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How to use computational methods

for increasing the power of

experimental methods ?

Design of

Calculational “Grafting” of Experimental Data




Precise description of electronic structure and bonding
with experimental means

Tools
X-ray NMR MS VibSpec
ED IR

MW Raman

excited IPs
states EAs

geometry shifts fragm. bond
SSCC pattern strength

charge
distribution

How to connect to bond strength and electronic structure? l




Modern Vibrational Spectroscopy

—

Inrared

Near IR and Far IR
Fourier transform IR (FTIR)

Two-dimensional IR
Nonlinear 2D IR

Transmission IR

Diffuse Reflectance IR
Spect. (DRIFTS)

Reflection-Absorption IR
Spectr. (RAIRS)

Multiple Internal
Reflection Spectr.

High Performance Vibrational
Spectroscopy

Raman

Fourier transform Raman

Raman Optical Active Spectr.
(ROA)

Femtosecond Stimulated
Raman Spect.

Coherent anti-Stokes Raman
Spectroscopy (CARS)

Resonance Raman Spectroscopy

Surface Enhanced
Raman Spectr. (SERS)

Tip Enhanced
Raman Spectr. (TERS)




Vibrational Spectroscopy

as a generally applicable

tool for the description of

Chemical Bonding




Molecular vibrations probe the strength

of chemical bonds.

Vibrational frequency and vibrational
force constant of a stretching vibration

can be related to the bond strength, i.e. to

the Intrinsic Bond Dissociation Energy (IBDE)

of a bond.




Normal vibrational modes

are always delocalized

Individual bond stretching modes

cannot be identified!




because of

Mode-mode coupling

1) electronic coupling: non-diagonal
force constants

i) mass coupling: depends on ratio of

masses, direction of mode
vectors; closeness of eigen
values

Fermi resonances

Closeness of frequency and overtone
identical symmetries




Nickeltetracarbonyl

— > 3x9-6 = 21 modes

8 stretches

5+ 4 x 2 bends




Normal vibrational modes of Ni(CO),: Exp. frequencies
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Normal mode vibrations are decomposed into local modes




Local Vibrational
Modes

Adiabatic Internal Coordinate
Modes: AlCoMs
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Relating normal vibrational modes to local vibrational modes
with the help of an adiabatic connection scheme
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Information on the electronic structure of a molecule and its chemical bonds is encoded in the molec-
ular normal vibrational modes. However, normal vibrational modes result from a coupling of local
vibrational modes, which means that only the latter can provide detailed insight into bonding and
other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational
modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)] represent a unique set of local
modes that is directly related to the normal vibrational modes. The missing link between these two
sets of modes are the compliance constants of Decius. which turn out to be the reciprocals of the local
mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode
frequencies of any molecule can be converted into its normal mode frequencies with the help of an
adiabatic connection scheme that defines the coupling of the local modes in terms of coupling fre-
quencies and reveals how avoided crossings between the local modes lead to changes in the character
of the normal modes. ©@ 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747339]




e T[he local vibrational modes are the true
equivalent of the normal vibrational modes.

e For a given set of internal coordinates,
there is only one set of local modes,
which is directly related to the normal

vibrational modes.




How to get the

normal vibrational modes?




Solving the Euler-Lagrange Equations (I)

Ll‘()L(x,ic) B OL(x,%)

§ 1 e
dt 0t ox; -

where x is a displacement vector expressed in Cartesian coordinates

L(x,x) =T(x) - V(x) Lagrangian

1
T(x) = 5>'<TM>'<

M: mass matrix with atom masses m;

V(x) = %xffrsc

The solutions lead to the normal mode vectors 1, and the corresponding
normal coordinates (), according to

X = l/lQ}A
where ), oscillates with the frequency w,.
f*L = MLA Vibrational Eigenvalue Problem (Cartesian space)

where f* is the force constant matrix, L collects the vibrational eigenvectors
1, and M is the mass matrix of the molecule in question.

ibrational eigenvalues : A, = 4n°c"w
Vibrational eigenvalt A, = 47ic? ;21




Solving the Euler-Lagrange Equations (II)

The Euler-Lagrange equations can also be expressed in internal coordinates

Qm:

JdL(q,q)
‘()qm
d_ 9Lq.d)

— Im = p
d t'l AGm

1)771 =
Jor m=1,--- Npgq

for Npurq being the number of internal coordinates, which we specify for
reasons of simplicity to be N,q,.0 = Nyip.

) 1., 4. 1
L(q,¢) = gq*G g - §q*qu

where matrix G is the Wilson G-Matrix.

FD = G 'DA Wilson Equation




Basic Equations of Vibrational Spectroscopy

Cartesian Coordinate Space Internal Coordinate Space

— -1
1, = KMMIM Fid, = A, G d,

_ Ar2o2 o 2 q _
A, = 4m°ct F_=c¢'fc,

f* : Force constant matrix F: Force constant matrix

M : Mass matrix G: Wilson's G-matrix

lM - Normal mode vector du: Normal mode vector

L = MLA FiD = G1DA
\ /

Matrix C transforms the normal mode vector from internal to Cartesian coordinate space.




How to get the

|ocal Modes?

Diagonalization of force constant matrix: suppression of

Then, we suppress




Electronic coupling is suppressed by finding the
normal mode vectors.

However, kinematic (mass) coupling) cannot be
eliminated when obtaining the normal modes.




Solution:
Determine the mass-decoupled Euler-Lagrange Equations

The masses of a K,-atomic molecular fragment are given as m;, i = 1, -, 3K,.
All other masses are set equal to zero, which implies that the corresponding
momenta p; = 0.

Equations of motion:

for i=1,--- 3K,

for j=3K,+1,--- ,3N

oL

Pi = —— = M;T;

massless approximation ().‘Li

pj=0 for j=

Solution:

for i=1,--- 3K,
® points of mass zero

0_.

= - for j=3K,+1,--- 3N
().’l’j

Using
T = Tk(Niy -+, \3k,) k=1,--- 3K

and the above equations the time dependence of \; and x; can be found




Local Modes in the Harmonic Approximation ]

Assume that the vibrational problem has been solved, the potential energy V and an
internal coordinate q,,

(Xq, Xo, oo Xag) ———— Yn

can be expressed as function of Ny, normal mode coordinates Q,, and the

corresponding force constants k:
Nyib

V@ =5 2 k,Q) (1)

Matrix D collects the column vectors d, which represent the normal modes w

in internal coordinate space.




Leading the local mode by q,* and relaxing all other internal
coordinates q,, ( ):

qn(Q) = q," (3)

[viQ) - 2 (q.@-99] = 0 @

9
0Q,

D
Qu(n) _ o (5)

ku

1

Nyib D 2
ny
2 k

u=1 w

*

In (6)

0 *
QM(n) — QMn dn




The local modes are extracted out of the normal
modes expressed in internal coordinates

Elements u of mode a, associated with internal coordinate q,,

D,,

ku . anQ

Nvip p 2
nv

2

v=] v

D, contribution of displacement g, to normal mode w

k,  force constant of normal mode u

NVib — 3N - 6




Properties of Local Vibrational Modes

Local Mode Vectors

K™'d}
- dn K- . djl

a'n

Local Mode Force Constant

k™ = alKa, = (d, K 'df)™?

Local Mode Mass

m, = (bIM™'b,)™! = G}

nn

Local Mode Frequency

47"2‘?’2(Wc(zn))2 _ A‘-}(;"')Gnn adiabatic
internal
coordinate
modes

Local Mode Intensity




Compliance
Constants

Derived from the inverse of the force constant matrix




Potential energy V expressed in terms of generalized displacement forces (rather

than displacements

1 1
V(g) = 5 gt Cg rather than V(g) = By q" F q

. q vector of displacement coordinates
q

g vector of displacement forces
1y =
F'g=Cg F force constant matrix
C compliance matrix ' =C= F1

C,;: displacement of internal coordinate q; under the impact of a unit force

with all other forces are being relaxed (C;; largely reduced)

Large (small) displacement weak (strong) bond




Compliance constants are not useful + are rarely used

Calculation is too expensive

They are often inaccurate

They cannot be related to a vibrational mode

They do not lead to a frequency or intensity
Meaning of the off-diagonal elements ?

Odd description of bond strength




Local Mode Force Constants and Compliance Constants

F¢= D HLLD!'=(D')'KD"

Fa=CtxC

ri=(F9 ' =DK 'D LD

= Lt
(I‘q)n ) ‘ ka(n) — (dnK-1dn+)_1 K L fX L

which proves that

a

k™ =1/(Tpn = 1/T,

The reciprocal of the compliance constants of Decius are

the local mode force constants of Konkoli and Cremer.

W. Zou, R. Kalescky, E. Kraka, and D. Cremer, J. Chem. Phys. 137,084114 (2012)




20-
19 Stretching Force Constants
18-
17+

31 (C=C)

20 (C=0) \'.'\ 7(C=0)

<8 (c=N)

AN 16 (C=C)

V4 < 33 (N-H)

Inverse Stretching Compliance Constants [mdyne A™']

1/T =k,

S S S
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Local Mode Stretching Force Constants [mdyne A™"]

5 Bending Force Constants E
#9(C=N-H) -

X 34 (C=N-0)

%~ 35 (0-C-C)

20 (0-CO)\_
\.4.*\ 37 (C-C-C)

0.3_% 11 (F-C-C)

Inverse Bending Compliance Constants [mdyne A rad'z]

! 21 (C-C-C)
0.2 6 (Si-C-H)

11T =k,

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Mode Bending Force Constants [mdyne A rad?]




Compliance constants are not useful and superfluous

Calculation is too expensive

They are often inaccurate

They cannot be related to a vibrational mode

They do not lead to a frequency or intensity

Meaning of the off-diagonal elements ?

Odd description of bond strength




What are stretching frequency
and force constant of bond a-b of naphthalene?

How do they compare to those of bonds b-c and c-d?
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Local Mode Character [%)]
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Normal Mode

Napthalene: Mode composition given in %
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How to relate local to normal modes ?

Adiabatic Connection Scheme 1

D'F'D =K =D'G'DA  Wilson Equation

F* = A'KA Local Mode Representation of Force Constant Matrix

where A collects the local mode vectors:

A=K 'D'[(DK'D) |

subscript d denotes the diagonal terms of the matrix product

ATKAATH) =F*(A™Y) = (F4+ \FY)(A™)
= (A'D'G'DA)(A YA
with the diagonal matriz k, = Fy

Partitioning into a diagonal and an off-diagonal part (as done for the force

1

constant matrix) requires the same for matrix G™, which is not possible.




Adiabatic Connection Scheme II
The objective can be reached with the help of compliance matrix I'?
T)"'D=G 'DA
G[IT)'D=DA

G[(r?)"'D] = I’[(T")'D]A
GR=TR A

where a new eigenvector matrix R is introduced
R=T)"'D=FD=(D"'K

Adiabatic Connection Scheme

(Ga+ A G,) Ry = (T%+ A TY) RyA, Solution

where R and A depend on A.
The adiabatic connection scheme relates local to normal vibrational

modes in terms of their eigenvalues (frequencies) and eigenvectors
(mode vectors).

W. Zou, R. Kalescky, E. Kraka, and D. Cremer, J. Chem. Phys. 137,084114 (2012)
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0-C5-H15

Local Mode Character [%)]

161718192021 222324 2526 2728293031 323334 3536 37 38 39 40 41 42 434445464748'
N N N N 76995590 50 % S0
ST D O R S AR e T e 500,88 0 R SN

Normal Mode

The C9-C10 stretching mode
contributes to 5 different modes

in the range 750 - 1580 cm"’
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local modes normal modes

wag(Ag)

T T

w46(B1u)
wa(13),wa(14),wa(17),wa(18)

TTT T T TRT

®»
=3
a1
o

el

TTT T T

T

S A
ey P A e Lo 0a(12),03(15),04(16),0a(19) . ""“‘&g"
Ag 3065 C2-H12 13 5.089 3048.0 17.0 ) —_— Y
Bau 3060 C3-H13 5.089 3048.0 : ] w42(B1u)

By 3058 C6-H16 5.089 3048.0 A

3047 C7-H17 5.089 3048.0 K

w41(Bag)
3036 C1-H11 5.047 3035.5
3035 C4-H14 5.047 3035.5 ]
3031 C5-H15 5.047 30355 A 3025 T T
3027 C8-H18 5.047 3035.5 -8. 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
1624 c1-c2 1398.0 - Scaling Factor A
1601 C3-C4 6.909 1398.0
1577 C5-Cé 6.909 1398.0
1515 C7-C8 6.909 1398.0
1460 C9-C1-H11 0.249 1298.2
1460 C3-C4-H14 0.249 1298.2
1389 C10-C5-H15 0.249 1298.2
1376 C7-C8-H18 0.249 12973

1361 C1-C2-H12 0.248 1298.2 . v e b b b b b b v b b B B b b b B b bvwna enas
1269 C2-C3-H13 0.248 12973 Wa(2),wa(4),wa(7),wa(9)

1239 C5-C6-H16 0248 12973 35(20),0a(23),0a(24),0a(27),wa(21),wa(22),wa(25),wa(26)
1212 C6-C7-H17 0248 12973 . @a(5),004(6), a(10),wa(11),wa(3),@a(8)

1158 c2-c3 12602
1145 6-C7 5614 12602 .
1138 C1-c9 1258.0 i
1125 c4-c10 5505 1258.0
1025 5-C10 5595 1258.0
1008 8-C9 5595 1258.0
980  H12-C2-C1-C3 0298 839.4

T

Normal Mode Frequencies w, [cm"]

1
1

| w31(B1u),w30(Bag) w29(Bzu)
wa(1) | W28(Ag),w27(Bau), w2s(Bag), wa2s(B1u)
:’):223::’):3?}“’*36)"”a(39) w24(Ag), w23 (Bau) W22(Bag), a1 (Au)

970  H13-C3-C2-C4 0298 839.4
W20(B3y),w19(B1g),w18(B:
958  H16-C6-C5-C7 0298 839.4 1 mfg(Bzgg 19(B1g),w18(B3g)

943  H17-C7-C6-C8 0.298 839.4 w16(Ay

935 €9-C1-C2 2353 925.0 k | W15(B1u),014(Bsu),w13(B2g),w12(Ag)
876  H11-01-C9-C2 0293 8326 i ©05(29),w5(30),04(33),w4(34),00a(28),w4(31),0a(32), w4 (3 wn1(Brg)

Wa(45),W04(48),wa(44),wa(47),wa(43),w4(46,
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717 H18-C8-C7-C9 0293 832.6 ¥ N 04(42) | @3(B1u)
618 €10-C9-C1 2439 9169 wa(A),01(Bau)
618  C5-C6-C7-C8 0327 567.5 2 2%u), 1530
512 €9-C10-C5 2439 9169
506 €5-C6-C7 2.230 9004
476 CO-Cl-C-c3 P, . T T T e e
461 Cioitscecr 0325 5661 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Big 386  C10-C9-C1-C2 0340 565.7 . Scaling Factor A

;Y 359 c1-C2-C3 2230 9004

Ay 195  €9-C10-C5-C6 0340 565.7

1 B 176 _ C8-C9-C10-C4 D378 _S7le Adiabatic ConneCtiOn SChemeS

2 Bending and torsion force constants are given in (mdyn A)/rad?

eguencies w, [cm

Local Mode
Normal Mode Frequencies wy [cm"]
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Napthalene: Bond lengths do not always reflect the bond strength

ﬁ - ﬂ peri-repulsion

1.364

competing benzene rings

1
delocalized 10 &t system




Napthalene: Determination of a bond order

n = 0.30071 k,0-86°67 L
cetylene [

™\ Ethylene
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8 9 1011 121314151617
Local Mode Force Constant k, [mdyne A




Badger Rule

for

Polyatomic Molecules







For the description of
Chemical Bonds

4%u v2 =K

- electronic effect

Stretching Force Constants

are more useful than




Force constant - bond length relationship

For diatomics AB, Badger’ s Rule, 1934

Ke (1o —d;)°® = const

-
-

dIJ depends on the positions of atoms A and B
In the periodic table

—>~._Generalization requires local force constants !

~
~

ke (r,—d)P = const;r,=ak, " +b

with 2 < p < 6, similar equations for w,




Badger Relationships for 120 Diatomic Molecules

Experimental Values for AB
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Period i - Period j atom-atom bonding Experimental AICoMs
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Extending the Badger Rule from Diatomics to Polyatomics

ky(CC) = 56.866 r(CC)0-330

RA2 = 0.993
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Mode-Mode Coupling




Adiabatic Connection Scheme and Coupling Frequencies

Local Mode Frequencies w; [cm™)
Normal Mode Frequencies [em™)

red: stretches
green: bends

|' - 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
oupling Frequencies Scaing Factor

Param. Param. #

O1-H2 1
O1-H3 2
H2-01-H3 3




Light -heavy -light

Coupling Rules

small coupling

large coupling

largest coupling the mode vectors have to have parallel components;
if they are orthogonal they do not couple




Local Mode

Intensities




Infrared Intensity of Normal Vibrational Modes

3N/ op |2
lll = (877"1\"‘,-19/3/1-(}) a—(gl

§ = A L(MF)~1/2

with
M”? = LML

and A being the 3 x 3N dipole moment
derivative matrix (atomic polar tensor, APT)




Infrared Intensity of Local Vibrational Modes

d =A C DMF)"1/2
§=A (M'B'G™) D(M")/?

Application of the adiabatic approximation Dy—g = I, M¥_, = G, Gy—o =
Gy leads to

a - - 2
8" = AM'B'G;'GY
= AM'B'G,"?

i) isotope-independent
ii) parameter-independent.

Because of the parameter-independence, § can be defined for each local mode
n

6;11 = AM_lbL/ V Gan

Intensity of local mode n:

I = C(a7)'e;




Infrared Intensity of Local Vibrational Modes

Molecule Parameter L2 Molecule Parameter &
n w n

[km/mol] [km/mol] [km/mol] [km/mol]
Internal Coordinate set 1

H-O-H H-O 23.4868 3 40.8595 23.4868 247171
H-O 23.4868 3.2361 14.9527 11.2932

H-O-H 69.1712 1 69.5078 59.8634 59.5745
Internal Coordinate set 2

H-O-H H-O 23.4868 40.8595 23.4868 24.7171
H-O 23.4868 3.2361 14.9527 11.2932

H..H 69.5078 59.5745




Investigation of the

Hydrogen bond
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Normal vibrational modes of the water dimer: Exp. frequencies

Water Dimer Experimental Local Mode Decomposition

6 7
Normal Mode p

- | @ H6-04-H3
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H2

I \01— H3eeennes 04
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HS

_red: stretches
- green: bends
light blue:

torsions
dark blue:
HB stretch

Normal mode vibrations are decomposed into local modes




SALAA LA LA AL A LA A A AL L A2 ] LAl LA LAl LAl LAl AAL LAl LAl LA Al Lad i bbbl b A

arso-, Local modes Normal Modes el

wa(OI ‘HZ}

ﬂ_‘/ wa(01-H3)

W
(=]
(=
Q

] avoided crossing

wa'A' |

(=]
(=
Q

™ wa(H5-04-H6)

1550 —

Normal Mode Frequencies wy [cm"]

"E
S,

m
3
w
2
Q
c
3
o
o
(s
o
8
=
©
3]
3

L wa(H2-01-H3)
1500

0 005 010 015 020 025 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 080 085 090 095 100
Scaling Factor A

Adiabatic connection scheme of the
water dimer: EXp. frequencies
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Investigation of H-bonded complexes

M. Freindorf, E. Kraka, and D. Cremer, Int. J. Quant. Chem. 112,3174-3187
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Applications: Investigation of

--bonding

Dihydrogen bonding (borazene, etc.)
-Halogen Bonding

Agostic / anagostic Bonding
Extremely weak / strong Bonding
Pnicogen Bonding

Multiple bonds in TM complexes
Gallium multiple bonds

Bond pseudorotation

Adiabatic puckering for aromaticity
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Development and Application of AICoM Local Modes

http://smu.edu/catco/
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