Derivation of the Fundamental Equations of Vibrational Spectroscopy

Robert Kalescky
Southern Methodist University
CATCO
March 18, 2011

Overview

- Lagrangian
 - Overview
 - Cartesian and Internal Coordinates
 - Displacement Coordinates
 - Relationship Between Internal and Cartesian Coordinates
 - Kinetic Energy in Internal Coordinates
 - Potential Energy in Internal Coordinates
- Euler-Lagrange Equation
 - Overview
 - Newtonian Mechanics Example
 - Vibrational Euler-Lagrange Equation
 - Possible Solutions
 - Normal Mode Vectors
 - Normal Coordinate
 - Basic Equation of Vibrational Spectroscopy

Lagrangian for Vibrational Spectroscopy

- Lagrangian
 - Difference between kinetic and potential energy descriptions.
- Kinetic Energy
 - 3K Cartesian displacement coordinate velocity x elements.
 - M is a 3K symmetric square matrix of atomic masses.
- Potential Energy
 - 3K Cartesian displacement coordinate x elements.
 - f is a 3K symmetric square matrix of force constants.
- The dot indicates differentiation with respect to time.

$$L(\mathbf{x}, \dot{\mathbf{x}}) = T(\dot{\mathbf{x}}) - V(\mathbf{x})$$
$$= \frac{1}{2} \dot{\mathbf{x}}^{\dagger} \mathbf{M} \dot{\mathbf{x}} - \frac{1}{2} \mathbf{x}^{\dagger} \mathbf{f} \mathbf{x}$$

Cartesian and Internal Coordinates

- External References
 - The position of the atoms is with respect to external reference points such as the grid of Cartesian space.
- Internal References
 - The position of atoms are with respect to other atoms in the molecule.
 - Atomic positions are described using bond lengths and angles.

 Example of an External Reference

```
O -1.9 1.5 0.0
H -0.9 1.5 0.0
H -2.2 2.4 0.0
```

 Example of an Internal Reference

```
O
H 1 B1
H 1 B1 2 A2
```

B1 0.96 A2 104.5

Displacement Coordinates

- Displacement Coordinates
 - Cartesian displacement coordinates are the difference between a certain position and the equilibrium position.
 - Internal displacement coordinates are the difference between a certain internal coordinate and its equilibrium value.

$$\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}_e \equiv \mathbf{x}$$
$$\Delta \mathbf{r} = \mathbf{r} - \mathbf{r}_e \equiv \mathbf{r}$$

Potential Energy of Displacement

Potential Energy

 Describes the potential energy of a system connected with springs.

Hooke's Law

 Analogous to the integrated Hooke's Law equation with respect to x.

Displacement

 The potential energy is zero when the atoms are at their equilibrium distance from each other and greater than zero otherwise.

$$V(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\dagger} \mathbf{f} \mathbf{x}$$

$$F = -kx \to V = \frac{1}{2}kx^2$$

Kinetic Energy of Displacement

Kinetic Energy

 A function describing the kinetic energy of a vibrating molecule.

Atomic Motion

- The vibrating molecule's atoms have a kinetic energy proportional to the frequency of their oscillations.
- Analogous to ½mv²

$$T(\dot{\mathbf{x}}) = \frac{1}{2} \dot{\mathbf{x}}^{\dagger} \mathbf{M} \dot{\mathbf{x}}$$

Relationship Between Internal and Cartesian Coordinates

• The **B** Matrix

- Provides a relationship between internal and Cartesian coordinates.
- 3K L r internal displacement coordinates.
- 3K x Cartesian coordinates.
- B is a rectangular 3K by
 3K L matrix.
- It has no inverse.

$$\mathbf{r} = \mathbf{B}\mathbf{x}$$

$$B_{ni} = \left(\frac{\delta \mathbf{r}_{n}(\mathbf{x})}{\delta x_{i}}\right) \mathbf{x}$$

Kinetic Energy in Internal Coordinates

Kinetic Energy Description

 Because there is no inverse of B, there is no direct way to convert kinetic energy description using M into internal coordinates.

• The **G** Matrix

- The G matrix is the mass matrix in internal coordinates.
- It is a 3K L symmetric square matrix.

• The **K** Matrix

- The K matrix is the inverse of the G matrix.
- It is a 3K L symmetric square matrix.

$$T(\dot{\mathbf{x}}) = \frac{1}{2}\dot{\mathbf{r}}^{\dagger}\mathbf{K}\dot{\mathbf{r}}$$
$$K = G^{-1} = \left[BM^{-1}B^{\dagger}\right]^{-1}$$

Potential Energy in Internal Coordinates

- Potential Energy Description
 - -3K-Lr elements.
- The **F** Matrix
 - The force constant matrix in internal coordinates.
 - 3K L symmetric square matrix.
 - Each element is the 2nd
 derivative of the potential
 energy.

$$V(\mathbf{r}) = \frac{1}{2}\mathbf{r}^{\dagger}\mathbf{F}\mathbf{r}$$

$$\mathsf{F}_{ij} = \frac{\partial^2 V(\mathsf{r})}{\partial \mathsf{r}_i \partial \mathsf{r}_j}$$

Overview

- Lagrangian
 - Overview
 - Cartesian and Internal Coordinates
 - Displacement Coordinates
 - Relationship Between Internal and Cartesian Coordinates
 - Kinetic Energy in Internal Coordinates
 - Potential Energy in Internal Coordinates
- Euler-Lagrange Equation
 - Overview
 - Newtonian Mechanics Example
 - Vibrational Euler-Lagrange Equation
 - Possible Solutions
 - Normal Mode Vectors
 - Normal Coordinate
 - Basic Equation of Vibrational Spectroscopy

The Euler-Lagrange Equation

Lagrangian

- The difference of the kinetic and potential energies.
- The Lagrangian is a more kinetic and dynamic description versus the more potential and static based Hamiltonian description.

Euler-Lagrange

 The dynamics of the vibrating atoms in a molecule can be found by solving the system of Euler-Lagrange equations for i = 1,...,3K

$$L(\mathbf{x}, \dot{\mathbf{x}}) = T(\dot{\mathbf{x}}) - V(\mathbf{x})$$

$$\frac{d}{dt} \frac{L(\mathbf{x}, \dot{\mathbf{x}})}{d\dot{\mathbf{x}}_{i}} - \frac{L(\mathbf{x}, \dot{\mathbf{x}})}{d\mathbf{x}_{i}} = 0$$

Newton's Laws of Motion

- 1. A body in motion stays in motion until acted upon by an external force.
- A body acted upon by a force accelerates proportionally, F = ma.
- Forces between bodies are equal and opposite,
 F_{a-b} = -F_{b-a}

Lagrangian Mechanics

- Lagrangian mechanics is a different way of mathematically expressing Newtonian mechanics, but the physics stays the same.
- The primary advantage of using the Lagrangian is that it is not coordinate system dependent.
 - Changing from Cartesian coordinates to polar coordinates for some Newtonian problems can be tedious.
 - As the Lagrangian is not coordinate system dependent, changing coordinate systems for a particular type of problem are trivial.

- Principle of Least Action
 - The path through configurational space as a function of time is such that "action" is minimized.
 - The Lagrangian is chosen such that the path taken is the path of least action according to Newton's Laws.

$$L(\mathbf{x}, \dot{\mathbf{x}}) = T(\dot{\mathbf{x}}) - V(\mathbf{x})$$
$$= \frac{1}{2} m \dot{\mathbf{x}}^2 - V(\mathbf{x})$$

$$L(\mathbf{x}, \dot{\mathbf{x}}) = \frac{1}{2} m \dot{\mathbf{x}}^2 - V(\mathbf{x})$$

$$\frac{d}{dt} \frac{L(\mathbf{x}, \dot{\mathbf{x}})}{d \dot{\mathbf{x}}_i} - \frac{L(\mathbf{x}, \dot{\mathbf{x}})}{d \mathbf{x}_i} = 0$$

$$\frac{d}{dt} \frac{1}{2} m \dot{\mathbf{x}}^2 - V(\mathbf{x})}{d \dot{\mathbf{x}}_i} - \frac{1}{2} m \dot{\mathbf{x}}^2 - V(\mathbf{x})}{d \mathbf{x}_i} = 0$$

$$\frac{d}{dt} \frac{\frac{1}{2} m \dot{x}^2 - V(x)}{d \dot{x}_i} - \frac{\frac{1}{2} m \dot{x}^2 - V(x)}{d x_i} = 0$$

$$\frac{d}{dt} m \dot{x} - \frac{V(x)}{d x_i} = 0$$

$$m \frac{d}{dt} \dot{x} - \frac{V(x)}{d x_i} = 0$$

$$2^{\text{nd}} \text{ Law: } F = \text{ma}$$

$$m \ddot{x}_i + F_{V_i} = F_{T_i} + F_{V_i} = 0$$

$$F_{T_i} = -F_{V_i}$$

 2^{nd} Law: F = ma

Euler-Lagrange Equation

Euler-Lagrange

- The dynamics of the vibrating atoms in a molecule can be found by solving the system of Euler-Lagrange equations for i = 1,...,3K L.
- The vibrational Euler-Lagrange equation is found by substituting the vibrational Lagrangian into the equation.

$$L(\mathbf{r},\dot{\mathbf{r}}) = T(\dot{\mathbf{r}}) - V(\mathbf{r}) = \frac{1}{2}\dot{\mathbf{r}}^{\dagger}\mathbf{K}\dot{\mathbf{r}} - \frac{1}{2}\mathbf{r}^{\dagger}\mathbf{F}\mathbf{r}$$

$$\frac{d}{dt}\frac{\partial L(\mathbf{r},\dot{\mathbf{r}})}{\partial \dot{\mathbf{r}}_{i}} - \frac{\partial L(\mathbf{r},\dot{\mathbf{r}})}{\partial \mathbf{r}_{i}} = 0$$

$$\frac{d}{dt}\frac{\partial T(\dot{\mathbf{r}}) + V(\mathbf{r})}{\partial \dot{\mathbf{r}}_{i}} - \frac{\partial T(\dot{\mathbf{r}}) + V(\mathbf{r})}{\partial \mathbf{r}_{i}} = 0$$

$$\frac{d}{dt}\frac{\partial T(\dot{\mathbf{r}})}{\partial \dot{\mathbf{r}}_{i}} - \frac{\partial V(\mathbf{r})}{\partial \mathbf{r}_{i}} = 0$$

$$\mathbf{K}\ddot{\mathbf{r}} + \mathbf{F}\mathbf{r} = 0$$

Possible Solutions

- Possible solutions the Euler-Lagrange Equation
 - System of 3K L solutions.
 - v_k and ρ are appropriately chosen constants.
 - $-\lambda_k$ are vibrational eigenvalues from which the harmonic frequencies can be determined.
- The I Vector
 - Contains 3K L normal mode vectors.
- The possible solutions are substituted into the differentiated form of the Euler-Lagrange equation.

$$\mathbf{K}\ddot{\mathbf{r}} + \mathbf{F}\mathbf{r} = 0$$

$$\mathbf{r}_{i} = \mathbf{I}_{ik} \cos(2\pi v_{k} + \rho)$$

$$\ddot{\mathbf{r}}_{i} = -\lambda_{k} \mathbf{I}_{ik} \mathbf{r}_{i}$$

$$[\mathbf{F} - \lambda_{k} \mathbf{K}] \mathbf{I}_{ik} = 0$$

Normal Mode Vectors

- Normal Mode Vectors
 - Describe the motion of the vibrational normal modes.
- Example: Normal Modes of Water
 - Symmetric stretch.
 - Bending.
 - Asymmetric stretch.

Normal Coordinate

- Normal coordinates refer to the displacement of nuclei from their equilibrium positions during a normal mode vibration.
- A normal coordinate is a linear combination of mass weighted internal or Cartesian coordinate displacements.
- There is a single normal coordinate for each vibrational normal mode.
- Normal coordinates are required for a quantum mechanical versus classical description of molecular vibrations.
- The kinetic and potential energies are summed over i = 3K – L.

$$T(Q) = \frac{1}{2} \sum_{i} \lambda_{i} \dot{Q}_{i}^{2}$$

$$V(Q) = \frac{1}{2} \sum_{i} Q_i^2$$

Basic Equation of Vibrational Spectroscopy

- Basic Equation of Vibrational Spectroscopy
 - Provides connection between the 3K-L normal mode vectors I_i and their frequencies via Λ .
 - A is a matrix of which the diagonal elements are 3K-L vibrational eigenvalues from which the vibrational harmonic frequencies can be determined.
 - E is a unit matrix.
- Final Equation
 - Multiply from the left by K⁻¹ which is G.
 - The bracketed equations are equivalent.
 - The L matrix contains the normal mode eigenvectors.

$$[F - \lambda_k K]I_{ik} = 0$$

$$[GF - \lambda_k E]I_{ik} = 0$$

$$GFL = L\Lambda$$

Overview

- Lagrangian
 - Overview
 - Cartesian and Internal Coordinates
 - Displacement Coordinates
 - Relationship Between Internal and Cartesian Coordinates
 - Kinetic Energy in Internal Coordinates
 - Potential Energy in Internal Coordinates
- Euler-Lagrange Equation
 - Overview
 - Newtonian Mechanics Example
 - Vibrational Euler-Lagrange Equation
 - Possible Solutions
 - Normal Mode Vectors
 - Normal Coordinate
 - Basic Equation of Vibrational Spectroscopy

References

- 1. Kraka, E.; Cremer, D. Characterization of CF Bonds with Multiple-Bond Character: Bond Lengths, Stretching Force Constants, and Bond Dissociation Energies. ChemPhysChem **2009**, 10, 686-698.
- 2. Ochterski, J. Vibrational analysis in Gaussian. Gaussian Inc. **2000**.
- 3. Konkoli, Z.; Cremer, D. A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. International Journal Of Quantum Chemistry **1998**, 67, 1-9.
- 4. Cremer, D.; Larsson, J. New developments in the analysis of vibrational spectra On the use of adiabatic internal vibrational modes. Theoretical Organic Chemistry **1998**, 5, 259-327.
- 5. McQuarrie, D. A.; Simon, J. D. Physical Chemistry; A Molecular Approach; University Science Books: Sausalito, **1997**.
- 6. Atkins, P. W.; Friedman, R. S. Molecular Quantum Mechanics; 3rd ed.; Oxford University Press: Oxford, **1997**.
- 7. Woodward, L. A. Introduction to the Theory of Molecular Vibrations and Vibrational Theory; Oxford University Press: London, **1972**.
- 8. Gans, P. Vibrating Molecules; An Introduction to the Interpretation of Infrared and Raman Spectra; Chapman and Hall: London, **1971**.
- 9. Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; McGraw-Hill Book Company, Inc.: New York, **1955**.

Images

- 1. http://www.phy.cuhk.edu.hk/contextual/heat/tep/trans/solid_state_model.gif
- 2. http://disc.sci.gsfc.nasa.gov/oceancolor/additional/science-focus/ocean-color/images/47Z.jpg

Questions?