 21, 22, 25, 33, 34, 43) are summarized in Table 4.1. Apart from
Equation 4.1, relationships in the form of a power series (35), a logarithmic (11, 23,
31, 33, 44) or exponential dependence (50, 53) of r. on k. or vice versa were also
used as already mentioned in the introduction. Previous research could not clarify
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Figure4.1 Experimental bond stretching force constants k in mdyne/A are given in dependence of
the bond length r in A for diatomic molecules AB where atoms A and B belong to the first three
periods. Symbol k[i—j} denotes that an atom A from period i is bonded to atom B from period j.

which of the relationships (4.1) or their extensions in the form of logarithmic or
exponential functions is the most reliable and useful one.

In Figure 4.1, measured stretching force constants of 120 diatomic molecules in
their ground state composed of atoms out of the first three rows of the periodic table
and taken from the compilation of Huber and Herzberg [71] are plotted against the
corresponding experimental bond lengths. The essence of the Badger rule becomes
obvious from the diagram since it reveals that the data points cluster into six groups,
each of which can be connected by a function according to Equation 4.1. The six
groups correspond to the six possible ij combinations of periods (1-1, 2-1, 2-2, 3~1,
3-2, and 3-3). The corresponding bond lengths and stretching force constants are
listed in Table 4.2.

In all cases, exponent p is a fractional quantity, which increases from 3.18 (1-1) to
7.44 (3-3), thus revealing a strong dependence on the number of electron shells of
A and B in molecule AB, that is, on indices i, j and i + j. Clearly, by choosing
appropriate effective bond lengths with the help of close-contact parameters, it will be
possible to merge the six curves of Figure 4.1 into one. This, however, could become
problematic because of a large variation in the prefactor increasing from 2.8 to 602.
Testing various sets of Badger parameters given in the literature confirms that it
is not possible to obtain one generally applicable form of the Badger rule, the
Herschbach-Laurie variation, or any of the other forms suggested in the literature
(Table 4.1). There is the general trend that with the number of data points in a group
scattering increases and the reliability of any Badger-type relationship to predict
either bond length or force constant, once the other quantity has been determined,
decreases. Closer inspection reveals that especially cations and anions deviate from
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Table 4.2 Experimental bond lengths r and bond stretching force constants k of diatomic
molecules AB?.

No. Molecule r(A) k(mdyneA™") No. Molecule r(A) k(mdyneA™)
1 ('Y 0.741 5.75 61  SiH('[T)) 1.520 239
2 Hm+(Y,) 1052 1.60 62 SiH (’Y") 1474 271
3 He+(L)) 1081 3.40 63 SIHT('S")  1.504 2.67
4 He2+('Y,) 0704 12.80 64 PH(Y) 1.422 3.22
5  HeH+('S") 0774 4.94 65 PH (*II)) 1.407 2.86
6 LH('YT) 1.596 1.03 66 PH™(*I,) 1.435 3.04
7 BeH(’Y ") 1.343 227 67 SH(’TI,) 1.341 2.43
8 BeH ('LF) 1312 2.64 68 HCI('Y") 1.275 5.16
9 BH('L7) 1.232 3.05 69 HCI™ (*[1;) 1315 4.13
10 CH(IL,) 1.120 4.48 70 LiNa('}) 2.810 0.21
11 CcH (%) 1.089 4.48 71 Nao(*[]) 2.050 1.54
12 cH ('Y7) 1131 411 72 NafF('Y. ") 1.926 1.76
13 NH(CY) 1.036 5.97 73 Mgo('SST) 1749 3.48
14 NH™([],) 1.070 4.73 74 MgF(’S ") 1750 3.16
15 OH([])) 0.970 7.80 75 AINCTT) 1.768 3.03
16 OH ('Y7) 0.970 7.65 76 AlO(*Y ") 1.618 5.67
17 OH*(’Y) 1.029 5.41 77 AIF('Y7) 1.654 4.23
18 HF('Y7) 0.917 9.66 78 Si,(°27) 2.246 2.15
19 HF" (°T[)) 1.001 5.38 79 SIN(*Y ) 1.571 7.29
20 NeHT('SS') 0989 4.81 80 sio('y7) 1.510 9.24
21 HeNe* (') 1300 3.36 81  SiF(*IT)) 1.601 4.90
22 LL('Y,) 2.67 0.26 82 cP(*’y ) 1.562 7.83
23 LO(*[]) 1.695 2.08 83 PN('ST) 1.491 10.16
24 LF('Y7) 1.564 2.50 84 PO(’TI,) 1.476 9.45
25 BeO(*>.7) 1.331 7.51 8s ro (°Y ) 1.540 6.21
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Table 4.2 (Continued)

No. Molecule r(A) k(mdyneA™') No. Molecule r(A)  k(mdyneA™)
26 BeF(’L ") 1.361 5.60 86 PE(’Y7) 1.590 4.97
27 B.(Y,) 1.590 3.38 87 PF*(’[I,) 1.500 7.70
28 BN(CI]) 1.281 8.33 88 NS(*[1,) 1494 852

29 BO(’YL") 1.205 13.66 89 NST('ST) 1440 11.49
30 BOT('Y) 1.205 12.27 90 BeS('S"") 1.742 4.13
31 BF('YLY) 1.263 8.07 91 BS(*3"") 1.609 6.72
2 G('Y,) 1.243 12.16 92 CS(’:"1) 1.535 8.49
3 GO, 1.268 11.21 93 CST(*’SY) 1495 9.85
34 G (*[1.) 1.301 6.4 94 SO(*Y") 1.481 8.30
35 CN(LT) 1172 16.29 95 sOo*(*[1,) 1.424 11.62
36 CNT('Y) 1.173 15.74 96 LiCI('S") 2.021 1.42
37 co('T"H) 1115 19.80 97 LCI(*YF) 2180 0.79
38 COT(’R) 1.115 19.80 98 BeCI’S ") 1797 3.03
39 CE('YL) 1.272 7.42 99 BCI('YH) 1.716 3.47
0 N('YT[) 1.098 2295 100 CCI(*[],,,) 1.645 3.95
41 N7 (TI,) 1.193 15.98 101 NCI(Y ") 1.614 4.03
2 NSO 1.116 20.09 102 Clo(’[],) 1.570 471
43 NIT('S ) 1.132 15.85 103 CIF(*[],) 1.638 4.48
44 NO(’I1,) 1.151 15.95 104 BeAr*(*S7) 2.085 0.59
45 NO(*Y) 1.063 8.17 105 Nay('S°7) 3.079 0.17
46 NOT('SSt) 1116 24.84 106 NacCl('SS') 2361 1.09
47  NFCYL) 1.317 6.19 107 Mg('>2,") 3.890 0.02
48 0,°%) 1.208 11.76 108 Mgs('SS") 2142 2.26
49 0y ([1,) 1.350 5.60 109 MgCI*S ") 2119 1.79
50 07 (*I1,) 1.116 17.09 110 ALCY,) 2.466 0.97

(Continued)
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Table 4.2 (Continued )

No. Molecule r(A) k(mdyneA™) No. Molecule r(A)  k(mdyneA )
51 B('Y,) 1.412 4.70 111 AISCYY) 2.029 3.28
52 B0 1.880 1.46 112 AlC('Y7) 2130 2.08
53 F; (*T1,.) 1.322 6.45 113 SiCl(*[],) 2.058 2.63
54 FO(’T]) 1.326 5.41 14 Sis('S) 1.929 4.94
55 Ney (°S°0) 1.750 1.53 115 Py (*T1,5,) 1986 4.12
56 NaH('Y:" ') 1.887 0.78 116 PS(*II,) 1.900 5.06
57  MgH(’Y") 1730 1.27 17 $,(°3,) 1.889 4.96
58 MgH™('S7) 1652 1.65 18 s, (*I1,,) 1.825 5.88
59 AH('SY) 1.648 1.62 119 cL('y,) 1.988 3.23
60  AH"(°>7)  1.602 1.50 120 Clf (*[15,) 1891 429

a) Experimental values from Ref. [71].
Molecules AB are listed according to A{period i)-B(period j) combinations in the order 1-1, 2-1, 2-2,
3-1, 3-2, 3-3.

the Badger-type relationships obtained in the least squares sense. This is most
obvious for the 1-1 group that consists of just five data points, four of which belong
to cations (Figure 4.1, Table 4.2). Scattering is in this case so strong that the k—r
function given is no longer meaningful although it largely parallels those obtained
for the five other groups.

Henry and Swanton [45, 72| provided some evidence suggesting the existence of
a relationship between the bond length r.(AB) of bond AB and its associated
stretching force constant k.(AB). They used a modified Morse potential that fulfilled
in the case of diatomic molecules the following conditions:

1) The potential energy V must approach infinity for r — 0, which is not the case for
the general form of the Morse potential. Therefore, a hard sphere distance r, is
introduced, which leads to V(r < r,) = oc.

2) Vmeasured relative to the separated atoms A and B must approach zero for r — .

3) V must approach the value of D. for r — re.

The potential (4.2) fulfills conditions (1), (2), and (3).
V(r > 1) = De(l—e )2 —D, (4.22)
V(ry) =V, = De(1—e %m))2_p, (4.2b)

Henry and Swanton used Equation 4.2 to derive relationship (4.3) between the
harmonic frequency w. of a diatomic molecule and its bond length r. [72]:
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(re—ra)we = 2h(De/21)*In [1 + (V,/De 4 1)/7] (4.3)
Taking the derivative with regard to k. leads to

re=ra)  O(re—1) 0w e O(re—r,)
%k, oo, Ok 2k g (4.42)

0 (re—r) _ (=Va/h) (2uxe)? (4.4b)

ke R{(4Vaxe/i2ke) + 132 {1 + [(4Viaxen/H2ke) + 1}

where u is the reduced mass and x, the anharmonicity constant. For the case where
ke is large, the derivative (4.4) varies with k2, whereas for a small value of the force
constant variation takes place with k_ ! and otherwise with k. ¥ for 1 < p < 2. By this,
all possibilities of Equation 4.1 are accounted for, as becomes obvious when
calculating the derivative of Equation 4.1 leading to

O(re—d)
Ok.

= ck (17 (4.5)

where the exponent is between —1 and —2 depending on the value of p. The Badger
rule for diatomic molecules will be obtained if the hard sphere distance r, and the
associated potential V, do not change within a period, which would also require that
the bond dissociation energy D, varies only slightly within a period of the periodic
table. This, however, is generally not the case and therefore Badger-type rules will
hold only for closely related bonding situations in the case of diatomic molecules.

Next, we consider the physical effects determining the length of a chemical bond
and its associated bond stretching force constant. The latter reflects the strength of
the chemical bond, which in the general case is the result of a covalent contribution
(depending on the overlap of the atomic orbitals forming the bonding and anti-
bonding diatomic orbitals, their electron occupation, and the energy splitting
between them) and an ionic (polar) contribution (depending on the electronegativity
difference between A and B and the charge transfer resulting therefrom). Covalent
and ionic contributions also impact bond length. However, contrary to the bond
strength and the stretching force constant, the bond length depends on a third
quantity that can be related to the size of the atomic core or, alternatively, its
hard sphere size, which is related to the core size and also includes the effects of
the valence electrons. It is this third quantity that determines the magnitude of the
Badger parameter d;. Badger’s assumption that dj; is constant for all bonds formed
from period i atoms and period j atoms is not justified. The hard sphere size of an
atom depends on its charge and, accordingly, will be smaller for the cation and larger
for the anion compared to the size of the neutral atom. This fact is reflected in
Figure 4.1 where some of the strongly scattered data points correspond to charged
molecules. Smaller variations will also result if open and closed shell systems of the
same bond type are compared. In general, positively or negatively charged AB bonds
and excited states of a given molecule AB should involve atoms A and B with different
hard sphere sizes than those of the neutral ground state of AB.

nz
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In the set of diatomic molecules investigated in this work (Table 4.2), there are 20
molecules for which, besides the neutral state, there is also a charged state. Some of
them do not lead to a significant change in the hard sphere size because an electron is
added to a lone pair (or m) orbital not involved in bonding (see, for example, entries
15and 16inTable 4.2: HO and HO ~; also 10 and 11). Therefore, the variations found
for a bond AB in polyatomic molecules cannot be reflected by the limited number
of diatomic molecules investigated in this and previous studies. This would be given
only if, besides the ground-state molecules, a large body of data would also be
available for charged and excited states. Therefore, it is necessary to extend the
investigation of the Badger rule to polyatomic molecules and verify the following
two predictions based on the investigation of the diatomic molecules.

1) Badger-type relationships depending simply on period characteristic parameters
such as ¢;; and dy;, as is the case with diatomic molecules, are no longer applicable
to polyatomic molecules. They split up in AB bond-specific relationships that are
tulfilled for AB bonds with closely related electronic structure. AB bonds with
different hard sphere sizes will have to be described with other relationships.

2) In special cases, bond-specific Badger rules can collapse to a single rule. This is
likely to occur for bond types that share a common atom, for example, AB and
AC, provided the electronic structures of these bonds are related in such a way
that the hard sphere sizes of atoms B and C can be described with just one
parameter. In the following chapters, we will investigate these predictions in
detail. For this purpose, we have to clarify first how to determine bond-stretching
vibrations for polyatomic molecules that are localized in a bond and are not
contaminated due to the coupling with other vibrational modes.

4.3

Dissection of a Polyatomié Molecule into a Collection of Quasi-Diatomic
Molecules: Local Vibrational Modes

Vibrational modes are in most cases delocalized within a molecule. The properties
of these modes (frequencies or force constants) are not suitable for investigating
Badger-type relationships. Instead, there is the need for local mode information
that provides bond stretching frequencies or force constants, which are no longer
contaminated by contributions from other vibrational modes. For the purpose of
clarifying the relationship between delocalized normal and local internal coordinate
modes, we present here the theory of the adiabatic internal coordinate modes
(AICoMs), recently used to set up bond length-bond stretching force constant
relationships by Kraka and Cremer [67].

The standard method for calculating the vibrational spectra of polyatomic mole-
cules with K atoms is based on two major approximations [73, 74]. First, the
Born—Oppenheimer approximation is used, which leads to the separation of the
nuclear motion from the electronic motion and by this to the concept of the potential
energy surface (PES). The assumption is made that the nuclei of the molecule move
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as classical particles on the PES. Second, the vicinity of the minimum occupied by
the vibrating molecule in question is described by a Taylor expansion of V(x)

K rav o’3v
V(x) = V(0) + Z (5;,-)0 2 Z (ax ax) %
3' Z (axlaxjaxk) XiXjxp + -

In Equation 4.6, x describes the displacements of the nuclei from the equilibrium
positions at the minimum of the PES in the form of Cartesian displacement
coordinates (i.e., x = r—r. in case of a diatomic molecule)

(4.6)

X = (%1, Y1 21, - - - » X3K: V3K 23K) | (4.7)

The Taylor series is truncated after the quadratic term and since the first-order term
is zero at the minimum,

(a_v) =0 for i=1,...,3K (4.8)
Gxi 0

one obtains Equation 4.9

1 3K aZV 1 3K
which forms the basis of the harmonic (mechanical) approximation for describing
vibrational modes. In Equation 4.9, the constants f; represent the force constants,
which are collected in the Cartesian force constant matrix f.
If the molecule behaves as a classical particle on the PES, Newton’s second law
applies:

@fg( ~)_d
T TR T

Ke1 =my (4.10)

where K, | is the x-component of the force exerted on a nucleus I with mass mj, t the
time, X; the velocity, and p, the corresponding momentum. Newton’s second law
can be expressed in terms of kinetic energy T and potential energy V

ov djorT
_a;_dt(&;> (4.11)
Using mass-weighted coordinates,

£ = m/? (4.12)

Equation 4.11 can be simplified via (4.13)-(4.15)

A LV for i=1... 3K (4.13)
dt agl agl— or 1= 1..... .

119



120\ 4 Generalization of the Badger Rule Based on the Use of Adiabatic Vibrational Modes

d. 12 X

o5+ ’ZZ% fuEEL =0 (4.14)

dz‘sf 3K

_ﬁ'}‘zfijgj:o (4.15)
J

Equation 4.15 represents the vibrational equations, which can be solved by using
standard mathematical procedures.

It is advantageous to revert to Equation 4.11 and to consider two simplifications.
First, the representation of the harmonic potential is changed by a coordinate
transformation, which leads from the bilinear form (4.9) to a linear form depending
on a new set of coordinates, the so-called normal coordinates. Second, the vibrational
equations resulting from Equation 4.11 are rewritten in matrix notation using
the vector of Cartesian displacements x, the mass matrix M, and the force constant
matrix f. For example, the kinetic energy T of the vibrating molecule and the
harmonic potential V are expressed in this notation as

T(x) = %X'Mx (4.16)
1.
V(x) = Ex’fx (4.17)

Using the matrix notation and the normal coordinates, the vibrational problem can be
written in the form of the pseudoeigenvalue problem

fL = MLA (4.18)

in which A is the eigenvalue matrix with the Ny, = 3K—L vibrational eigenvalues
A, on the diagonal

by = 47 (w,)* for p=1,...,3K-L= Ny (4.19)

where o, is the harmonic vibrational frequency. The eigenvector matrix L contains
N,;» normal mode eigenvectors 1, as column vectors. In Land A, L eigenvectors and
eigenvalues correspond to overall translation and rotation of the molecule (L =5
for linear and L = 6 for nonlinear molecules), respectively. These eigenvalues are
equal to zero provided translational and rotational motions are completely inde-
pendent of the vibrational modes. This is true for the translational motions, but not
for the rotational motions, which couple with the vibrational motions because of
cubic terms in the potential energy function (4.6). Consequently, one finds
eigenvalues close to zero, which correspond to the overall rotation of the molecule.
The columns that correspond to translational and rotational modes are omitted
from matrix L.

Equation 4.18 reveals that the mass matrix represents a metric, which has to be
eliminated to convert Equation 4.18 to an eigenvalue problem. This leads to using
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mass-weighted Cartesian displacement coordinates as shown in Equations 4.12—4.15.
Normal coordinates Q are related to Cartesian coordinates according to

x=1Q (4.20)

The vibrational equations can also be formulated in an analogous way using internal
displacement coordinates g, which describe changes of internal coordinates (bond
length, bond angle, dihedral angle, etc.) instead of changes in atomic positions as
expressed by x.

q= (@, qn,)" (4.21)

For the transformation from internal to Cartesian coordinates, L additional coordi-
nates corresponding to external motions (rotations and translations) are derived,
which possess eigenvalues A; close to or equal to zero. The transformation from
Cartesian to internal coordinates is done with the matrix C

C=M'BG! (4.22)

where B is defined by Equation 4.23

Byi = (aqg—j?()) . | (4.23)

and G is the Wilson matrix [75].
G =BM'Bf (4.24)

The dynamics of the nuclear motions can be made independent of translations
and rotations and the vibrational problem is solved in the internal coordinates only.
The internal kinetic energy is given by

1
T(@) =547Gq (4.25)
and the potential energy is approximated in accordance with Equation 4.9 by

V(g) = %q"'Fq (4.26)
where F is the internal force constant matrix, given by
F = C'fC (4.27)
The vibrational equation in internal coordinates is given in Equation 4.28.
FD = G"'DA (4.28)

where D contains the normal mode vectors d,(n=1..... Nyip) given as column
vectors and expressed in internal coordinates. Equation 4.27 no longer contains the
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translational and rotational solutions and, consequently, D directly gives the trans-
formation from normal coordinates to internal coordinates.

q=DQ (4.29)

The relationship between eigenvectors 1, and eigenvectors d,, is provided by matrix
C according to

1, = Cd, (4.30)

The vibrational equations presented above show that the normal modes associated
with the normal mode frequencies w, are delocalized modes since each normal
coordinate is a linear combination of internal coordinate displacements. In the
following section, it has to be discussed under which circumstances one can expect
normal modes to be localized within a given molecular fragment associated with
a specific internal coordinate.

4.3.1
Localized Vibrational Modes

The degree of delocalization of a normal mode is primarily determined by the
amount of coupling between the internal modes contained in the normal mode. In
this way, the off-diagonal elements of the force constant matrix represent the
coupling force constants. This becomes clear when realizing that the “c-vectors” of
the transformation matrix C, each of which are associated with a given internal
coordinate, can be used as internal localized modes [76]. Hence, a normal mode
would be strictly localized if

(dy), = Om _ (4.31)
with 8,,, being the Kronecker delta. Equation 4.31 leads to
Lo =c¢, (4.32)

where itis assumed that u = n. Equation 4.32 will be fulfilled only if all displacements
along vectors ¢, and ¢,,(m # n) do not couple and a diagonal force constant matrix F
is obtained with all coupling force constants F,, = 0. This implies that electronic
coupling between the internal localized modes is zero. Second, there is always mass
coupling (due to the kinetic energy) between the ¢ vectors because the G matrix of
Equation 4.28 is nondiagonal. Mass coupling can be suppressed to some extent if, for
example, the reduced mass of a diatomic fragment is dominated by the mass of one of
the atoms as in the case of a CH bond. However, if the two masses are comparable
neither Equation 4.31 nor Equation 4.32 is true. Often, vibrational spectroscopists
assume diagonal character of the G matrix provided there is a large mass difference
between the atoms participating in the molecular motions since this assumption
provides the only basis to discuss measured frequencies in terms of local mode
frequencies.
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Apart from mass coupling (coupling due to the kinetic energy), which is always
present, there is electronic coupling (coupling due to the potential energy) as
indicated by finite off-diagonal elements of the force constant matrix expressed
in internal coordinates. Coupling constants are particularly large in the case of
bond-bond interactions as they occur in delocalized it systems or in strained cyclic or
polycyclic ring compounds. One observes that stretching force constants are the
largest constants in a molecular force field and that these force constants also show
the largest variation. Bending force constants are smaller than stretching force
constants and torsional force constants are in turn smaller than bending force
constants, at least as long as a torsional mode at a single bond is concerned. This
qualitative ordering of the magnitude of the diagonal force constants provides an
estimate of the coupling between stretching, bending, and torsional modes only if
the stretching and torsional modes couple only weakly [75, 77, 78].

The various forms of stretch—stretch couplings can be described in the following
way: (a) a coupling between symmetry-equivalent stretching modes, (b) coupling
between stretching modes involving the same atom combinations, and (c) coupling
between stretching modes involving different atom combinations. Only case (c)
causes coupling when the internal force constant-reduced mass ratio of the different
bond types are compatible, whereas cases (a) and (b) will always be present to some
extent if there exist several bonds of the same type in a molecule. Case (b) coupling
will be small if the internal force constants of two bonds are very different as in the
case of AB bonds of different bond order (e.g., C—C versus C=C). One internal
stretching mode can be decoupled from other stretching modes of the same type by
a change in mass as a consequence of isotope substitution so that the force
constant—-mass ratio considerably varies.

Localization of vibrational normal modes occurs in favorable cases with small
electronic and mass coupling effects between the internal motions, for example, for a
triatomic molecule such as HOCI where one internal stretching (OH stretching) is
largely decoupled from the other stretching mode (OCl stretching) and the bending
mode (HOCI bending). It is also reasonable to say that the bending vibration in HOCI
is decoupled from both stretching modes, that is, in HOCI there are three normal
modes, each of which is a largely localized vibrational mode associated with one of
the three internal parameters.

For a general polyatomic molecule, localization of a normal mode within a
particular molecular fragment is uncommon. For example, in aldehydes or ketones
the normal mode that is dominated by the C=O stretching vibration is measured as
a strong band in the area 1600-1800 cm~' where the exact position of the band
depends not only on the bond strength but also on the fact that the corresponding
normal mode is not localized in the C=0 group. In formaldehyde, acetaldehyde, and
acetone, the internal C=0 stretching mode contributes 89, 85, and 84%, respectively,
to the normal mode considered to represent C=0 stretching.

The discussion shows the dilemma of using normal mode properties to unravel
geometric or electronic details of a molecule without being able to separate effects
associated with different molecular fragments so that reliable information is gained.
Because of these reasons, AICoMs [79] were introduced to obtain local modes that
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are associated with a specific structural unit of a molecule without being contam-
inated by coupling with other vibrational modes.

432
The Adiabatic Internal Coordinate Modes

Each AICoM of a molecule is associated with just one internal coordinate g,,, that is,
itis independent of all other internal coordinates g,,(m # n). The construction of an
AICoM is based on how an internal coordinate mode v, would vibrate if the
associated internal coordinate were to be displaced by an amount g* in such a way
that the increase in the potential energy becomes minimal. To accomplish this
objective, mode v,, led by g}, (leading parameter principle [79]), must be constrained
to the molecular fragment associated with g,, that is, the rest of the molecule is
allowed to relax upon applying a perturbation g.. This is equivalent to minimizing the
potential energy given in normal coordinates Q under the constraint that the internal
coordinate displacement g, is kept constant (Equation 4.33a):

V(Q) = min. (4.33a)
gn = const. = g, (4.33b)

The potential energy V and the internal coordinate g, depend on the normal
coordinates according to Equations 4.34 and 4.35.

V(Q) = %zﬂ:kuQﬁ (4.34)
n=1
Nub .
0(Q) = _ DuQ, (4.35)

n=1

(see Equation 3.29) where k;, is the force constant for normal mode d,, and Dy, isan
element of matrix D of Equation 4.28. Equation 4.33a is solved with the help of the
method of Lagrange multipliers,

0
0Qy

[V(Q-A(g:(Q)~4,)] =0 (4.36)

where A is the Lagrange multiplier. Equation 4.36 leads to (4.37) and (4.38):

ovV(Q) ok o 194(Q)—qy)

30, 30, (qn(Q)—qn)*lT—o (4.37)
oV(Q) _ ,(04.(Q) g,

o =t 8
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where in Equation 4.38 it is considered that g,(Q) = g}, is a constant. When the
expression (4.34) for V(Q) and (4.35) for q,(Q) is inserted into (4.38), the result is

Nyib Niib

aQ ZZ vQy = ZDWQQ (4.39)

which leads to
kuQu = ﬂ.Dnu (4.40)

The solution of Equation 4.36 (which concerns internal parameter g,) for the uth
normal coordinate is

D
n)
Q" =17 (4.41)

where the superscript (n) of Q denotes a solution obtained under constraint (4.33b)
for g,. There is one such solution for each normal coordinate. When these solutions
are used to express the displaced internal parameter g, one gets

Nyib 2

q = ZDWQH = Z A (4.42)

p= i

which leads to expression (4.43) for the Lagrange multiplier

1
A= N q, (4.43)

2

u=1 k“

Equation 4.41 can be rewritten as
Dy

Q' =55 (4.44)
Dz,

which means that the constraint for internal coordinate g leads to a change in the
normal coordinates. The adiabatic internal mode a$ for internal coordinate Gn
expressed in terms of normal coordinates follows from (4.45):

Q' = (ad)dn (4.45)

The AICoM a,,Q can be transformed into an AICoM expressed in Cartesian coordi-
nates, a,, with the help of the L matrix.

a, = La% (4.46)

Hence, Equations 4.45 and 4.46 completely specify the form of an AICoM.
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433
Properties of Adiabatic Internal Coordinate Modes

Once an AICoM vector is known, one can define a force constant that corresponds to
the AICoM motion.

ki = a:f a, (4.47)

For deriving an AICoM frequency with the help of k7., one has to define the mass m,
that is associated with the AICoM. The latter has to fulfill two criteria. First, the
AICoM mass m? has to be extractable from the functional form of the internal
coordinate g,. Second, m% has to be directly connected to the vibrational motion a,
caused by a change in g,. While the potential energy has already been used to derive
the AICoM vectors, so far nothing has been said with regard to the kinetic energy T.
It has been shown that upon perturbation of the equilibrium geometry caused by a
change in the leading parameter, g}, the atoms of the molecule move in such a way
that the kinetic energy adopts a minimum and the generalized velocity g, becomes
identical to g;. Again, this leads to a constrained minimization problem, the solution
of which is found with the help of another Lagrange multiplier [79]. The results of
the derivation are

.k 1 afex
T(q,) = 5mi(a,) (4.48)
and
a_ (blan)z
v (4.49)

where vector b, corresponds to the nth column of the B matrix and where
bla, =1 (4.50)

since the AICoMs are properly normalized. Hence, the AICoM mass can be
recognized to be identical to a diagonal element G,, of the G matrix, which is a
generalization of the reduced mass to internal parameters connecting more than two
atoms. This is an indirect proof that the constraints put on Vand Tto get the AICoMs
are well chosen. With the AICoM force constant and the AICoM mass, it is
straightforward to obtain the AICoM frequency

, g\ /2
o? = (a, fa,Gpn)'* = (ﬁ) (4.51)
n

The force constant, frequency, and mass associated with a given AICoM for internal
coordinate g, provide the most important properties for its characterization. This
information can be used to investigate normal modes by considering them as being
composed of AICoMs. If one knows the decomposition of a normal mode in terms of
AICoMs, then one can clarify whether the normal modes are more or less delocalized
and what electronic or geometric information they contain.
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434
Characterization of Normal Modes in Terms of AICoMs

A chemist investigates and understands the molecular geometry and conformation
in terms of internal coordinates rather than in terms of Cartesian or normal
coordinates. All molecular structure information is detailed by listing the corre-
sponding internal coordinates. Therefore, it is justified to add to the static
representation of a molecule provided by the internal coordinates, a dynamic
representation provided by the AICoMs. Accordingly, the AICoMs can be used as
the dynamic counterparts of the internal coordinates to describe the normal modes
and by this the dynamic behavior of a molecule. The problem is that there are no rules
to define an amplitude that specifies to what extent a particular adiabatic mode a,, is
active in normal mode 1,. Therefore, criteria were set up that should be fulfilled
by a given definition of an amplitude, A,,, to guarantee a physically meaningful
characterization of normal modes (CNM ) in terms of AICoMs. These criteria are (1) the
symmetry criterion, (2) the stability criterion, and (3) the dynamic criterion.

1) The symmetry criterion expresses the necessity that symmetry-equivalent
adiabatic modes have to have the same amplitude in a normal mode provided
the normal mode retains this symmetry. ~

2) The stability of results concerns the independence of the AICoM amplitudes
from the choice of the internal coordinate set. The amplitudes should not change
significantly for a normal mode if they are calculated with different redundant
internal coordinate sets and the differences in the parameter sets only concern
coordinates irrelevant to the normal mode.

3) There must be a relationship between the amplitude A, of an AICoM contained
in a normal mode to the difference Aw,, = w,—w), in the way that a small
difference implies large amplitudes while large differences lead to very small
amplitudes. In other words, the scattering of points A, versus Aw,, = w,—w,
should be enveloped by a Lorentzian curve. If this is the case, one can say that the
dynamical origin of the normal mode principle (dynamical origin of normal mode
concept) is fulfilled.

The amplitude that fulfills the above three criteria and performs best is defined in
Equation 4.52

C fan?
Ao = L) (anlElan) (#52)

Amplitude A, of Equation 4.52 can be considered an absolute amplitude, but it is
common practice to renormalize A,, and to express it in percentage:

A
M A

It should be noted that the renormalized amplitudes of Equations 4.52 and 4.53 lead
to a description of the normal modes as it is often performed with the help of the

100 (4.53)
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CC, adiabatic mode CC, c-vector mode

Figure 4.2 Two internal vibrational modes of  indicated by solid arrows (strong movements)
bicyclobutane as described by adiabatic (left) or dashed arrows (weak movements). (All CH
and c-vector modes (right). Top: Folding motion  stretches on the left) Very small displacements
of the ring (C- - - C). Bottom: Stretching of the  are not shown for the sake of clarity (B3LYP/6-
bridge bond CCpigge. Atom movements are 31G(d,p) calculations).

potential energy distribution( PED) analysis [80-83]. However, the PED analysis suffers
from several deficiencies that can lead to nonphysical results as is demonstrated
by the following example.

PED and the CNM analyses with adiabatic amplitudes were carried out for
bicyclobutane (Figure 4.2), for which the normal modes had been calculated at the
B3LYP/6-31G(d,p) level of theory. For this purpose, a parameter set containing all CC
and CH stretches, the nonbonded “C - - - C stretching” interaction (see Figure 4.2) for
the description of the ring bending (puckering), and two HCC bends for each
hydrogen (in total 24 parameters) was constructed. If one compares the results of the
PED and the CNM analyses, a major difference in the description of the ring folding
and the bridge stretching motion is observed.

Figure 4.2 shows that the adiabatic modes for the ring folding (C - - - C stretching)
and the CCyyigge stretching are localized in the corresponding molecular fragments.
The movements of the hydrogen atoms follow that of the C atoms in the energetically
optimal way without carrying out a coupled CH stretching motion. In Figure 4.2, this
is indicated by dashed arrows giving the direction of the H atom movements. The
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CClridge stretching motion is similarly described by the c-vector motions even though
the movement of the H atoms is now stronger since it has to comply with fixed CH
bond distances, that is, all relaxations in the geometry because of CClridge stretching
are suppressed for those internal coordinates defined in the parameter set for
bicyclobutane. However, c-vector motion for ring folding (C - - - C stretching) differs
considerably from the corresponding AICoM in the way that the CH, carbons hardly
move. Instead, the hydrogens at the bridging carbons strongly move keeping the
CCprigge distance and those CCH bending angles defined in the parameter set
constant, while changing the angle HCCjyiqge (not contained in the parameter set),
which is of course a consequence of the construction of c-vector modes. Clearly, the
folding motion is not correctly described and this has serious consequences for the
PED analysis.

Both methods predict that for normal mode 1, the dominant contribution is the
folding motion of the ring (C - - - C stretching): It amounts to 34.8% according to the
CNM analysis and to 48.3% according to the PED analysis. However, for the latter
description ring folding is also dominant for normal mode 5. Actually, normal mode 5
consists of a vibration of the CCyigge and C - - - C fragments in such a way that when
the CCpigge bond becomes longer, the C- - - C distance becomes shorter, and the
hydrogens follow the vibration of the carbon atoms to which they are attached. The
CNM analysis based on adiabatic amplitudes describes mode 5 as being composed
of 40.1% stretching of the CC bridge bond and 28.5% of ring folding as reflected by
a vibration of the C - - - C unit. Hence, mode 1 possesses more ring folding character
whereas mode 5 is dominated by a vibration of the CC bridge. However, the PED
amplitudes suggest a contribution of 60% of ring folding C---C and 17.8% of
CCrigge stretching simply because the c-vectors provide a misleading description of
the folding motion as shown in Figure 4.2. Hence, the PED analysis suggests that
there is more than one ring folding motion in bicyclobutane, which makes little sense
and indicates that PED can lead to physically unreasonable descriptions due to the
mechanical behavior of c-vectors. This is confirmed by the CNM analysis based on
the AICoM amplitudes.

The example given (many more examples are found for mono- and polycyclic
molecules) reveals the deficiencies of the PED analysis, which primarily result from
the use of c-vectors. The disadvantages of the latter have explicitly been discussed in
theliterature [76]. The CNM analysis based on the amplitude A, of Equation 4.52 has
been applied with success in various investigations [84].

435
Advantages of AlICoMs

AlICoMs have the advantage that they are derived from a clear dynamic principle,
namely, the leading parameter principle, which points out that a single internal
coordinate g, (in general, a single internal parameter) defines the displacements of
the nuclei from their equilibrium positions and, by this, leads the internal mode a,,.
The leading parameter principle [79] implies a new set of Euler-Lagrange equations
because the generalized momenta for all other internal coordinates g,(m # n)
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become zero [79], which can be pictured in the way that all atomic masses outside the
molecular fragment are considered as massless points. Hence, the derivation of the
AICoMs follows the same procedure as the derivation of normal modes and it
has been shown that the solutions of the Euler-Lagrange equations for the AICoMs
are obtained by requiring that the potential energy V is minimized for a geometric
perturbation under the constraint that the perturbation is defined by g}, [79].

The second advantage of the AICoMs is that their properties, namely, adiabatic
force constant, adiabatic mass, and adiabatic frequency, are clearly defined and easy to
calculate. The adiabatic mass is a generalization of the reduced mass for diatomic
molecules and corresponds to G}, which adds credibility to the physical basis of
the AICoMs.

The third advantage of the AICoMs is that they lead to the CNM analysis of
normal modes in a more sound and physically meaningful way than, for example,
provided by the PED analysis. This is due to a clear definition of the amplitudes
Ay [85]. The CNM analysis provides an easy way of analyzing vibrational spectra
and quantitatively specifying the degree of delocalization of each vibrational mode.

As the fourth advantage, it has to be mentioned that the CNM analysis simplifies
the correlation of the vibrational spectra of different molecules.

The fifth advantage is that an AICoM intensity can be derived that can be used to
investigate the charge distribution within a molecule.

AICoMs are discussed in this chapter for the equilibrium geometry of a molecule.
However, they can also be defined and applied to a reacting molecule. In this case,
the AICoMs are based on generalized modes and are separately discussed in a one-
dimensional subspace, the reaction path, and a 3K-(L+ 1)-dimensional subspace
orthogonal to the reaction path. As has been shown by Konkoli, Kraka, and
Cremer [86, 87], the AICoMs lead in this case to a wealth of information and help
describe the reaction mechanism in great detail.

An important advantage. of AICoMs is that they can also be derived from
experimental vibrational spectra and establish in this way a solid connection
between theory and experiment. This is pointed out in the following.

Calculated AICoM frequencies and force constants suffer in the same way as the
frequencies and force constants of normal vibrational modes from the deficiencies of
the quantum chemical method used and the harmonic approximation employed in
standard calculations of vibrational spectra. Even when applying efficient scaling
procedures, there is no guarantee that ab initio frequencies accurately reproduce the
fundamental frequencies of the experiment. In view of this, it seems to be much more
useful to calculate the adiabatic frequencies in such a way that the experimental
frequencies of the fundamental vibrations are exactly reproduced. In this way, each
adiabatic internal frequency is the exact local mode counterpart of the measured
vibrational frequency.

Since an experimental vibrational spectrum can only provide the frequencies of the
fundamentals, it raises the question how the vibrational modes are to be obtained. In
principle, this is achieved by setting up a force field from available experimental
information and then using the theory described above. Alternatively, the force field
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can be calculated by correlation-corrected ab initio or DFT methods. Combining the
two sources of information, namely, experimental frequencies and calculated normal
modes, it is possible to determine that force constant matrix that in the harmonic
approximation would reproduce fundamental frequencies exactly. Clearly, the force
field obtained in this way is made up by effective force constants rather than pure
quadratic force constants since the elements of the force field not only have absorbed
all deficiencies of the quantum chemical calculation (correlation errors, basis set
errors) but also cover all anharmonicity effects, normally described by cubic and
quartic force constants. The use of this force field in the AICoM calculation leads to
adiabatic force constants and adiabatic frequencies, which directly correspond to
the measured vibrational spectrum and, therefore, can be used for analysis of the
vibrational spectrum and for the description of bond properties.

The theory needed to obtain experimentally based AICoM properties is described
in standard books on vibrational spectroscopy and can be summarized in the
following way [88]. If one considers the difference between experimental funda-
mental frequencies o, and calculated harmonic frequencies o, as a relatively small
error caused by a similarly small error in the force constant matrix, then one can
assume the changes in the normal mode vectors to be negligible and use first-order
perturbation theory to set up the corrected vibrational secular Equation 4.54

D(Fy +AF)DT = A+ AA (4.54)

where Fy, D, and A correspond to the force constant matrix, the eigenvector matrix,
and the eigenvalue matrix, respectively, of the ab initio or DFT calculation. It
holds that

DTF,D = A (4.55)

because the eigenvectors D are normalized with regard to G, that is, DDT = G.
Accordingly, one can write the equation for the first-order correction as

DTAFD = AA (4.56)
from which the correction for the force constant matrix results as
AF = (DH)'AA(D) ! = G'DAAD'G™! (4.57)

Hence, diagonalization of the experimentally determined correction matrix AA
leads to AF and the force constant matrix Fy+ AF, which correctly reproduces
experimental frequencies. Once the force constant matrix Fy + AF is determined,
one can apply the adiabatic mode analysis in the same way as it is applied to calculated
vibrational spectra.

Equation 4.54 can also be used if only part of a vibrational spectrum of a given
molecule has been measured. Those frequencies, which have not been experimen-
tally observed, can be taken from calculated spectra after appropriate scaling. In this
way, experimental adiabatic frequencies can be determined for any molecule, for
which sufficient infrared and/or Raman information is available.
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4.4
Local Mode Properties Obtained from Experiment

As was shown in the previous section, both the mass and the electronic coupling are
responsible for the delocalized nature of the normal vibrational modes. Apart from
this, there is the problem of Fermi resonances. The transformation that leads to a
separation of the quadratic terms in Equation 4.9 does not separate the cubic and
quartic terms of expansion (4.6). These anharmonic terms are responsible for the fact
that an overtone or a combination band can mix with the fundamental of a vibrational
mode. This phenomenon is called Fermi resonance and plays an important role in
vibrational spectroscopy [77, 78]. For example, the CH stretching modes undergo
Fermi resonances with the first overtone of the CH; and CH, bending modes
(both CCH and HCH bending). This leads to a shift in the CH stretching frequency
that makes the determination of a localized CH stretching frequency rather uncer-
tain [41, 89-94].

Actually, the CH stretching motion and other XH stretching motions might be
considered as being ideally suited to represent localized modes. For example, the
stretching of a terminal bond couples always less than the motion of a bond in a
central position of the molecule. Second, the mass ratio of a heavy atom X and H is
optimal to reduce mass coupling. Finally, there are little electronic coupling effects
between XH bonds with other bonds (with the exception of hyperconjugation and
anomeric effects). If one compares the coupling between symmetry-equivalent
stretching modes with the coupling between stretching modes involving the same
atom combinations, and the coupling between stretching modes involving different
atom combinations, then the first will always be present in symmetric molecules and,
therefore, it will be the most important coupling effect for CH bonds whereas the
second and third effects have smaller importance. Considering also Fermi reso-
nances, the chance of observing a localized CH or XH stretching motion in a
molecule is much smaller than might be expected. However, in certain situations
one can obtain local mode information nevertheless, which will be discussed in the
following section.

4.4
Isolated Stretching Modes

McKean considered the problem of deriving isolated CH stretching motions and
provided a simple solution by replacing in a given molecule all H atoms but the target
H by their D isotope thus yielding CD, H and CDH groups [41, 89-94]. The change in
mass decouples the remaining CH stretching mode from all CD stretching modes
and particularly those that previously (as CH stretching modes) coupled strongly
because of symmetry. In addition, one can make three other assumptions:

1) Due to isotope substitution, the CH stretching mode is largely isolated, which
means that it is decoupled not only from the CD stretching vibrations but also
from other stretching, bending, or torsional modes.
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2)  For transition from asymmetrical/symmetrical CH,, vibrations to an isolated CH
stretching mode, all anharmonicity effects stay the same.

3) After D isotope substitution, all Fermi resonances for the CH stretching mode
are suppressed.

As a result, the CH stretching mode is largely localized and the corresponding
mode frequency, that s, the isolated stretching frequency wis(cp), can be considered
to accurately reflect the value of a local mode frequency.

McKean prepared a large number of isotopomers to measure isolated CH
stretching frequencies and to investigate their dependence on geometric and
electronic features of a given molecule [41, 89-94]. He showed that in this way CH
bonds can be used as sensitive antennae or probes testing the properties of
molecules. While his first work just focused on CH bonds, he and his coworkers
studied later also other XH bonds (X: Si, Ge). In addition, other authors used
McKean'’s approach to describe local XH stretching modes [95-97].

Investigations involving other than CH bonds revealed the large difficulties an
experiment faces when a generalization of McKean’s approach is attempted. For the
purpose of decoupling one internal stretching mode from other stretching modes
of the same type, the change in mass by isotope substitution must be so large that it
significantly modifies the mass ratio. Replacement of ‘H by deuterium results in a
doubling of the mass and a satisfactory suppression of coupling and Fermi reso-
nances so that any residual coupling for the isolated CH stretching modes is
estimated to be less than 5 cm™'. For a CC bond, one would obtain a very small
effect if '*C is replaced by *C or even *C since the change in the mass ratio is
too small in these cases to play any significant role in the localization of the CC
stretching motion. Hence, this example demonstrates that the isolated stretching
frequencies are very useful quantities for the description of XH bonding in terms of
local modes. However, a generalization of this approach faces too many difficulties to
play any important role in the description of general AB bonds or when trying to verify
the applicability and limitations of the Badger rule. In this situation, theory has made
an important contribution.

Isolated stretching modes can be calculated for a given molecule containinga CH,
group by simply replacing for the calculation of the G matrix the masses of the
H atoms by those of the D isotopes but keeping for the isotopomer the force field of
the parent molecule. In this way, harmonic isolated CH stretching modes w'*° are
calculated, which can easily be compared with both McKean’s experimental i
values for CH stretchings and AICoM CH stretchings. B3LYP/6-31G(d,p) calcula-
tions produce isolated CH stretching frequencies, which correlate well
(R” = 0.985 [57]) with McKean'’s experimental ones. Calculating also the correspond-
ing AICoM CH frequencies reveals that AICoMs are the theoretical equivalences
of McKean’s isolated stretching modes:

a) There is a linear relationship between isolated CH stretching frequencies and
AlICoM CH stretching frequencies with a correlation coefficient of 0.997.

b) Since theisolated CH stretching modes can also be calculated, the equivalence of
AICoMs and isolated stretching modes can be quantified by the CNM analysis.
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With just a few exceptions discussed in the following, the overlap between
AICoM and isolated modes is above 99% (in two cases 98%).

c) Theisolated CH stretching modes are local modes that imply a relaxation of the
electron density distribution upon perturbation of the CH equilibrium bond
length. We find very similar relaxation effects for calculated stretching modes
and AICoM stretching modes.

Exceptions are found for alkines for which a residual coupling between CH
stretching and triple bond stretching is observed. Acetylenic hydrogens are not
completely isolated from the C=C stretching as reflected by an adiabatic overlap
amplitude A,,, which is smaller than 96% when the CH stretching AICoM of
H—CX is compared with the normal mode representing an isolated CH stretching
vibration. This explains why isolated CH frequencies 0, ata triply bonded C deviate
from the linear relation between CH(AICoM) and isolated CH stretching frequen-
cies [41). Coupling leads to an error of 45 cm™ ' in the isolated CH stretching
frequency of acetylene. Similar, but much smaller, residual mass and electronic
couplings probably exist for other CH couplings and explain the small scattering of
isolated stretching frequencies (errors about 5 cm™ ) relative to the corresponding
AICoM frequencies. Hence, one has to consider the residual coupling when one uses
isolated stretching frequencies as a tool for structural analysis.

The fact that the isolated stretching frequencies can be replaced by AICoM
stretching frequencies as their theoretical counterparts leads to a number of
advantages: (1) The linear relationship between isolated CH stretching frequencies
and CH bond lengths found by McKean and used to predict unknown CH bond
lengths with an accuracy of +0.001 A, once the isolated CH stretching frequency is
measured, is confirmed for AICoM CH stretching frequencies [57] where both
experimental or calculated values can be used. (2) Contrary to the determination of
isolating stretching frequencies, which so far could be carried out only for XH
bonds [41, 89-94], AICoM stretching frequencies can be easily determined for each
bond of a molecule and McKean relationships can be established for all types of
bonds. For example, it could be demonstrated that a quadratic relationship between
the AICoM CC stretching frequencies and the CC bond length exists [57].

442
Local Mode Frequencies from Overtone Spectroscopy

Another way of obtaining information on localized XH stretching modes is to record
overtone spectra of these vibrational modes [98]. Henry has pioneered this work by
showing that the higher overtones of an XH mode can be reasonably well described
with an anharmonic potential of a quasidiatomic molecule [98, 99]. Higher overtones
(Av > 3) of XH stretching modes reveal considerable local mode character. For
overtones with Av = 5, 6, one observes mostly one band for each unique XH bond,
even if there are several symmetry-equivalent XH bonds in the molecule. In
fundamental and lower overtone modes, there is always a splitting of the frequency
into, for example, a symmetric and an antisymmetric mode frequency of two
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symmetry-equivalent XH stretching modes, but this splitting virtually disappears for
overtones with Av > 5. In general, the different linear combinations of symmetry-
equivalent XH stretchings become effectively degenerate for the higher overtones.

Since the overtone intensity decreases for each higher overtone level, conventional
spectroscopy cannot be used for overtones with Av larger than 4. In gas-phase
investigations, the higher overtones are recorded by intracavity dye laser photoacustic
spectroscopy, which uses sophisticated techniques to enhance the signal to noise
ratio in the overtone spectra [98]. The local XH stretching modes are highly
anharmonic. The very presence of overtones indicates that XH modes are anhar-
monic where the more the anharmonicity increases the higher the overtone is.

The local mode behavior of the fifth overtone (v = 6) of CH stretching modes can
be verified by comparison with the corresponding AICoM frequency. In Table 4.3,
frequencies for the fifth overtone of CH stretchings of alkane, alkenes, and aromatic
molecules are listed [100-102]. The values for thiophene are taken from liquid-phase
spectra whereas all other spectra were measured for the gas phase at room temper-
ature. For isoxazole, there are only two overtone frequencies for the fifth overtone,
which suggests that the difference between the overtones of the stretching motions
of the C(4)H and C(5)H bonds are too small to be detected in the spectra. Similarly
for toluene, the overtone spectra cannot resolve any difference between the overtones
of the meta and para CH stretchings.

In Figure 4.3, AICoM frequencies w%(CH) are correlated with frequencies taken
from overtone spectroscopy (see Table 4.3). There is a linear relationship between the
two quantities (correlation coefficient R? = 0.990), which again confirms that
AICoMs are suitable local vibrational modes that are related to the local modes of
overtone spectroscopy.

The use of overtone spectroscopy as a means of obtaining information on local
vibrational modes and their properties is limited to terminal bonds, of which so far
only XH (X=C, N, O, S, and so on [103, 104]) bonds were investigated. Although
coupling due to the potential energy (electronic coupling) is significant only for
delocalized bonds, there is always coupling between local modes due to the kinetic
energy (mass coupling). This coupling will be weak in the overtone spectra if the mass
ratio between the two atoms of the bond considered is small as in the case of XH
bonds. The investigation of isotopomers improves the situation, but these improve-
ments are limited to XH bonds where the D,H mass ratio is favorable. Hence, a
generalization of the local mode description by overtone spectroscopy is not possible.

443
Local Mode Information via an Averaging of Frequencies: Intrinsic Frequencies

Spectroscopists have often tried to assess the properties of local modes by simple
averaging methods. For example, if two CH stretching modes in a CH; group interact
to give a symmetric and an antisymmetric stretching mode, one can estimate the
frequency of the corresponding local CH mode by taking the arithmetic mean of the
frequencies of the symmetric and antisymmetric CH stretching vibration. A theo-
retical approach based on this idea was suggested by Boatz and Gordon [105], who
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Table 43 Comparison of measured overtone frequencies for CH stretching (Av = 6) with the
corresponding B3LYP/6-31G(d,p) AICoM frequencies for various organic molecules.”)

Molecule Bond o Av=6
Methane 3129 16150
Fluoromethane 3074 15972
Chloromethane 3152 16216
Ethane 3085 15824
Ethene 3188 16550
Ethyne 3437 18430
Propane CHs, ip 3085 15845
CH;, op 3074 15746
CH, 3047 15562
Cyclopropane 3180 16504
Benzene 3186 16550
Furan C(0)—H 3285 17223
C(C)—H 3261 17121
Isoxazole C(O)-H 3273 171439
C(C)-H 3284 17143"
C(N)—H 3248 169117
Thiophene C(S)—H 3260 168907
C(C)-H 3218 167009
Propene =C—H{trans) 3195 16569
=C—H(cis) 3175 16395
H—(Me)C= 3138 16236
CH;, ip 3099 15895
CH;, op 3055 15681
n-Butane CH;, ip 3086 15829
CHj;, op 3074 15751
CH, 3036 15473
Isobutene - CH, 3186 16474
CH,, ip 3107 15978
CH;, op 3050 15628
Isobutane CH 3015 15305
CH;, ip 3065 15683
CH;, op 3079 15804
Toluene C(ortho)—H 3170 16430
C(meta)—H 3184 16543
C(para)—H 3188 16543
CH;, ip 3055
CH;, op 3062

@9 Measured frequencies from Refs [100-102). ip and op denote in-plane and out-of-plane hydrogen
atoms. All frequencies in cm ™.

derived the intrinsic frequencies ®2¢ as representatives of local mode frequencies
associated with an internal coordinate g,.

Nyib Nparm
2
(0P)? = : Zl P o2 (4.58)
u=1 m=
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Figure 4.3 Correlation of measured overtone frequencies Av = 6 for CH stretching modes with
the corresponding calculated adiabatic CH stretching frequencies. For details, see Table 4.3.

where P! leads to the PED amplitudes [105] and Npum defines the number of
internal parameters used in the set of internal coordinates. Np.rm Will be equal to N,
ifanonredundant parameter set is used; however, in general, Np,mm can be larger than
N, for the calculation of the intrinsic frequencies.

Equation 4.58 reveals that the intrinsic frequencies ®2¢ are constructed as an
average of those normal mode frequencies that have nonzero PED amplitudes for
the internal parameters g,. This averaging approach leads to problems when trying to
obtain reliable local mode information, which becomes obvious when comparing
intrinsic modes with AICoMs.

1) The intrinsic frequency is a frequency without a vibrational mode. This has to do
with the fact that the derivation of ®2° does not explicitly revert to a dynamic
principle. AICoM frequencies correspond to AICoM vectors, which in turn are
based on the leading parameter principle (the dynamic principle [79]) and the
modified Euler-Lagrange equations for the vibrational problem expressed in
terms of local modes.

2) The intrinsic frequencies are parameter set dependent whereas the AICoM
frequencies are completely independent of the size and the composition of the
set of internal coordinates used for the description of the molecular geometry.

3) Intrinsic frequencies can become negative for a true equilibrium geometry,
which is not the case for AICoMs.

4) Intrinsic frequencies reflect the molecular symmetry only when redundant
coordinate sets are used. AICoM frequencies comply with the molecular
symmetry, no matter whether redundant or nonredundant parameter sets are
used to describe the internal vibrations.

5) For the intrinsic frequencies, electronic and mass effects are not correctly
separated, which is a problem when discussing electronic effects in terms of
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Table 4.4 Intrinsic frequencies wB® and AICoM frequencies w? in cm™' given for 10 different
parameter sets of CH, as calculated at the HF/6-31G(d,p) level of theory.?.

1 2 3 4 5 6 7 8 9 10

wBC

CH, 3461 3452 3421 3322 3306 3286 3261 3261 3261 3261
CH, 3452 3421 3322 3306 3293 3276 3272 3261 3261
CH; 3421 3322 3306 3293 3276 3272 3261 3261
CH, 3322 3306 3286 3276 3261 3261 32061
H,CH, 1570 1563 1551 1529 1577 1419
H3;CH; 1563 1551 1529 1460 1419
H,CH, 1551 1577 1577 1419
H,CH; 1577 1577 1419
H;CH,4 1577 1419
H,CH; 1419
W}

All CH 3255 3255 3255 3255 3255 3255 3255 3255 3255 3255
All HCH 1560 1560 1560 1560 1560 1560

a) The composition of parameter sets 1-10 (top line) is obtained by adding internal coordinates in
the first column, that is, parameter set 1 contains just the CH; bond length, parameter set 2 the
bond lengths CH;, CH,, and so on.

intrinsic frequencies. However, for the AICoM frequencies electronic and mass
effects are clearly separated.

6) Asa consequence of (5), intrinsic frequencies do not only lack an intrinsic mode
but also an intrinsic force constant, which are both defined for AICoMs.

For the purpose of showing some of the deficiencies of the intrinsic frequencies,
in Table 4.4 intrinsic and AICoM frequencies for methane are listed employing
HF/6-31G(d,p) theory and using eight incomplete (nonredundant) parameter sets
(1-8 internal coordinates), one complete, nonredundant parameter set (3K—L=9
internal coordinates), and one overcomplete, redundant parameter set with 10
internal coordinates. From Table 4.4, it can be seen that the intrinsic frequencies
adopt different values for different numbers of coordinates in the parameter set. Even
worse, for a given parameter set the intrinsic frequencies can take different values
for symmetry-equivalent stretching and bending modes. Even for the complete,
nonredundant parameter set with nine parameters, the intrinsic frequencies for the
bending motions are different. When this is remedied in the way suggested by Boatz
and Gordon [105], the bending frequencies mB® become identical. Upon increasing
the parameter set, the intrinsic frequencies decrease toward the values of the
redundant set.

For the AICoM frequencies of methane, just two values are obtained, namely,
3255 cm™! for CH stretchings and 1560 cm ™! for HCH bendings, no matter how
many coordinates are used in the parameter set (see Table 4.4). It is obvious that the
intrinsic frequencies of the redundant parameter set are the only one that should be
compared with the AICoM frequencies and used for the discussion of electronic
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structure. However, it is by no means clear how intrinsic frequencies of similar
reliability are obtained for a larger molecule with no symmetry at all. We have found
in this work that for normal acyclic molecules using complete, nonredundant basis
sets the intrinsic frequencies of stretching modes may agree well with the adiabatic
frequencies. Problems arise with bending frequencies and even more with torsional
frequencies, which can become negative.

444
Compliance Force Constants

A way of obtaining local mode information, although it does not appear so on first
sight, is to use compliance force constants. The latter are obtained when expressing
the potential energy of a molecule in terms of generalized displacement forces rather
than internal displacement coordinates (see Equation 4.26) [106, 107]:

V(g) = %qug (4.59)

where the elements of the compliance matrix C are given as the partial second

derivatives of the potential energy V with regard to forces f; = —g; and f; = —g;:

_ 'V
ofiof

The gradient vector g, of Equation 4.59 can be obtained by differentiation of
Equation 4.26:

Cj (4.60)

g, = Fq (4.61)
thus yielding
1 ..
V(g) = Eq' F'CFq (4.62)

Comparing Equation 4.62 with Equation 4.26 clarifies that the compliance matrix
C is identical with the inverse of the force constant matrix:

C=F"! (4.63)

From Equation 4.61, one sees that

q=F'g (4.64)

Hence, the diagonal compliance force constant Cj; gives the displacement of internal
coordinate g; under the impact of a unit force while all other forces are allowed to
relax [107]. This leads to the fact that off-diagonal elements of C are largely reduced.
Although the compliance force constants are force constants without a vibrational
mode, there seems to be some relationship with adiabatic force constants and as
a result also with the local modes associated with the adiabatic force constants.
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The compliance force constants are largely independent of the internal coordinate
set used. In a similar way as the adiabatic force constants describe the strength of
a bond, the compliance force constants measure its weakness (the larger C(AB) the
weaker is bond AB, the smaller C(AB) the stronger is bond AB). Compliance force
constants have been used to describe the gallium, gallium triple bond [108], the
strength of the NN and CO bond in NNH © and COH ", respectively [109] or
H-bonding in Watson—Crick base pairs [110].

It will be interesting to derive the relationship between adiabatic and compliance
force constants and to investigate whether both force constants can be used in a
confirmative or even complementary way when describing chemical bonding.

4.5
Badger-type Relationships for Polyatomic Molecules

The vibrational spectra of 51 polyatomic molecules with a total of 170 different bonds
were analyzed for the purpose of determining adiabatic and c-vector vibrational
modes. Exclusively, those molecules were considered for which measured vibrational
data are available so that either directly or with the approach described in Section 4.3.5
experimental AICoMs and c-vector modes could be determined and compared
with the corresponding modes calculated at the B3LYP/6-31G(d,p) level of theory.
This objective of the current analysis limited the molecules investigated exclusively
to neutral closed shell systems with normal bonding situations. This has to be
considered when discussing the generalization of the Badger rule to polyatomic
molecules.

The analysis of the stretching force constants and frequencies provided new
insights into the usefulness of AICoMs. Calculated and experimental adiabatic
frequencies correlate with a correlation coefficient R? 0of 0.997. The harmonic AICoM
frequencies can be scaled down to experimental AICoM frequencies using a factor
of 0.963. Similarly, calculated AICoM stretching force constants, if multiplied by
0.928, satisfactorily agree with experimental AICoM stretching force constants.
Hence, it will be possible to base future studies on calculated adiabatic stretching
modes. The correlation of AICoM stretching frequencies and force constants with the
corresponding c-modes values led to a somewhat lower correlation coefficient R? of
0.988. Analysis of the data revealed that c-mode stretching force constants are always
somewhat larger than AICoM force constants where the difference k°—k* can be
considered as a measure for the degree of mode coupling of the bond stretching
vibration. For CH stretching force constants, deviations are between 0.05 and 0.10
mdyne/A, whereas for CC stretching force constants deviations increase to 0.2-0.3
mdyne/A. If carbon is bonded to a hetero atom, a further increase in the deviation
from AICoM force constants is found. However, deviations decrease when compar-
ing CX single bonds with double and triple bonds. Adiabatic and c-vector force
constants for triple bonds do hardly differ.

Not surprisingly, deviations as large as 1.9 mdyne/A are found for CC and CX
bonds in conjugated five- and six-membered rings. In general, strained cyclic and



4.5 Badger-type Relationships for Polyatomic Molecules

polycyclic systems lead to a relatively large coupling effect of bond stretching motions
with other stretching and bending motions. These observations clearly show that
c-mode vibrations mostly used in vibrational analysis are not suited to study bond
properties. It remains to be clarified why studies based on these modes could lead to
Badger-type relationships. A typical example is the study of Ohno and coworkers who
could derive a Badger-type relationship for 74 different CX bonds using c-vector
vibrational modes [61]. The CX double and triple bonds investigated outnumbered
the CX single bonds by a factor 2, that is, only a relatively small number of single
bonds were considered. Also, the number of cases with X belonging to the third or the
fourth period was large. Finally, all molecules with divalent Si or Ge were excluded
from the test set as was also the case for triply bonded Si and Ge. Hence, the set of
investigated molecules did not contain any “problem” cases and c-vector stretching
force constants, although contaminated by coupling contributions, seemed to verify
the Badger rule.

In Figure 4.4, the AICoM stretching force constants of 51 polyatomic molecules
are given in dependence of the corresponding bond lengths. Hence, Figure 4.4 is
based on the description of each polyatomic molecule as a collection of N quasi-
diatomics where N is the number of bonds in the molecule. In so far it is not
surprising that the diagrams in Figure 4.4 are closely related to those obtained for
diatomic molecules (Figure 4.1). However, one essential difference between the
Badger-type diagrams for diatomics and those for polyatomics becomes obvious: In
the case of the latter molecules, there is one k. —r. curve for each type of bond, that s,
the curves for OH, NH, CH, and BH bonds are all different, even though they seem to
be closely related. This also holds for the relationships describing CC, CN, or CO
bonds. We note that this observation is in agreement with the prediction made in
Chapter 4.2 and suggests that for each bond type AB specified by atoms A and B and

25

20

154

101

Adiabatic Stretching Force Constant k [mdyne/A]

T T
0.9 1 11 1.2 13 14 15 16
Bond Length r {A]

Figure 4.4 Adiabatic stretching force constants given in dependence of equilibrium bond lengths
both calculated at the B3LYP/6-31G(d,p) level of theory for polyatomic molecules.
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the electronic state of the polyatomic molecule an individual curve can be expected.
The curves grouped according to A(period i)—B(period j) combinations, however, do
not coincide.

We have used various ways of fitting the data in Figure 4.4: The original Badger
formula was tested, that is, (k%) '/* was plotted against r., but other possible
relationships were also tested, which led to (kgB)*” P with p=2, 4, 5, or 6 in the
general form of (4.65):

kP =are+b p=2-6 (4.65)
The results of these tests can be summarized as follows:

1) Badger’s rule is fulfilled for individual bonds of polyatomic molecules provided
that they are described by the AICoM concept and all bonds considered possess
similar electronic features. The correlation coefficients are between 0.98 and
0.99 or even higher. However, if cations, anions, or open shell cases are included,
the scattering of data points will increase as seen in the case of the diatomics.

2) According to the calculated correlation coefficients, there is hardly any difference
whether p= 3,4, 5, or 6is used in relationship (4.65). One can avoid relationships
of the form (4.65) by using the exponential form (4.66) previously suggested by
other authors (entries 31, 33, 47, 50, and 53 in Table 4.1):

ks = ae (4.66)

The exponential dependence of the adiabatic force constant on the calculated bond
length in Equation 4.66 accounts for all possibilities provided by Equation 4.65.

By defining an effective bond length, the curves of Figure 4.4 can be merged in one
XH and one CX curve (see, for example, Figure 4.5). This provides evidence that

25 1 1 1 1 1 I 1

Adiabatic Stretching Force Constant [mdyne/A]

1.15 1.2 1.25 13 1.]35 154 1.}15 15 1.55
Effective Bond Length R [A]

Figure 4.5 Merging of CX Badger-type relationships from Figure 4.4 by introducing an effective
bond length R.



4.6 Conclusions

a universal Badger-type relationship can be derived on the basis of hard sphere
adjustment parameters dap characteristic of A and B, their charge, and spin situation
rather than just the location of A and B in periods i and j. Work is in progress to
determine these parameters.

4.6
Conclusions

A universal relationship between bond length r(AB) and bond stretching force
constant k(AB) valid for both diatomic and polyatomic molecules can be derived only
if two major prerequisites are fulfilled.

1) The bond stretching force constant must correspond to a local stretching mode
that is characteristic of the bond AB only. A generally applicable way of deriving
local modes is provided by the adiabatic internal coordinate mode concept. As
described in this work, AICoMs can be determined for all bonds of a molecule
using either calculated or experimental vibrational mode frequencies. AICoMs
have been verified in this work as suitable local modes by comparing them with
McKean'’s isolated XH stretching modes and the local CH modes from overtone
spectroscopy. They differ from c-vector modes because the latter are contam-
inated by the coupling with other vibrational modes. The averaging of vibrational
frequencies to obtain local mode information is also not suitable because it can
lead to physically not meaningful local mode frequencies.

2) Inview of the increasing size of an atom A or B with the number of its electrons,
a universal bond length—force constant relationship must be based on effective
bond lengths, which are corrected for the different hard sphere sizes of A and B.
This work has shown that correction parameters cannot be uniformly defined for
all atoms of a period i and all atoms of a second period j. Instead, they have to
consider the charge and spin multiplicity of bond AB (or the molecule containing
bond AB). In addition, one has to consider that in strained molecules such as
cyclopropane the actual bond path is significantly longer than the internuclear
distance because of the (concave or convex) bond bending. Because of this, the
stretching force constant turns out to be smaller (indicating a weaker bond) than
the length of the bond might suggest.

The results obtained in this work indicate that different bonding situations (single,
double, triple bonded AB) of closed shell molecules can be described with just one
hard sphere parameter. Test calculations for cations and anions (not described in this
chapter) suggest that the number of parameters for a given bond AB will not be larger
than 3 or 4 because in this way cationic, anionic, closed, and open shell situations can
be described for a large body of molecules containing bond AB. Work is in progress
to determine hard sphere parameters for bonds formed by atoms of the first three
periods in a systematic way. This work will lead to a universal Badger-type relation-
ship that will facilitate the derivation of suitable initial guesses of the Hessian matrix
in quantum chemical geometry optimizations, the construction of force fields, and
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the prediction of bond lengths from measured vibrational data in surface studies,
for molecular aggregates, and catalysis. Conversely, calculated bond lengths can be
used to predict via the stretching force constant the strength of the bond.
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