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Lagrangian for Vibrational
Spectroscopy

Lagrangian

— Difference between kinetic and
potential energy descriptions.

Kinetic Energy

— 3K Cartesian displacement
coordinate velocity X elements.

— M is a 3K symmetric square L(X,X) — T(X) _ V(X)
matrix of atomic masses. 1 1
Potential Energy — —)'(TM)'( — —fox

— 3K Cartesian displacement
coordinate x elements.

— fis a 3K symmetric square
matrix of force constants.
The dot indicates
differentiation with respect to
time.



Cartesian and Internal Coordinates

External References

— The position of the atoms
is with respect to external
reference points such as
the grid of Cartesian space.

Internal References

— The position of atoms are
with respect to other
atoms in the molecule.

— Atomic positions are
described using bond
lengths and angles.

 Example of an External
Reference

O -1.9 1.5 0.0
H -0.9 1.5 0.0
H -2.2 2.4 0.0

 Example of an Internal
Reference

O

H 1 B1

H 1 Bl 2 A2
Bl 0.96

A2 104.5



Displacement Coordinates

* Displacement Coordinates

— Cartesian displacement
coordinates are the
difference between a
certain position and the
equilibrium position.

— Internal displacement
coordinates are the
difference between a
certain internal coordinate
and its equilibrium value.



Potential Energy of Displacement

* Potential Energy 1.
— Describes the potential V(X) = EX fx
energy of a system connected
with springs. 1

e Hooke’s Law

— Analogous to the integrated
Hooke’s Law equation with
respect to x.

* Displacement

— The potential energy is zero
when the atoms are at their
equilibrium distance from
each other and greater than
zero otherwise.

F=—/<X%\/=§/(X2



Kinetic Energy of Displacement

* Kinetic Energy 1

— A function describing the T(X) = — X TMX
kinetic energy of a
vibrating molecule.

e Atomic Motion

— The vibrating molecule’s w W
atoms have a kinetic
energy proportional to
the frequency of their
oscillations.

— Analogous to ¥amv?



Relationship Between Internal and
Cartesian Coordinates
e The B Matrix

— Provides a relationship
between internal and
Cartesian coordinates.

— 3K—Lrinternal r=Bx
displacement
coordinates. _ or, (X) X
ni
— 3K x Cartesian 5X,-

coordinates.

— B is a rectangular 3K by
3K — L matrix.

— It has no inverse.



Kinetic Energy in Internal Coordinates

* Kinetic Energy Description

— Because there is no inverse of
B, there is no direct way to
convert kinetic energy
description using M into
internal coordinates.

e The G Matrix ) 1 e
— The G matrix is the mass matrix T(X) — gr Kr
in internal coordinates.

— Itis a 3K—L symmetric square _ _ -
matrix. K=G"'=|BM'B"
 The K Matrix

— The K matrix is the inverse of
the G matrix.

— Itis a 3K—L symmetric square
matrix.



Potential Energy in Internal

Coordinates
* Potential Energy
Description
— 3K—=Lrelements. 1
* The F Matrix V(r) = ngFr
— The force constant matrix 5
in internal coordinates. F - d V(r)
— 3K - L symmetric square / ar,.arj
matrix.

— Each element is the 2"d
derivative of the potential

energy.
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The Euler-Lagrange Equation

* Lagrangian L(x,X) = T(X) = V(X)
— The difference of the kinetic : :
and potential energies. d L(XX) _ L(X,X) -0
— The Lagrangian is a more at dX,- aX;

/
kinetic and dynamic

description versus the more

potential and static based
Hamiltonian description.

* Euler-Lagrange

— The dynamics of the vibrating
atoms in a molecule can be
found by solving the system
of Euler-Lagrange equations
fori=1,...,3K



Euler-Lagrange Example

Newton’s Laws of Motion Lagrangian Mechanics
: - - * Lagrangian mechanics is a
1A quy n mohon stays in different way of mathematically
motion until acted upon by expressing Newtonian mechanics,
an external force. but thc? physics stays the same.
* The primary advantage of using
2. Abodyacted upon by a the Lagrangian is that it is not

coordinate system dependent.

force accelerates , _
— Changing from Cartesian

proportlonally, F = ma. coordinates to polar coordinates
. for some Newtonian problems can
3. Forces between bodies are be tedious.
. — As the Lagrangian is not coordinate
equal and opposite, system dependent, changing
F . =-F coordinate systems for a particular
a-b b-a

type of problem are trivial.



Euler-Lagrange Example

* Principle of Least Action

— The path through
configurational space as
a function of time is such
that “action” is
minimized.

— The Lagrangian is chosen
such that the path taken
is the path of least

action according to
Newton’s Laws.



Euler-Lagrange Example

L(X,X) = %mx2 —V(x)

d L(x,x) L(x,X) _ 0
at ax,  dx,

/

1 1 .,
d me —V(x) me —V(X)

ot aX; aX;

/ /




Euler-Lagrange Example

mX,+F, =f +F, =0
F=-F,

2nd L aw: F = ma

3rd LaW: Fa—b - _Fb—a



Euler-Lagrange Equation

* Euler-Lagrange 1

— The dynamics of the Lir,t)=T@F) - V()= =r"Kr- erFr
vibrating atoms in a 2 2
molecule can be found by @ JL(r,r) B oL(r,r)

solving the system of Euler- ¢ of, or, =0

L tions f . :

1kl T dATOHVE) _ATO+V) _
— The vibrational Euler- at 8[‘, ar/

Lagrange equationis found ¢ d7(f) dV(r)

by substituting the at of - r =0

vibrational Lagrangian into /

the equation. Ki+Fr=0



Possible Solutions

e Possible solutions the Euler-
Lagrange Equation
— System of 3K — L solutions.
— v, and p are appropriately

chosen constants. Ki+Fr=0
— A, are vibrational eigenvalues
from which the harmonic r. — I'k COS(27TVK + p)
frequencies can be determined. /
* Thel Vector I’, —7Lk|lkl’
— Contains 3K—=L normal mode
vectors. [F /1 K] ik O

* The possible solutions are
substituted into the
differentiated form of the
Euler-Lagrange equation.



Normal Mode Vectors

e Normal Mode Vectors

— Describe the motion of
the vibrational normal
modes.

* Example: Normal

Modes of Water

— Symmetric stretch.

— Bending.

— Asymmetric stretch.

19



Normal Coordinate

Normal coordinates refer to the
displacement of nuclei from their
equilibrium positions during a
normal mode vibration.

A normal coordinate is a linear
combination of mass weighted
internal or Cartesian coordinate
displacements.

There is a single normal
coordinate for each vibrational
normal mode.

Normal coordinates are required

for a quantum mechanical versus
classical description of molecular
vibrations.

The kinetic and potential energies
are summed over i = 3K — L.



Basic Equation of Vibrational
Spectroscopy

e Basic Equation of Vibrational
Spectroscopy
— Provides connection between the

3K-L normal mode vectors |. and
their frequencies via A.

— Ais a matrix of which the diagonal

elements are 3K-L vibrational -
eigenvalues from which the F — )’kK] I/k =0

vibrational harmonic frequencies
can be determined. [ . ] _
— Eis a unit matrix. GF lkE I/k =0
* Final Equation GFL = LA
— Multiply from the left by K-* which
is G.
— The bracketed equations are
equivalent.

— The L matrix contains the normal
mode eigenvectors.




Overview

* Lagrangian

Overview

Cartesian and Internal Coordinates

Displacement Coordinates

Relationship Between Internal and Cartesian Coordinates
Kinetic Energy in Internal Coordinates

Potential Energy in Internal Coordinates

* Euler-Lagrange Equation

Overview

Newtonian Mechanics Example
Vibrational Euler-Lagrange Equation
Possible Solutions

Normal Mode Vectors

Normal Coordinate

Basic Equation of Vibrational Spectroscopy



References

1. Kraka, E.; Cremer, D. Characterization of CF Bonds with Multiple-Bond Character: Bond Lengths,
Stretching Force Constants, and Bond Dissociation Energies. ChemPhysChem 2009, 10, 686-698.

2. Ochterski, J. Vibrational analysis in Gaussian. Gaussian Inc. 2000.

3. Konkoli, Z.; Cremer, D. A new way of analyzing vibrational spectra. |. Derivation of adiabatic
internal modes. International Journal Of Quantum Chemistry 1998, 67, 1-9.

4, Cremer, D.; Larsson, J. New developments in the analysis of vibrational spectra On the use of

adiabatic internal vibrational modes. Theoretical Organic Chemistry 1998, 5, 259-327.

5. McQuarrie, D. A.; Simon, J. D. Physical Chemistry; A Molecular Approach; University Science
Books: Sausalito, 1997.

6. Atkins, P. W.; Friedman, R. S. Molecular Quantum Mechanics; 3rd ed.; Oxford University Press:
Oxford, 1997.

7. Woodward, L. A. Introduction to the Theory of Molecular Vibrations and Vibrational Theory;
Oxford University Press: London, 1972.

8. Gans, P. Vibrating Molecules; An Introduction to the Interpretation of Infrared and Raman
Spectra; Chapman and Hall: London, 1971.

9. Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; McGraw-Hill Book Company, Inc.:
New York, 1955.

Images
1. http://www.phy.cuhk.edu.hk/contextual/heat/tep/trans/solid_state_model.gif
2. http://disc.sci.gsfc.nasa.gov/oceancolor/additional/science-focus/ocean-color/images/47Z.jpg



Questions?



