
Dieter Cremer and Wenli Zou 

Local Vibrational Modes: 
A new Tool to Describe the  

Department of Chemistry, SMU 
Dallas, Texas 75275, USA 
E-mail: dcremer@smu.edu 

http://smu.edu/catco/ 

Electronic Structure of Molecules 

SWTCC, Texas A&M, Friday, October 26, 2012 



How to use computational methods  

for increasing the power of 

experimental methods ?  

Design of CalEx methods 

Calculational “Grafting” of Experimental Data 



Precise description of electronic structure  and bonding

with experimental means
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ED
MW

geometry

How to connect to bond strength and electronic structure?
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Modern Vibrational Spectroscopy

Inrared Raman

Surface Enhanced 
         Raman Spectr. (SERS)

Resonance Raman Spectroscopy

Tip Enhanced 
          Raman Spectr. (TERS)

High Performance Vibrational 
Spectroscopy

Two-dimensional IR
Nonlinear 2D IR

Fourier transform IR (FTIR)

Fourier transform Raman
Raman Optical Active Spectr. 
(ROA)

Coherent anti-Stokes Raman 
Spectroscopy (CARS)

Femtosecond Stimulated 
               Raman Spect.

Near IR and Far IR

Transmission IR

Diffuse Reflectance IR 
      Spect. (DRIFTS)
Reflection-Absorption IR 
         Spectr. (RAIRS)

Multiple Internal 
         Reflection Spectr.



Vibrational Spectroscopy 

tool for the description of  
 

Chemical Bonding 

as a generally applicable 



Molecular vibrations probe the strength 

of chemical bonds. 

 

Vibrational frequency and vibrational 

force constant of a stretching vibration 

can be related to the bond strength, i.e. to  

the Intrinsic Bond Dissociation Energy (IBDE) 

of a bond. 



Normal vibrational modes  

are always delocalized  

 

Individual bond stretching modes  

cannot be identified! 



Normal vibrational modes are always delocalized 
because of  

Mode-mode coupling  

i)  electronic coupling: non-diagonal 
             force constants 
ii) mass coupling: depends on ratio of  
            masses, direction of mode 
            vectors; closeness of eigen 

     values  
Fermi resonances 

Closeness of frequency and overtone 
identical symmetries 



Ni

C

C

C

C

O

O

O

O

9 atoms 3 x 9 - 6  =  21 modes

8 stretches

5 + 4 x 2 bends

Nickeltetracarbonyl



Normal vibrational modes of Ni(CO)4: Exp. frequencies 

Normal mode vibrations are decomposed into local modes 



Local Vibrational 
Modes 

  
Adiabatic Internal Coordinate 

Modes:  AICoMs 





The local vibrational modes are the true  
equivalent of the normal vibrational modes. 

For a given set of internal coordinates,  
there is only one set of local modes, 
which is directly related to the normal 
vibrational modes. 

• 

• 



How to get the 
normal vibrational modes? 







fx lµ  =  λµ
 M lµ

fx : Force constant matrix
M : Mass matrix

lµ : Normal mode vector

F:  Force constant matrix

G:  Wilson's G-matrix
dµ:  Normal mode vector

Basic Equations of Vibrational Spectroscopy

Cartesian Coordinate Space Internal Coordinate Space

:

Matrix C transforms the normal mode vector from internal to Cartesian coordinate space.

Fq dµ  =  λµ
 G-1 dµ

Fnm =  cn
† fx cm

q

lµ  =  C dµ

fx L  =   M L Λ Fq D  =   G-1 D Λ

λµ  =  4π2 c2 ωµ
2



How to get the 
Local Modes? 

Diagonalization of force constant matrix: suppression of 
                                 electronic coupling 
Then, we suppress   mass-coupling 



massless approximation

points of mass zero

Mass-Decoupling 

Electronic coupling is suppressed by finding the  
normal mode vectors. 
However, kinematic (mass) coupling) cannot be 
eliminated when obtaining the normal modes. 



Mass-Decoupling 

massless approximation

points of mass zero



Local Modes in the Harmonic Approximation

Assume that the vibrational problem has been solved, the potential energy V and an 

internal coordinate qn

 (x1, x2, ...., x3Kn)  

can be expressed as function of Nvib normal mode coordinates Qµ, and the 

corresponding force constants kµ:

V(Q)  =      Σ  kµ Qµ
21

2 µ=1

Nvib

qn(Q)  =      Σ  Dnµ Qµ
µ=1

Nvib

(1)

(2)

Matrix D collects the column vectors dµ, which  represent the normal modes µ 

in internal coordinate space.

qn



Leading the local mode by qn* and relaxing all other internal 
coordinates qm (Leading parameter principle): 

[ V(Q)  -  λ (qn(Q) - qn*) ]  =  0  ∂
∂ Qµ

(3)

Qµ
(n) =

Dnµ

kµ

λ

λ =
1

qn*

µ=1

Nvib

Σ
Dnµ

kµ

2

(4)

(5)

(6)

Qµ
(n) = Qµn

0 qn* (7)

qn(Q)  =   qn*



(an)µ =

Dnµ
kµ
Dnν2

kνΣ
ν=1

Nvib

The local modes are extracted out of the normal 
modes expressed in internal coordinates

Dnµ contribution of displacement qn to normal mode µ
kµ force constant of normal mode µ

Nvib  =  3N - 6

Elements µ of mode an associated with internal coordinate qn

anQ



Properties of Local Vibrational Modes 

K = L†fx L 

AICoMs 
adiabatic 
internal 
coordinate 
modes 



Compliance  
Constants 

Derived from the inverse of the force constant matrix 

Decius, 1953, 1963 



Potential energy V expressed in terms of generalized displacement forces (rather

than displacements

V(g)  =       g†  C  g V(q)  =       q†  F  q
1

2

1

2
rather than

q  vector of displacement coordinates

g  vector of displacement forces

F  force constant matrix

C  compliance matrix

g  =  F q

q  =  F-1 g   =  C g

Cii: displacement of internal coordinate qi under the impact of a unit force

       with all other forces are being relaxed (Cij largely reduced)

Large (small) displacement                weak (strong)  bond

Decius, 1953, 1963 

Compliance Constants 

Γ  = C =  F-1 



Compliance constants are not useful + are rarely used 

Calculation is too expensive 

They are often inaccurate 

They cannot be related to a vibrational mode 

They do not lead to a frequency or intensity 

Meaning of the off-diagonal elements ?  

Odd description of bond strength 

• 

• 

• 

• 

• 

• 



Local Mode Force Constants and Compliance Constants 

Fq = C†fx C 

C = L D-1  

K = L†fx L ka
(n) = (dnK-1dn

+)-1   

W. Zou, R. Kalescky, E. Kraka, and D. Cremer, J. Chem. Phys. 137, 084114 (2012) 





Compliance constants are not useful and superfluous 

Calculation is too expensive 

They are often inaccurate 

They cannot be related to a vibrational mode 

They do not lead to a frequency or intensity 

Meaning of the off-diagonal elements ?  

Odd description of bond strength 

• 

• 

• 

• 

• 

• 



What are stretching frequency 
and force constant of bond a-b of naphthalene?  

How do they compare to those of bonds b-c and c-d? 

a

b d
c



Napthalene:  Mode composition given in % 



Napthalene 

The 48  local modes are pure without any contamination  



How to relate local to normal modes ? 



Solution 

W. Zou, R. Kalescky, E. Kraka, and D. Cremer, J. Chem. Phys. 137, 084114 (2012) 



The C9-C10 stretching mode 
contributes to 5 different modes 
in the range 750 - 1580 cm-1 



Napthalene 

Adiabatic Connection Schemes 

local modes normal modes 

1 

2 

3 



Napthalene: Bond lengths do not always reflect the bond strength 

1.364

1.415

1.421

1.418

1.364

1.415

1.421

1.418

H H

H H

peri-repulsion

?

competing benzene rings

delocalized 10 π system
1 

2 

3 

4 



Napthalene: Determination of a bond order 



Badger Rule  

for 

Polyatomic Molecules 
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For the description of  
                  Chemical Bonds 

Stretching Force Constants 

Stretching Frequencies 
are more useful than  

electronic effect 

electronic and mass effect 

4π2µ  ν2 = k 

 ν2 = k / (4π2µ ) 	





effective bond length 

Force constant - bond length relationship 

For diatomics AB, Badger’s Rule, 1934 
 
ke ( re – dij)3  =  const 
 
dij depends on the positions of atoms A and B 
in the periodic table 

Generalization requires local force constants ! 
 
ke ( re – d)p  =  const; re = a ke

-1/p + b 
 
with 2 ≤ p ≤ 6, similar equations for ωe 
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Rules  

for 

Mode-Mode Coupling 



Adiabatic Connection Scheme and Coupling Frequencies  

Coupling Frequencies 

O1
H32H

asym. stretch 

sym. stretch 

bend red: stretches 
green: bends 

Water 

local modes normal modes 



Coupling Rules 

Equal masses Heavy - light - heavy 

Light -heavy -light 

small coupling 

large coupling 

largest coupling the mode vectors have to have parallel components;  
if they are orthogonal they do not couple 



Local Mode  

Intensities 



Infrared Intensity of Normal Vibrational Modes   



Infrared Intensity of  Local Vibrational Modes   



Infrared Intensity of  Local Vibrational Modes   

Internal Coordinate set 1

H-O-H H-O 23.4868 3 40.8595
H-O 23.4868 2   3.2361
H-O-H 69.1712 1 69.5078

H-O-D H-O 23.4868 3 24.7171
D-O 14.9527 2 11.2932
H-O-D 59.8634 1 59.5745

Internal Coordinate set 2

H-O-H H-O 23.4868 3 40.8595
H-O 23.4868 2   3.2361
H...H 1 69.5078

H-O-D H-O 23.4868 3 24.7171
D-O 14.9527 2 11.2932
H...D 1 59.5745

Molecule Parameter In
a µ Iµ

[km/mol] [km/mol]
Parameter In

a µ Iµ
[km/mol] [km/mol]

Molecule



Investigation of the  

Hydrogen bond 



red: stretches 
green: bends 
light blue:  
          torsions 
dark blue: 
     HB stretch 

Normal vibrational modes of the water dimer: Exp. frequencies 

Normal mode vibrations are decomposed into local modes 



Adiabatic connection scheme of the  
water dimer:  Exp. frequencies 

Local modes Normal Modes 

avoided crossing 



Adiabatic connection scheme of the  
water dimer:  Exp. frequencies 

Local modes Normal Modes 

lower range 

avoided crossing 

switch of mode 
character 



Adiabatic  connection 
scheme 

including IR intensities 

normal mode 
intensities 

local mode 
intensities 

HB stretch  

HB stretch  



Investigation of H-bonded complexes 

M. Freindorf, E. Kraka, and D. Cremer, Int. J. Quant. Chem. 112, 3174-3187 
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Applications: Investigation of 

H-bonding  
Dihydrogen bonding (borazene, etc.) 
Halogen Bonding 
Agostic / anagostic Bonding 
Extremely weak / strong Bonding 
Pnicogen Bonding 
Multiple bonds in TM complexes 
Gallium multiple bonds 
Bond pseudorotation 
Adiabatic puckering for aromaticity 
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Vibrational Spectroscopy

Measurements Computations

Local Modes

force constants
frequencies

Intensities

Bond strength (Stability)

dynamicstatic

ReactionEquilibrium

Atomic charges Bond moments

Normal Modes

Intensities

CalEx 
Method 
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