
STREAM: A FRAMEWORK FOR DATA STREAM

MODELING IN R

 Approved by:

Michael Hahsler, Ph. D.

Margaret H. Dunham, Ph. D.

Prof. Mark Fontenot

STREAM: A FRAMEWORK FOR DATA STREAM

MODELING IN R

A Thesis Presented to the Graduate Faculty of

Bobby B. Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Bachelor of Science

with a

Major in Computer Science

by

John Forrest

Expected B.S. CSE, Southern Methodist University, 2011

stream: A Framework for Data Stream Modeling in

R

John Forrest
Southern Methodist University

Abstract

In recent years, data streams have become an increasingly important area of research.
Common data mining tasks associated with data streams include classification and clus-
tering. Due to both the size and the dynamic nature of data streams, it is often difficult
to obtain real-time stream data without the overhead of setting up an infrastructure that
will generate data with specific properties. We have built the framework in R, a popular
tool for data mining and statistical analysis with the intent that researchers will be able
to easily integrate our framework into their existing work. In this paper we introduce the
implementation of stream, an R package that provides an intuitive interface for experi-
menting on data streams and their applications. stream is a general purpose tool that
can model data streams and perform data mining tasks on the generated data. It allows
the researcher to control specific behaviors of the streams so that they create scenarios
that may not be easily reproducible in the real-world, such as the merging and splitting
of clusters. Additionally, it has the ability to replay the requested data for other data
mining tasks if needed, or read data streams from other sources and incorporate them
into the framework.

Keywords: data stream, data mining, cluster, classification.

Acknowledgments

This work is supported in part by the U.S. National Science Foundation as a research expe-
rience for undergraduates (REU) under contract number IIS-0948893.

2 Introduction to stream

Contents

1 Introduction 3

2 Background 4

2.1 Data Stream Clustering . 5

2.2 Data Stream Classification . 6

2.3 The MOA Framework . 6

3 The stream Framework 7

3.1 DataStreamData . 8

3.2 DataStreamTask . 9

3.3 Class Interaction . 10

3.4 Extension . 11

4 Examples 12

4.1 Creating a data stream . 12

4.2 Reading and writing data streams . 14

4.3 Replaying a data stream . 17

4.4 Clustering a data stream . 18

4.5 Full experimental comparison . 19

5 Conclusion and Future Work 22

A stream Reference Manual 25

John Forrest, Michael Hahsler 3

1. Introduction

In recent years, data streams have become an increasingly important area of research. Com-
mon data mining tasks associated with data streams include classification and clustering (Ag-
garwal 2009). Data streams are defined as ordered sequences of continually arriving points.
The characteristic of continually arriving points introduces an important property of data
streams which is also their greatest challenge: their potentially infinite size. Due to the dy-
namic size of data streams, a significant amount of research is spent on how to accurately
summarize the data in real-time so that the summarizations can be used in traditional data
mining algorithms. Most data mining tasks for data streams are composed of two components:
an online component which summarizes the data, and an offline component which uses these
summaries as input to traditional algorithms to either generate a prediction or a clustering
from the data.

The majority of the available data stream processing algorithms adhere to these properties:

� Single pass: The incoming instances are processed no more than a single time

� Finite storage: The stored data will use a finite amount of space

� Real-time: A prediction or clustering can be generated upon request from the current
snapshot of summaries for the stream

The names used for these properties vary depending on the algorithm, but the core definitions
remain the same across all data stream processing techniques. Another common property
found in many techniques is the inclusion of a temporal structure due to the concept drift
often found in streams (Masud, Chen, Khan, Aggarwal, Gao, Han, and Thuraisingham 2010).

Common data streams include text streams like Twitter activity, the Facebook news-stream,
Internet packet data, stock market activity, output from sensor arrays, etc. The volume of
data and its applications will only continue to increase as more techniques are developed to
automatically record our day-to-day interactions with technology (credit card transactions,
Internet and phone usage) to databases for use in behavioral mining (Aggarwal 2007). Our
goal with stream is provide a framework for experimentation that can generate data streams
with specific properties based on the needs of the experiment. We aim to reduce the overhead
that researchers spend on the creation of an experimental stream infrastructure so that they
may focus more on innovative algorithms that can be used to mine real-world data streams.

When developing a new technique for any application, a vital step in the development process
is the evaluation against existing methods in the field. Although an important step, the
evaluation of a stream processing algorithm is often difficult because of the challenging setup.
Not only is it difficult to obtain implementations of leading algorithms to benchmark against,
there are also many other variables that often change between implementations, for instance:
the programming language, the development environment, the expected input and output,
etc. Additionally, the same data needs to be used for each experiment in order to accurately
compare the performance of each algorithm. More importantly, the size of the data used
in the data stream processes cannot be trivial because the way that the algorithms handle
large data sets are an important factor during performance measurement. Both of these tasks
make it a formidable challenge to accurately benchmark any new stream processing technique
against existing algorithms.

4 Introduction to stream

The two most well-known tools for the benchmarking of traditional data mining methods are
WEKA and R (Hall, Frank, Holmes, Pfahringer, Reutemann, and Witten 2009; R Develop-
ment Core Team 2005). The WEKA Data Mining Software is developed and maintained by
the Machine Learning Group at the University of Waikato and consists of a graphical user
interface for users that prefer working with a GUI. It is built in Java and supports easy integra-
tion of new techniques through its plug-in interface. At the other end of the spectrum is R, an
environment for data mining and statistical computing that is operated solely by writing code
from the command line interface or through the input of script files. It supports extension
in several forms: through R packages (software applications written in the R programming
language), Java, and C/C++. In fact, since R is also extensible by Java, there is a WEKA
package available in R that uses the Java code from the standalone WEKA implementation
to integrate into the R environment.

To solve the problem of benchmarking data stream processes in Java, another team at the
University of Waikato has developed Massive Online Analysis (MOA), a framework that has
been built in WEKA’s image (Bifet, Holmes, Kirkby, and Pfahringer 2010). MOA has a variety
of tools that allows researchers to generate streams, perform data stream classification, and to
perform data stream clustering. However, MOA only fills in one end of the spectrum, and to
correspond to the other end, we have developed stream, an R package that performs many of
the same functions, but in the R environment. It also allows the extensibility of data mining
techniques in ways that MOA can’t; namely development in R and C/C++. Additionally,
stream will be compatible with REvolution R, a commercial version of R that is optimized for
server environments that deal with terabytes of data. This will allow users that have access
to REvolution R to compare the performance of data stream applications with data sets that
aren’t possible in the open source version of R (Analytics 2010).

In this paper we discuss the design of stream, and how it can be used as a tool to benchmark
the performance of different stream processing techniques. We aim to give researchers the
ability to test new algorithmic developments against the existing stream processing techniques
without having to spend time setting up an infrastructure to do so. In our current imple-
mentation of stream, we have developed two main components: a component for generating
stream data, and a component for performing data stream tasks, generally either clustering or
classification, using the generated data. The stream data generation module offers users the
ability to control specific stream properties such as the number of clusters, the dimensionality
of data, the concept drift, and various other properties that may not be easily configurable
in real-world data streams. The other module has implementations of many existing stream
processing algorithms to benchmark against. Each of these components is accompanied by
examples demonstrating the capabilities of the framework.

The paper is organized as follows. We first provide background information on data streams,
as well as common data mining tasks: clustering and classification. This section is followed
by the design of the stream package in Section 3. The design section covers the design of
each component, how they interact with one another, and how to extend the components as a
developer. Section 4 consists of examples in R that show the generation of data streams, data
mining tasks performed on the streams created, and detailed explanations for the resulting
objects. Section 5 outlines our future plans for the framework and concludes the paper.

John Forrest, Michael Hahsler 5

2. Background

Due to advances in data gathering techniques, it is often the case that data is no longer viewed
as a static collection, but rather as a dynamic set, or stream, of incoming data points. Nearly
all of our interactions with technology are generating these types of data which, in conjunction
with other users’ interactions, can be seen as very large data streams. As mentioned in the
introduction, the volume and the infinite nature of these data streams provide challenging
properties: single pass, finite storage, and real-time. A thorough introduction to data streams
is provided by Aggarwal (2007) . The most common data stream mining tasks are clustering
and classification. The rest of this section will give background information in these two
areas, followed by the introduction of the MOA Framework—a framework that provides tools
to perform both of these tasks on modeled data streams. The current version of stream only
contains implementation for data stream clustering, so the classification section will provide
a briefer overview.

2.1. Data Stream Clustering

Traditional cluster analysis is an unsupervised data mining technique, meaning that there
is no user intervention on the algorithms that organize data points into meaningful groups
(clusters) based upon certain attributes. Ideally, the data points that are clustered into a
single group will be similar to one another, and dissimilar to data points in other groups.
Unlike classification, which will be introduced in the next section, there is no pre-determined
meaning of the groups, and it is up to the user to decide what the generated clusters mean.
Most traditional clustering methods are multi-pass, meaning that they examine the input data
set multiple times before generating the final result. For more detail on clustering outside of
data streams, the textbooks by Dunham (2002) and Tan, Steinbach, and Kumar (2006) each
have chapters dedicated to cluster analysis and popular algorithms.

The data stream properties outlined previously render traditional clustering techniques un-
usable in their current form. New techniques were introduced to transform data streams so
that they can be used by traditional clustering techniques. In general, data stream clustering
algorithms consist of an online-offline architecture. The online component refers to the new
data stream aspect of the algorithm that summarizes the data points (often known as micro-
clusters) so that they can be used in the offline component. The offline part of these algorithms
is executed upon the user’s command (the real-time property) and uses the micro-clusters as
input data into traditional clustering algorithms, such as k-means or DBSCAN.

The accurate, yet efficient generation of micro-clusters is the goal behind the online component
of data stream clustering algorithms. The offline component consists of algorithms that have
been around for many years and their performance is well defined. Thus, new techniques in
data stream clustering focus on how to summarize the incoming data effectively. Summarizing
the incoming data points into micro-clusters ensures that the input to the offline component
is constrained to a finite space. Recent algorithms such as DenStream (Cao, Ester, Qian,
and Zhou 2006) and MR-Stream (Wan, Ng, Dang, Yu, and Zhang 2009) use a density-based
approach to calculate micro-clusters, but there are a variety of different techniques such as the
augmentation of the traditional k-medians algorithm (Guha, Meyerson, Mishra, Motwani, and
O’Callaghan 2003), CSketch (Aggarwal 2009), threshold Nearest Neighbor (tNN) (Hahsler
and Dunham 2011), and Clustream (Aggarwal, Han, Wang, and Yu 2003).

To maintain a finite number of micro-clusters, a pruning function is often associated within

6 Introduction to stream

the summarization process. The goal of the pruning process is to discard micro-clusters that
have become outliers. Outliers can be determined by data points that don’t have enough
related instances to constitute a micro-cluster, or micro-clusters that have become stale—no
new data points have been added to them recently. The latter case occurs when the structure
of the data stream changes as a function of time, known as concept drift (Masud et al. 2010).

One of the most challenging aspects of clustering is how to evaluate how well an algorithm
has performed. There are a number of metrics used to measure the performance of traditional
clustering algorithms (Manning, Raghavan, and Schtze 2008), but they are often used as an
estimate of the performance rather than a guaranteed figure. Many of the available metrics
require comparison to a true classification of the data so that it can be determined if incoming
data points are being clustered into the appropriate groups. Common metrics include purity,
precision, recall, entropy, etc. The MOA framework uses many of these traditional clustering
metrics, and additional stream clustering metrics to evaluate the performance on stream
clustering algorithms.

In stream, our goal with data stream clustering is to separate the online component from
each data stream clustering algorithm and use it as its own entity. We can then compare
the performance of the online components of each algorithm when paired with a selected
offline component. This is a feature unique to the stream framework. We focus on the online
component of the algorithms because R already contains definitions for many of the offline
components used, and the novelty of many of the algorithms is in the online component.
Section 3 discusses what data stream clustering algorithms are currently available in the
framework, and how they can be operated upon.

2.2. Data Stream Classification

Although no data stream classification is implemented in the current form of stream, it is
one of the most popular data mining tasks and can easily be added due to the extensibility
of stream.

Classification is known as a supervised learning technique because of the training phase in
which the input data consists of a data set and the corresponding class labels of its data
points. The classification technique then examines the input and generates a model from
the data. The model is then used to assign class labels to new data according to what was
learned during the training phase. The textbooks by Dunham (2002) and Tan et al. (2006)
again provide detailed chapters on traditional classification and its applications.

2.3. The MOA Framework

MOA is a framework for both stream classification and stream clustering (Bifet et al. 2010).
It is the first experimental framework to provide easy access to multiple algorithms, as well as
tools to generate data streams that can be used to measure the performance of the algorithms.
Due to MOA’s association with the University of Waikato, its interface and workflow are
similar to those of the original WEKA software.

The workflow in MOA consists of three main steps: 1) the selection of the data stream
model (referred as data feeds or data generators); 2) the selection of the algorithm in which
the generated data will be used; and 3) the evaluation of the performance. After each step is
complete, a report is generated that contains the performance evaluation as well as the results

John Forrest, Michael Hahsler 7

DataStreamData DataStreamTask Results

Figure 1: A high level view of the stream architecture.

from the data mining task performed. The evaluation step and results from the experiments
run differ based on the task—classification results are shown as a text file, while clustering
results have a visualization component that charts both the micro-clusters calculated and the
change in performance metrics over time.

The MOA framework is an important pioneer in experimental data stream frameworks. Many
of the clustering techniques available in stream are from the MOA framework.

3. The stream Framework

There are two main components to the stream framework, data stream data, and data stream
tasks. We provide both as base classes from which all other classes in the framework will ex-
tend from. Figure 1 shows a high level view of the interaction of the components. The two
components correspond to the steps taken in every stream learning algorithm: DataStream-
Data (DSD) refers to selecting or generating the data while DataStreamTask (DST) refers
to selecting the data stream process that will use the input data. The figure demonstrates
the simplicity of the framework. We start by creating a DSD, then feed the data generated
by the DSD into a DST object, and finally we can obtain the results from the DST object.
DSTs can be any type of data streaming mining task, most commonly classification or clus-
tering algorithms. This section will outline the design principles introduced in stream, and
the following subsections will cover the design of the components.

Each of the components have been abstracted into a lightweight interface that can be ex-
tended in either R, Java, or C/C++. Our current implementation contains components that
have been developed solely in R, and others that use an R wrapper for the underlying Java
implementation from the MOA framework. The subsections following will go into more detail
about the individual components followed by how they interact with one another.

All of the experiments must be run either directly in the R environment from the command
line or as .R script files. As mentioned before, stream will also work on REvolution R, an
optimized commercial version of R that is designed to work on server architectures composed
of multi-cores and can deal with terabytes of data at a time (Analytics 2010).

The stream package uses the S3 class system in R. The package has been validated by the
command R CMD check which runs a series of 19 checks that covers all aspects of the package.
The S3 class system has no notion of abstract classes or inheritance, but does include a way
to define polymorphic functions. Because of these constraints, we have built the stream
architecture in a specific way to emulate an inheritance hierarchy for our classes.

Our inheritance hierarchy is built by associating a class, or set of classes to the specific

8 Introduction to stream

DataStreamData

DSD_Gaussian_Static DSD_Gaussian_Dynamic DSD_MOA DSD_ReadStream . . .DSD_DataFrame

Figure 2: UML diagram of the DSD architecture.

objects that are created. For example, the DataStreamClusterer (DSC) class of DSC_tNN (for
the threshold nearest neighbor clustering algorithm) can be identified by any of these three
classes: DSC, the base class of all DSCs; DSC_R, because it is implemented directly in R; and
DSC_tNN, its specific class (see Figure 3). This models the concept of inheritance in that the
user simply has to call a generic function, such as get_points(), and the function call will
be polymorphically executed based on the classes the DSC object inherits.

Additionally, we also adhere to other object oriented concepts such as data abstraction, mod-
ularity, and encapsulation. The first two concepts are trivial in their implementation in that
we simply designed the class hierarchy so that the main components of the framework are
loosely coupled and the underlying implementation details of each of them (whether they are
in R, Java, or C/C++) are abstracted behind a standard interface. Encapsulation principles
are maintained by incorporating an immutable R list with each class. A list in R is an as-
sociative map that associates a variable name to a corresponding object. The list members
that are exposed are similar to public members in a high level programming language.

3.1. DataStreamData

The first step in the stream workflow is to select a DataStreamData (DSD) generator. Fig-
ure 2 shows the UML relationship of the DSD classes (Fowler 2003). All DSD classes
extend from the abstract base class, DataStreamData. The current available classes are
DSD_Gaussian_Static, a DSD that generates static cluster data with a random Gaussian
distribution; DSD_MOA, a data generator from the MOA framework with an R wrapper;
DSD_ReadStream, a class designed to read data from R connections; and finally, DSD_DataFrame,
a DSD class that wraps local R data as a data stream. Additional DSD classes will also extend
from the base class, as denoted by the ellipsis in the diagram.

The most common input parameters for the creation of DSD classes are k number of clusters,
and d number of dimensions. We use the term cluster loosely here in that it refers to an area
where data points will be generated from rather than a calculated cluster from a clustering
algorithm.

The base class contains generic definitions for get_points() and print(), and each subclass
contains a constructor function for specific object initialization.

get_points(x, n=1, ...)—returns a matrix of data points from the DSD object x. The
implementation varies depending on the class of x. The way this is done in DSD_Gaussian_Static,
our general purpose DSD generator, is to first generate a vector of cluster numbers that
determine which clusters the data points will be generated from. This vector is calculated
according to the cluster probabilities given during its creation. Often associated with k

and d are means and standard deviations for each dimension of each cluster, where mu

denotes a matrix of means and sigma denotes a list of covariance matrices. After calcu-

John Forrest, Michael Hahsler 9

lating the cluster probabilities, data points are iteratively generated up to n based on the
mu and sigma for each cluster that was chosen from the data sampling.

print()—prints common attributes of the DSD object. Currently shown are the number
of clusters, the number of dimensions, and a brief description of what implementation is
generating the data points.

Unlike the MOA framework, the selected DSD holds no bearing on what DST is chosen; the
two components act individually from one another (in MOA there are specific generators for
classification and specific generators for clustering). It is up to the experimenter to choose
the appropriate DSD for the behavior they are trying to simulate. Appendix A contains the
user manual generated by R that discusses the exact details for each class implemented, and
descriptions of the original algorithms they extend.

To accompany the assortment of DSD classes that read or generate data, we have also writ-
ten a function called write_stream(). It allows the user to write n number of lines to an
open R connection. Users will be able to generate a set of data, write it to disk using
write_stream(), read it back in using a DSD_ReadStream, and feed it to other DSTs. We
designed write_stream() so that the data points written to disk are written in chunks. Al-
though this is slower than performing a single write operation to disk, this allows the user to
theoretically write n points up to the limit of the physical memory of the system the software
is running on.

3.2. DataStreamTask

After choosing a DSD class to use for data generation, the next step in the workflow is to
define a DataStreamTask (DST). In stream, a DST refers to any data mining task that can
be applied to data streams. We have purposefully left this ambiguous so that additional
modules can be defined in the future to extend upon the DST base class. In general however,
DSTs fall in two categories: data stream classification algorithms, and data stream clustering
algorithms. In the current implementation of stream there are only DataStreamClusterer

(DSC) classes defined, but Figure 3 shows how additional tasks can easily extend from DST
as shown by the addition of the abstract class DataStreamClassifier in the diagram. It is
important to note that the concept of the DST class is merely for conceptual purposes—in the
actual implementation of stream there is no direct definition of DST because little is shared
between the clustering and classification operations.

Under the DSC class, there is a further inheritance hierarchy in which DSC_R and DSC_MOA

extend the base DSC class. This is to differentiate the underlying implementation details
of each class under the two separate branches. Due to the state of our implementation, the
following section will mainly focus on the DSC classes that have been developed, while also
providing guidance on how the same principles can be applied to other data mining tasks
such as classification.

The base DSC class defines several functions that are inherited by each subclass. Similar to
the architecture of the DSD class, each subclass must also provide a constructor individually.

get_centers(x, ...)—is a generic function that will return the centers, either the cen-
troids or the medoids, of the micro-clusters of the DSC object if any are available.

nclusters(x)—returns the number of micro-clusters in the DSC object.

print(x, ...)—prints common attributes of the DSC object. Currently it prints a small

10 Introduction to stream

DataStreamTask

DataStreamClusterer DataStreamClassifier

DSC_R
DSC_MOA

DSC_tNN DSC_DenStream DSC_Clustream DSC_CobWeb

. . .

. . .

Figure 3: UML diagram of the DST architecture.

description of the underlying algorithm and the number of micro-clusters that have been
calculated.

plot(x, ..., method="pairs")—plots the centers of the micro-clusters. There are 3
available plot methods: pairs, plot, or pc. pairs is the default method that produces a
matrix of scatter plots that plots the attributes against one another (this method is only
available when d > 2). plot simply takes the first two attributes of the matrix and plots
it as x and y on a scatter plot. Lastly, pc performs Principle Component Analysis (PCA)
on the data and projects the data to a 2 dimensional plane and then plots the results.

At the moment, all of our DSC classes that have been developed use MOA implementations
of data stream clustering algorithms as their core and use rJava interfaces to communicate
with the Java code. Currently, the only exception to this is DSC_tNN which is written entirely
in R and uses some of R’s more advanced features to create mutable objects. The data
stream clustering algorithms that are available in stream are StreamKM++ (Ackermann,
Lammersen, Märtens, Raupach, Sohler, and Swierkot 2010), threshold Nearest Neighbor as
seen in (Hahsler and Dunham 2010a,b), ClusTree (Kranen, Assent, Baldauf, and Seidl 2009),
DenStream (Cao et al. 2006), Clustream (Aggarwal et al. 2003), and CobWeb (Fisher 1987).

It is important to note that many data stream clustering algorithms consist of two parts: an
online component that clusters the incoming data points into micro-clusters, and an offline
component that performs a traditional clustering algorithm on the micro-clusters. Our DSC
implementations only include the online segment of these algorithms. This is to allow the
user to choose how they would like to manipulate the micro-clusters during the offline phase.
For example, a user may want to only use a single DSC class, but may be interested in
how different traditional clustering algorithms perform on the micro-clusters generated. As
mentioned before, Appendix A contains all of the details concerning each implemented class.

3.3. Class Interaction

Due to the abstraction in our workflow, the two step process will be similar for each combi-
nation of selected classes. Theoretically every DSD class will work flawlessly with any chosen
DST class, although the results generated may not be optimal for every combination. Each
subclass of the base DST also requires a set of input functions that will pull data from the
DSD object and pass it to the DST object. In a classification example, these functions may
be called learn() and classify() to signify the two main steps in data stream classification.

John Forrest, Michael Hahsler 11

DataStreamData

DataStreamClusterercluster(dsc, dsc, n)

Results

Figure 4: Interaction between the DSD and DSC classes

For our implementation of the clustering task, we use a single function called cluster() to
drive the interaction.

cluster(dsc, dsd, n=1000)—accepts a DSC object, a DSD object, and the number of
points that will be generated by the DSD and passed to the DSC. Internally, cluster()
also includes polymorphic implementations for each direct subclass of DSC, in this case,
DSC_R and DSC_MOA. These internal implementations handle the different expectations
by each DSC subclass: the MOA classes expect their data points to be packaged as
Java Instance objects, while the R classes require no such packaging. The underlying
clustering within the DSC changes during this process—no new clustering is created for
each call to cluster().

Figure 4 demonstrates the interaction between a DSD object, a DSC object, and cluster().
After the clustering operation is finished, the results can be obtained from the DSC object
by calling get_centers(), or they can be plotted directly to a chart by calling plot().

3.4. Extension

In order to make our framework easily extendable, we have developed a set of core functions
that are necessary for each component. As mentioned earlier, the actual stream implemen-
tation contains no definition for the DST concept—it is used only in the description of the
design to show that all data stream mining tasks extend from the same base class. This
section will outline the key functionality that needs to be available in the extension of the
stream components. The core implementation of extension classes can be written in either
R, Java, or C/C++, however, every class needs an R wrapper that can communicate with the
rest of the framework.

DSD classes need a way to either generate or retrieve data that can be used as a stream for
input to DST objects. Ideally, users will be able to alter the properties in the DSD class by
passing parameters in the constructor. Common properties include the number of clusters
to generate, the dimensionality of the data, the distribution of the data generated, how the
data evolves over time, etc. Although these properties are desirable to control, it isn’t always
possible to do this in the implementation (similar to how we limit the input parameters of

12 Introduction to stream

DSD_MOA).

For DSD classes, there is only a single function in addition to a constructor that is needed in
order to fulfill the interface, and that function is get_points(). This function simply returns
an R matrix of the data created by the DSD. It is used mainly in the cluster() function to
input data into DST objects that will perform data mining operations on them.

The DSC interface requires more work in that there are currently 2 abstract classes that
extend directly from the abstract base class, DataStreamClusterer. Depending on which
programming language is used to extend the DSC class, the new class must extend from the
appropriate direct subclass of DSC. For example, all of our DSC objects that are implemented
using MOA’s Java code, extend from the class DSC_MOA in addition to the base class DSC. New
classes that are developed should extend the inheritance hierarchy in a similar way. If there
is no concept of the subclass already included in the framework, for example, DSC_C, it is the
job of the developer to create this intermediary class so that others may extend from it in the
future. Note that all the extensions are from the DSC class rather than the DST class—new
classes will also need to be created for other data stream tasks such as classification.

For DSC subclasses, there are two functions that need be implemented in addition to the
constructor. These functions are cluster() and get_centers(). The clustering function
is used in conjunction with a DSD object and will feed data into the DSC object. It is
responsible for updating the underlying clustering of the object (or returning a copy of the
object with the updated clustering) with the data that is being streamed. cluster() should
be able to handle data of any dimensionality. The get_centers() function returns a matrix
that represents the centers of micro-clusters from the particular DSC object. If the underlying
clustering is an object in Java, the get_centers() function should convert this to an R object
before returning.

4. Examples

Experimental comparison of data streams and algorithms is the main purpose of stream. In
this section we give several examples in R that exhibit stream’s benchmarking capabilities.
The examples become increasingly complex through the section. First, we start by giving a
brief introduction to the syntax of stream by using a pair of DSC and DSD objects. The
second example shows how to save stream data to disk for use in later experiments. We then
give examples in how to reuse a data stream so that multiple algorithms can use the same
data points, and how to use DSC classes to cluster stream data. Finally, the last example
demonstrates a detailed comparison of two algorithms from start to finish by first running the
online components on the same data stream, then using k-means to cluster the micro-clusters
generated by each algorithm.

4.1. Creating a data stream

The first step in every example is to load the package.

> library("stream")

In this example, we would like to focus on the merits of the DSD class to model data streams.
Currently there are 4 available classes: DSD_Gaussian_Static, DSD_MOA, DSD_ReadStream,

John Forrest, Michael Hahsler 13

and DSD_DataFrame. The syntax of creating an instance of each of the classes is consistent
throughout. Below we show the creation of a DSD_Gaussian_Static object. We would like
the data to be 2 dimensional, and to be generated by 3 clusters—these properties are shown
as parameters during the creation.

> dsd <- DSD_Gaussian_Static(k = 3, d = 2)

Because we have only defined two of the parameters, the other parameters, mu, sigma, p, and
noise will be left to their default values (mu and sigma will be randomly chosen, and p will
be a vector of values 1/k). The DSD object displays a brief summary (print() function).

> dsd

DSD - Data Stream Datasource: Static R Data Stream

With 3 clusters in 2 dimensions

Now that we have a DSD object created we can call the get_points() function on it to
generate stream data. It accepts a DSD object and n number of points and returns a numeric
matrix composed of n rows and d columns. The points in this matrix are generated by different
clusters defined during the creation of the DSD object.

> data <- get_points(dsd, 25, assignment = TRUE)

> data

[,1] [,2]

[1,] 0.58103679 0.71299175

[2,] 0.02120235 0.09662967

[3,] 0.13777265 -0.01048796

[4,] 0.85565828 0.37321099

[5,] 0.01076491 0.03976144

[6,] 0.80023353 0.51555724

[7,] 0.37319813 0.73524195

[8,] 0.84824710 0.37114759

[9,] 0.82355266 0.51118316

[10,] 0.23776072 0.09012323

[11,] 0.39453182 0.65325018

[12,] 0.10098767 0.08306642

[13,] 0.37240061 0.64012581

[14,] 0.75321682 0.53852338

[15,] 0.77801012 0.37578506

[16,] 0.14534009 0.14542760

[17,] 0.69547988 0.52579018

[18,] 0.06068131 0.02235240

[19,] 0.47119824 0.74388747

[20,] -0.05211717 0.29306132

[21,] 0.27865162 0.68651610

14 Introduction to stream

[22,] 0.75654364 0.65048495

[23,] 0.36029463 0.72069104

[24,] 0.08377363 -0.06119958

[25,] 0.80450365 0.43620415

attr(,"assignment")

[1] 2 3 3 2 3 2 1 2 2 3 1 3 1 2 2 3 2 3 1 3 1 2 1 3 2

Additionally, by setting the parameter assignment in the get_points() function to TRUE,
get_points() will also show which clusters the data points belong to. The assignment

vector is shown in the code following.

> attr(data, "assignment")

[1] 2 3 3 2 3 2 1 2 2 3 1 3 1 2 2 3 2 3 1 3 1 2 1 3 2

n can be of any size as long as the created matrix is able to fit into memory. When data is
being clustered however, get_points() is typically called for a single point at a time. This
allows us both to simulate a streaming process, and to limit the amount of memory used by
the created data at any given time. The data produced can then be used in any choice of
application. Because the data is 2 dimensional in this case, we are able to easily plot the
dimensions directly on to the x and y plane. Figure 5 shows 1000 data points from the same
DSD object. In the plot there are 3 distinguishable clusters as defined in the creation of dsd.

> plot(get_points(dsd, 1000))

We can also create streams with dynamic data by using the DSD_MOA class. It is impor-
tant during the creation of a DSD_MOA object that values are assigned to the modelSeed and
instanceSeed parameters. This ensures that new data will be produced with your experi-
ment. Figure 6 shows the concept drift in DSD_MOA as the initial 3 clusters move around, and
2 of the clusters merge in (c). The DSD_MOA class is useful for testing how algorithms behave
with dynamic data, and clusters that may merge with others over time.

> dsd <- DSD_MOA(k = 3, d = 2, modelSeed = 100, instanceSeed = 100)

> plot(get_points(dsd, 3000))

> plot(get_points(dsd, 3000))

> plot(get_points(dsd, 3000))

4.2. Reading and writing data streams

Sometimes it is useful to be able to access the data generated by the data streams outside
of the R environment. stream has support for reading and writing data streams through an
R connection. Connections can be opened to a number of different sources and layouts (see
the R Reference Manual for a detailed explanation (R Development Core Team 2005)). In
our example, we will focus on reading from and writing to a file on disk.

We start by loading the package and creating a DSD object. In our DSD object we are using
data with a dimensionality of 5 to demonstrate how large streams are stored on disk.

John Forrest, Michael Hahsler 15

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

get_points(dsd, 1000)[,1]

ge
t_

po
in

ts
(d

sd
, 1

00
0)

[,2
]

Figure 5: Plotting 100 data points from the data stream

> library("stream")

> dsd <- DSD_Gaussian_Static(k = 3, d = 5)

Next, we write 100 data points to disk. The only constraint on the number of points written
to disk is the amount hard disk space available—only one data point is written at a time.
While this may take longer, we opted to take this route so that users would be able to write
large amounts of data to disk in a single function call.

write_stream() accepts either a connection directly, or the file name to be written to. The
sep parameter defines how the dimensions in each data point are separated. Behind the
scenes we are using the write.table() function to write the data to disk. We are able to
pass additional parameters to this function to alter how the data is written. In the code below
we set the col.names parameter to FALSE so that the column names aren’t also written to
disk.

> write_stream(dsd, "dsd_data.txt", n = 100, sep = ",", col.names = FALSE)

This will create the file dsd data.txt (or overwrite it if it already exists) in the current directory
and fill it with 100 data points from dsd. Now that the data is on disk, we can use a
DSD_ReadStream object to open a connection to the file where it was written and treat it as a
stream of data. DSD_ReadStream works in a way similar to write_stream() in that it reads
a single data point at a time with the read.table() function. Again, this allows us to read
from files that may be several GB in size without having to load all of the file into memory.

The pairing of write_stream() and DSD_ReadStream also allows the writing and reading of
.csv files. The underlying functions used in each of these interfaces can handle the row and
column names that are commonly found in these types of files without changing the default
parameters. These functions make it easy to use stream data created in stream in external
applications—or data from external applications in stream.

16 Introduction to stream

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●●

● ●●

●●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●●●

●

●

●

●

●

●●

●

●

●
●

● ●

●
●

●

●●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●●
●

●●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

● ●
●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●
●

●
●

●
●

●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●●

●●●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

● ●

●●
●

●

●●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

● ●

●
●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●
●
●

●
●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●●

●

●● ●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●
●

●
●

●

●

●

● ●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●
● ●●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
● ● ●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●
●
●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●
●

●

●

●

●

●

● ●●

●

● ●

●●
● ●

●

●

●

●

●

●●

●

●

●●

●●

●
● ●

●

●

●

●

●

●

●

●●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

get_points(dsd, 3000)[,1]

ge
t_

po
in

ts
(d

sd
, 3

00
0)

[,2
]

(a)

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●●

●
●

●
●

●●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

● ●
●

●

●

●

●

●
●
●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●
●

●
●
●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

● ●●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●●

●
●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●

● ●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●
●

●

●●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●
●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●
●●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●●

●

●
●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●●
●

●●
●●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●● ●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●●
●

●

●

●●●

●●
●

●

●

● ●

●

●●
●

●
●

●
●

●

●●

●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●
●

●●

●

●

●●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●●

●

●

●
●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

● ●●●

●●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●● ●

● ●
●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

● ●
●

●

●

●●

●

● ●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●● ●

●●
●

●

●

● ●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●
●●

●●
●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

● ●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●●
●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●● ●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●●

●●

●
●

●

●
●●

●

●

●

●●

●

●

● ●●

●

●

●●

●
●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

get_points(dsd, 3000)[,1]

ge
t_

po
in

ts
(d

sd
, 3

00
0)

[,2
]

(b)

●

●●

●
●●

●
●
●

●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●● ●

●

●

●

●

●
●

● ●
●

●

●●

●

●
●

●

●

●

●
●

●● ●

●

●

● ●

● ●●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●
●●

●
●●

●

●

●
●

●
●

●

●
●
●

● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●●

●

●
●
●

●
●

●

●

●
●
●

●●

●
●

●
●

● ●

●●●

●

●●

●
●

●

●

●

●●●●

●

●

●●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●●●

●

●
●

●
●
●

●
●

●

●

●●
●●●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●●

● ●●
●

●

● ●●

●●

●

●●
●●●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●
●

●

●
●

●

●
●
●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●●

●

●

● ●●

●

●

● ●
●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
● ●

●

● ●
●●

●

●

●●

●
●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●

●

●
●

●

●
●

●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●●

●

● ●

●●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●
●●

●

●
●●

●●

●
●

●

●

●
●

●

●

●●●
●

●
●

●

●●
●

●

●

●
●

●

●

●●

●●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●
●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●

●

●

●

●●
●●

● ●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●
● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●● ●

●

●

●

● ●●

●

●
●
●●

●
●

●

●
●● ●●

●

●
●

●

●●

●

●
●

●●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

● ●●

●
●

●

●
●●

● ●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●●●
●

●
●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●
●

●

●

● ●●●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●●
●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●●●
●

●

●

●

●
●●

●●

●
●

● ●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
● ●

●●●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●●● ●

●

●● ●
●

●●●

●

●

● ●

●

●

●

●

●
●
●

●
●●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●
●

●

●

● ●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●
●●

●

● ●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●
●

●●

●●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●
●

●

●

●

●

●●

●

●
●●

●●●

●

●

●
●

●
●

●

●●

●●●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

● ●●
●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●● ●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●● ●
●

●

●●●●

●● ●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●●
● ●●●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

● ●

●

●●

●
●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●●●
●●
●

●

●

●●

●
●●

●

●

●
●●

●
●

●

●
●●

●●

●

●
●

●

●●
●

●●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●
●
●

●

●●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●● ●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

● ●

●

●●
●

●
●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●
● ●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●●

●●
●

●

●

●

●● ●

●

●

●●
●
●

●

●
●

●

●

●

●
●

●●
●
●
●● ●
●

●
●

●

●●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●●

●

●

●

●

●

● ●●●

●

●

● ●

●●
●

●●

● ●●

●●●● ●

●

●

●

● ●

●

● ●

●
●●

●●
●●

●

●
●

●

●

●

●●

●

● ●
●

●

●
●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●●

●

●

●●●

●

●●
●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●
●●
●●●

● ●●
●

●●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●●● ●

●

● ●
●

●

●
●●

●

●

●

●●

●

● ●

●●
●

●
●

●

●

●

●

●●

● ●●

●

●

●

●

●
●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●●

●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●●

●●

● ●
●

●

●

●

●●
● ●

●

●

●

●
●

●●●

●

● ●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●
●
●

●

●

●●

●

●

●

●
●
●● ●●●

● ●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●● ●
●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●●
●

●

●

●
●

●

●
●
●

●

●●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●●

●
●●●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
● ●

●

●
●●

●

●

●
●
●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●●
●●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

get_points(dsd, 3000)[,1]

ge
t_

po
in

ts
(d

sd
, 3

00
0)

[,2
]

(c)

Figure 6: The concept drift of DSD MOA

John Forrest, Michael Hahsler 17

> dsd2 <- DSD_ReadStream("dsd_data.txt", sep = ",")

It is important that the sep parameter in DSD_ReadStream matches exactly the sep parameter
used to write the stream to disk (the defaults are the same in the case that one isn’t defined
explicitly). DSD_ReadStream objects are just like any other DSD object in that you can
call get_points() to retrieve data points from the data stream. During the creation of a
DSD_ReadStream object, there is an additional parameter, loop, that will discussed in the
next example that allows us to start the stream over when all of the data points from a
connection have been read.

4.3. Replaying a data stream

An important feature of stream is the ability to replay stream data. This ensures that all
of the algorithms being experimented on will have the same data set and there won’t be
any anomalies due to concept drift in the data stream. We start this example is a similar
manner, by loading the package and creating a DSD object. There are several ways to replay
streams—one of them being to use a combination of write_stream() and DSD_ReadStream

objects as mentioned in the previous example—but in this example we will discuss the use of
the DSD_DataFrame class.

The DSD_DataFrame class was designed with the intent of being a wrapper class for data
that has already been read in or generated in the form of a data frame or matrix. Because
of this feature, we are able to use data produced from another data stream and wrap it in
a DSD_DataFrame object to replay the data. Similar to the DSD_ReadStream class, there is
also a loop parameter in DSD_DataFrame. The loop parameter, when set to TRUE, will loop
over the data points within the data stream when all of them have been used. For instance,
if there are 10 data points in the object, and the user requests 100 data points in a call to
get_points() with looping enabled, the 10 data points will be returned 10 times to give the
user the requested 100 data points. In our example we opt to leave the loop parameter as its
default, FALSE.

> library("stream")

> dsd <- DSD_Gaussian_Static(k = 3, d = 2)

> replayer <- DSD_DataFrame(get_points(dsd, 100), k = 3)

> replayer

DSD - Data Stream Datasource: Data Frame/Matrix Wrapper Stream

With 3 clusters in 2 dimensions

Contains 100 data points, currently at position 1 loop is FALSE

Just like the DSD_ReadStream object created in the previous example, replayer can be used
like any other DSD object. When all of the data points have been used in the stream, there is
a function available called reset_stream() which returns the DSD_DataFrame to its original
state (reset_stream() is also available for DSD_ReadStream objects).

> dsc <- DSC_Clustream()

> cluster(dsc, replayer, 100)

> replayer

18 Introduction to stream

DSD - Data Stream Datasource: Data Frame/Matrix Wrapper Stream

With 3 clusters in 2 dimensions

Contains 100 data points, currently at position 101 loop is FALSE

> reset_stream(replayer)

> replayer

DSD - Data Stream Datasource: Data Frame/Matrix Wrapper Stream

With 3 clusters in 2 dimensions

Contains 100 data points, currently at position 1 loop is FALSE

4.4. Clustering a data stream

This example outlines how to cluster data using DSC objects. Again, start by loading stream.

> library("stream")

Next, create the DSC and DSD objects. In this example we use the DSC_DenStream class
with its default parameters, and DSD_Gaussian_Static with 2 dimensionality data generated
from 3 clusters. We also created a DSD_DataFrame so that we can use the same data used in
the clustering operation to plot the micro-clusters against. Notice that the noise parameter
is set to 0.05, the enabling of this parameter causes 5% of the data points generated by the
DSD to be noise.

> dsc <- DSC_DenStream()

> d <- get_points(DSD_Gaussian_Static(k = 3, d = 2, noise = 0.05),

+ 3000)

> head(d)

[,1] [,2]

[1,] 0.7990691 0.44333951

[2,] 0.1045328 0.02173426

[3,] 0.1409029 0.03561777

[4,] 0.8889469 0.25343851

[5,] 0.1278920 0.02629838

[6,] 0.8165545 0.56860559

> dsd <- DSD_DataFrame(d, k = 3)

> dsd

DSD - Data Stream Datasource: Data Frame/Matrix Wrapper Stream

With 3 clusters in 2 dimensions

Contains 3000 data points, currently at position 1 loop is FALSE

Now, the objects need to interact with one another through the cluster() function. The
clustering operation will implicitly alter dsc so no reassignment is necessary. By default,
DSC_DenStream is initialized with 1000 points, meaning that no new micro-clusters are created
until this threshold has been breached, which is why we cluster 3000 new data points.

John Forrest, Michael Hahsler 19

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

d[,1]

d[
,2

]

Figure 7: Plotting the micro-clusters on top of data points

> cluster(dsc, dsd, 3000)

After clustering the data, we are ready to view the results.

> plot(d, col = "grey")

> points(get_centers(dsc), col = "red", pch = 3)

Figure 7 is the result of the calls to plot() and points(). It shows the micro-clusters as red
crosses on top of grey data points. It is often helpful to visualize the results of the clustering
operation during the comparison of algorithms.

4.5. Full experimental comparison

This example shows the stream framework being used from start to finish. It encompasses the
creation of data streams, data clusterers, the online clustering of data points as micro-clusters,
and then the comparison of the offline clustering of 2 data stream clustering algorithms by
applying the k-means algorithm. As such, less detail will be given in the topics already covered
in the previous examples and more detail will be given on the comparison of the 2 data stream
clustering algorithms.

Setting up the experiment:

> library("stream")

> d <- get_points(DSD_Gaussian_Static(k = 3, d = 2, noise = 0.01),

+ 10000)

> head(d)

[,1] [,2]

[1,] 0.73814935 0.59948062

20 Introduction to stream

[2,] -0.02538873 0.12382056

[3,] 0.14360917 0.03777090

[4,] 0.78384927 0.54617575

[5,] 0.11410208 0.24529526

[6,] 0.57562751 0.63880642

> dsd <- DSD_DataFrame(d, k = 3)

> dsd

DSD - Data Stream Datasource: Data Frame/Matrix Wrapper Stream

With 3 clusters in 2 dimensions

Contains 10000 data points, currently at position 1 loop is FALSE

> dsc1 <- DSC_DenStream()

> dsc2 <- DSC_Clustream()

Clustering the data:

> cluster(dsc1, dsd, 10000)

> reset_stream(dsd)

> cluster(dsc2, dsd, 10000)

> dsc1

DSC - Data Stream Clusterer: DenStream

Number of clusters: 145

> dsc2

DSC - Data Stream Clusterer: Clustream

Number of clusters: 100

Now we plot the data and the 2 sets of micro-clusters generated.

> plot(d, xlab = "x", ylab = "y", col = "grey", pch = 4, cex = 0.5)

> points(get_centers(dsc2), col = "blue", cex = 2, lwd = 2)

> plot(d, xlab = "x", ylab = "y", col = "grey", pch = 4, cex = 0.5)

> points(get_centers(dsc1), col = "red", cex = 2, lwd = 2)

The code above creates a DSD_DataFrame object from a DSD_Gaussian_Static object so that
we can replay the same stream data for both DSC objects. We then use the DSD_DataFrame

to feed the exact data stream into 2 different algorithms, DenStream and Clustream, dur-
ing the cluster() operation. Note that after each call to cluster(), we also have to call
reset_stream() to reset the DSD_DataFrame back to its original position.

After the clustering operations, we plot the calculated micro-clusters and the original data.
Figure 8 shows the 2 sets of micro-clusters, in red and blue, over the original data which is in

John Forrest, Michael Hahsler 21

(a) (b)

Figure 8: Plotting 2 sets of different micro-clusters against the generated data

grey. We have plotted the micro-clusters as circles to more closely reflect their nature, however,
the circles are merely a representation and the radii haven’t been calculated specifically for
each micro-cluster. The plot makes it easy to point out differences in the two algorithms.
The DenStream micro-clusters, in red, stay true to the nature of the algorithm in that they
congregate where there is a large number of data points, or in other words, dense areas.
Clustream on the other hand, in blue, is more evenly spread, and the micro-clusters are
relatively separated, covering most of the area that the generated data fills.

> plot(d, xlab = "x", ylab = "y", pch = 4, cex = 0.5, col = "grey")

> points(kmeans(get_centers(dsc1), centers = 3, nstart = 5)$centers,

+ col = "red", cex = 14, lwd = 2)

> plot(d, xlab = "x", ylab = "y", pch = 4, cex = 0.5, col = "grey")

> points(kmeans(get_centers(dsc2), centers = 3, nstart = 5)$centers,

+ col = "blue", cex = 14, lwd = 2)

We can then take this a step further. Figure 9 shows a new plot—in this case, we are plotting
the calculated macro-clusters of each algorithm as a result of a k-means operation. We use
the term “macro” here to differentiate the k-means clusters from the micro-clusters generated
by the stream clustering algorithms. Again, the DenStream clusters are shown in red, and
the Clustream clusters are shown in blue. We have enlarged the circle representations for the
k-means clusters to better show the area they cover.

This last operation is an example of how we use the same offline component for two different
algorithms, and the differences that it produces. R contains an assortment of traditional
clustering algorithms that are available through the installation of various packages. It is
up to the user to decide which clustering algorithm they would like to use as the offline
component. Most stream clustering algorithms are developed with a certain offline algorithm
in mind, but it is interesting to see the different combinations of algorithms and the results
they produce.

22 Introduction to stream

(a) (b)

Figure 9: Plotting the results of a k-means operation on each stream clustering algorithm

There are several external packages that are required to use the stream package. These include
the proxy package, written by Meyer and Buchta (2010), the MASS package by Venables and
Ripley (2002), and clusterGeneration by Qiu and Joe. (2009). To facilitate the communication
between R and Java, we used the rJava package by Urbanek (2010). This allows us to make
method calls directly to the JRI from within the R environment.

5. Conclusion and Future Work

stream is a data stream modeling framework in R that has both a variety of data stream
generation tools as well as a component for performing data stream mining tasks. The flex-
ibility offered by our framework allows the user to create a multitude of easily reproducible
experiments to compare the performance of these tasks. Data streams can be created with
specific properties that may be difficult to simulate in real-world situations.

Furthermore, the infrastructure that we have built can be extended upon in multiple di-
rections. We have abstracted each component to only require a small set of functions that
are defined in each base class. Writing the framework in R means that developers have the
ability to design components either directly in R, or design components in Java or C/C++,
and then write an R wrapper to use the high level code. Upon completion, stream will be
available from The Comprehensive R Archive Network (CRAN) website for download (for
Statistical Computing 2010).

In the future, we plan on adding additional functionality to stream. Currently we only have
implementations for clustering tasks; we would like to develop a classification module that
also extends from the base DST class. Additionally, there are plans to develop an evaluation
module that accompanies each DST class to provide immediate feedback on their performance.
Finally, for each of the DST classes developed, we would like to include all of the available
algorithms, both the latest innovations and the original algorithms that shaped the research
for the respective area.

John Forrest, Michael Hahsler 23

References

Ackermann MR, Lammersen C, Märtens M, Raupach C, Sohler C, Swierkot K (2010).
“StreamKM++: A Clustering Algorithm for Data Streams.” In “Proceedings of the 12th
Workshop on Algorithm Engineering and Experiments (ALENEX ’10),” pp. 173–187. Soci-
ety for Industrial and Applied Mathematics.

Aggarwal C (ed.) (2007). Data Streams – Models and Algorithms. Springer.

Aggarwal C (2009). “A Framework for Clustering Massive-Domain Data Streams.” In “Pro-
ceedings of the 2009 IEEE International Conference on Data Engineering,” pp. 102–113.
IEEE Computer Society, Washington, DC, USA. ISBN 978-0-7695-3545-6.

Aggarwal CC, Han J, Wang J, Yu PS (2003). “A framework for clustering evolving data
streams.” In “Proceedings of the 29th international conference on Very large data bases -
Volume 29,” VLDB ’2003, pp. 81–92. VLDB Endowment. ISBN 0-12-722442-4.

Analytics R (2010). REvolution R. URL http://www.revolutionanalytics.com/.

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010). “MOA: Massive Online Analysis.” J.
Mach. Learn. Res., 99, 1601–1604. ISSN 1532-4435.

Cao F, Ester M, Qian W, Zhou A (2006). “Density-based clustering over an evolving data
stream with noise.” In “In 2006 SIAM Conference on Data Mining,” pp. 328–339.

Dunham MH (2002). Data Mining: Introductory and Advanced Topics. Prentice Hall PTR,
Upper Saddle River, NJ, USA. ISBN 0130888923.

Fisher DH (1987). “Knowledge Acquisition Via Incremental Conceptual Clustering.” Mach.
Learn., 2, 139–172. ISSN 0885-6125.

for Statistical Computing RF (2010). The Comprehensive R Archive Network. URL http:

//cran.r-project.org/.

Fowler M (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition. ISBN
0321193687.

Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003). “Clustering Data Streams:
Theory and Practice.” IEEE Transactions on Knowledge and Data Engineering, 15, 515–
528. ISSN 1041-4347.

Hahsler M, Dunham MH (2010a). rEMM: Extensible Markov Model for Data Stream Clus-
tering in R. R package version 1.0-0., URL http://CRAN.R-project.org/.

Hahsler M, Dunham MH (2010b). “rEMM: Extensible Markov Model for Data Stream Clus-
tering in R.” Journal of Statistical Software, 35(5), 1–31. URL http://www.jstatsoft.

org/v35/i05/.

Hahsler M, Dunham MH (2011). “Temporal Structure Learning for Clustering Massive Data
Streams in Real-Time.” In “SIAM Conference on Data Mining (SDM11),” SIAM. Accepted
for presentation.

http://www.revolutionanalytics.com/
http://cran.r-project.org/
http://cran.r-project.org/
http://CRAN.R-project.org/
http://www.jstatsoft.org/v35/i05/
http://www.jstatsoft.org/v35/i05/

24 Introduction to stream

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009). “The WEKA
data mining software: an update.” SIGKDD Explor. Newsl., 11, 10–18. ISSN 1931-0145.

Kranen P, Assent I, Baldauf C, Seidl T (2009). “Self-Adaptive Anytime Stream Clustering.”
In “Proceedings of the 2009 Ninth IEEE International Conference on Data Mining,” ICDM
’09, pp. 249–258. IEEE Computer Society, Washington, DC, USA. ISBN 978-0-7695-3895-2.

Manning CD, Raghavan P, Schtze H (2008). Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA. ISBN 0521865719, 9780521865715.

Masud MM, Chen Q, Khan L, Aggarwal CC, Gao J, Han J, Thuraisingham BM (2010).
“Addressing Concept-Evolution in Concept-Drifting Data Streams.” In “ICDM’10,” pp.
929–934.

Meyer D, Buchta C (2010). proxy: Distance and Similarity Measures. R package version
0.4-6, URL http://CRAN.R-project.org/package=proxy.

Qiu W, Joe H (2009). clusterGeneration: random cluster generation (with specified degree of
separation). R package version 1.2.7.

R Development Core Team (2005). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.r-project.org/.

Tan PN, Steinbach M, Kumar V (2006). Introduction to Data Mining. Pearson Education.

Urbanek S (2010). rJava: Low-level R to Java interface. R package version 0.8-8, URL
http://CRAN.R-project.org/package=rJava.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Springer, New York,
fourth edition. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Wan L, Ng WK, Dang XH, Yu PS, Zhang K (2009). “Density-based clustering of data streams
at multiple resolutions.” ACM Trans. Knowl. Discov. Data, 3, 14:1–14:28. ISSN 1556-4681.

http://CRAN.R-project.org/package=proxy
http://www.r-project.org/
http://www.r-project.org/
http://CRAN.R-project.org/package=rJava
http://www.stats.ox.ac.uk/pub/MASS4

http://dx.doi.org/10.1109/ICDM.2009.47

DSC_tNN 9

See Also

DSClusterer, DSC_MOA, DSC_DenStream, DSC_CobWeb, DSC_Clustream, DSC_ClusTree

Examples

dsc <- DSC_StreamKM()
dsd <- DSD_Gaussian_Static()
cluster(dsc, dsd, 5000)

DSC_tNN DataStreamClusterer: tNN

Description

Creates a new DataStreamClusterer with the tNN (threshold Nearest Neighbor) algorithm

Usage

DSC_tNN(threshold = 0.2, measure = "euclidean",
centroids = identical(tolower(measure), "euclidean"), lambda=0)

Arguments

threshold The threshold in the nearest neighborhood algorithm.

measure The measure used to calculate cluster proximity.

centroids A flag that indicates if centroids are used for clusters.

lambda The lambda used in the fading function.

Details

The threshold Nearest Neighbor algorithm is used in the rEMM package cited below. For each data
point in the incoming stream, if it is below the threshold value of dissimilarity value of any existing
clusters (known as states in the EMM algorithm), it joins that cluster. Otherwise, a new cluster is
created to accomodate the new data point.

measure defines what measure is used to measure the dissimilarity between clusters

Value

A list of class DSC, DSC_R, and DSC_tNN. The list contains the following items:

description The name of the algorithm in the DSC object.

clusterFun The cluster function specific to DSC_tNN

RObj The underlying R object associated with DSC_R objects.

References

M.H. Dunham, Y. Meng, J. Huang (2004): Extensible Markov Model, In: ICDM ’04: Proceedings
of the Fourth IEEE International Conference on Data Mining, pp. 371-374.

M. Hahsler, M. H. Dunham (2010): rEMM: Extensible Markov Model for Data Stream Clustering
in R, Journal of Statistical Software, 35(5), 1-31, URL http://www.jstatsoft.org/v35/
i05/

http://www.jstatsoft.org/v35/i05/
http://www.jstatsoft.org/v35/i05/

10 DSD_DataFrame

See Also

DSClusterer, DSC_MOA, DSC_DenStream, DSC_CobWeb, DSC_StreamKM, DSC_Clustream,
DSC_ClusTree

Examples

dsc <- DSC_tNN()
dsd <- DSD_Gaussian_Static()
cluster(dsc, dsd, 100)
get_centers(dsc)

DSData DSData

Description

The abstract base class for all DataStreamData (DSD) classes.

Details

The DSData class cannot be instantiated, but it serves as a base class from which all DSD objects
inherit from. There is only one function that needs to be implemented: get_points(). DSData
also provides a generic print() function that displays basic information about the class.

In addition to this function, each DSD class also needs a constructor specific to that class. The links
below contain various DSD classes that have been implemented.

See Also

DSClusterer, DSD_Gaussian_Static,

DSD_ReadStream, DSD_DataFrame,

DSD_DataFrame DataStreamData: DataFrame (a wrapper for data frames and matri-
ces)

Description

A DataStreamData class that wraps either a data frame or matrix that was created in R, or read in
to R. The data can either be looped or replayed manually to give the exact same data to 2 different
DataStreamTask objects.

Usage

DSD_DataFrame(df, k, loop=FALSE)

Arguments

df A data frame or matrix with the data to be used in the stream.

k Optional: The number of clusters

loop A flag that tells the stream to loop or not to loop over the data frame.

DSD_DataFrame 11

Details

The DSD_DataFrame class is designed to be a wrapper class for data that is generated within R
in either a data frame or matrix form. It removes the step of having to write the data to a file, then
read in by a connection through DSD_ReadStream.

It works like the other DSD classes–by calling get_points() to retrieve data from the stream.
The function reset_stream() can be used to move the counter back to the beginning of the
stream. This is an important feature to be able to replay stream data for multiple clusters as shown
in the example below.

The value returned is a list of class DSD, and DSD_DataFrame. The important items with the
list are strm, the data frame being wrapped, state the environment which contains the counter,
and d, the number of dimensions in the stream.

Value

Returns a DSD_DataFrame object which is a list of the defined parameters. The parameters are
either passed in from the function or created internally. They include:

description The name of the class of the DSD object.

strm The data frame or matrix that the stream is wrapping.

state The environment variable which holds the counter for the data frame (accessed
through state$counter).

d The number of dimensions (ncol(strm).

k The number of clusters (may not be defined).

loop The flag that determines if looping is or is not enabled.

See Also

DSD_MOA, DSD_ReadStream,

DSD_Gaussian_Static, write_stream, reset_stream

Examples

creating the DSD_DataFrame from other stream data
dsd <- DSD_Gaussian_Static(k=3, d=2)
replayer <- DSD_DataFrame(get_points(dsd, 100), k=3)

creating 2 clusterers of different algorithms
dsc1 <- DSC_Clustream()
dsc2 <- DSC_CobWeb()

clustering the same data in 2 DSC objects
cluster(dsc1, replayer, 100)
reset_stream(replayer) # resetting the dsd to its original state
cluster(dsc2, replayer, 100)

12 DSD_Gaussian_Static

DSD_Gaussian_Static
DataStreamData: Static data stream

Description

A DataStreamData that generates random data based upon either a defined list covariance matrices
or randomly generated covariance matrices.

Usage

DSD_Gaussian_Static(k=2, d=2, mu, sigma, p, noise=0, noise_range)

Arguments

k Determines the number of clusters.

d Determines the number of dimensions.

mu A matrix of means for each dimension of each cluster.

sigma A list of covariance matrices.

p A vector of probabilities that determines the likelihood of generated a data point
from a particular cluster.

noise Noise is generated in the stream based on this parameter. Noise is the probability
of a data point being noise.

noise_range A matrix with d rows and 2 columns. The first column contains the minimum
values and the second column contains the maximum values for noise. Noise is
uniformly distributed within noise range.

Details

DSD_Gaussian_Static is a general purpose DSD generator for stream data. It has been imple-
mented entirely in R, so there is no computational overhead with communicating to the Java Run-
time Interface (JRI) or native C code. An important characteristic of DSD_Gaussian_Static
is that once it has been initialized according to the input parameters defined, the defined clusters
will not move (i.e., they are static). This means that DSD_Gaussian_Static is not an ideal
DSD for examining the temporal structure of data streams for drastic changes such as the splitting
or merging of clusters.

Its initialization function accepts 5 main parameters: the number of clusters k, the number of di-
mensions d, a matrix of means mu, a covariance matrix sigma, and a probability vector p.

By default, DSD_Gaussian_Static generates 2 dimensionality data in 2 different clusters, but
the user is able to define any number of clusters with any number of dimensions. Additionally, the
user may define mu, sigma, and p, but if left undefined the constructor will generate these values
automatically. When get_points() is called on DSD_Gaussian_Static, the data points
are generated using the mvrnorm() function, making it important to seed the random number
generator to reproduce the experiment. This can be done with set.seed().

DSD_MOA 13

Value

Returns a DSD_Gaussian_Static object which is a list of the defined params. The params are
either passed in from the function or created internally. They include:

description A brief description of the DSD object.

k The number of clusters.

d The number of dimensions.

mu The matrix of means of the dimensions in each cluster.

sigma The covariance matrix.

p The probability vector for the cluters.

noise A flag that determines if or if not noise is generated.

See Also

DSD_MOA, DSD_ReadStream,

DSD_DataFrame, write_stream

Examples

create data stream with three clusters in 2D
dsd1 <- DSD_Gaussian_Static(k=3, d=2)

obtaining some data
sample <- get_points(dsd1, 500)

plotting the data
plot(sample)

create data stream with specified clusters and 20% noise
dsd2 <- DSD_Gaussian_Static(k=2, d=2, mu=rbind(c(-.5,-.5), c(.5,.5)),

noise=0.2, noise_range=rbind(c(-1,1),c(-1,1)))
plot(get_points(dsd2, 500))

DSD_MOA DataStreamData - MOA

Description

A DataStreamData that generates random data based upon the RandomRBFGenerator implemented
in MOA.

Usage

DSD_MOA(k=3, d=2, avgRadius=0, modelSeed=1, instanceSeed=1)

14 DSD_MOA

Arguments

k The number of clusters.

d The dimensionality of the data.

avgRadius The average radius of the micro-clusters.

modelSeed Random seed for the model.

instanceSeed Random seed for the instances.

Details

There are an assortment of parameters available for the underlying MOA data structure, however,
we have currently limited the available parameters to the arguments above. Currently the modelSeed
and instanceSeed are set to default values every time a DSD_MOA is created, therefore the generated
data will be the same. Because of this, it is important to set the seed manually when different data
is needed.

The default behavior of DSD_MOA is to create a data stream with 3 clusters and concept drift.
The locations of the clusters will change slightly, and they will merge with one another as time
progresses. MOA is a good DSD to use for testing an algorithms behavior on dynamic data.

Value

description The name of the class of the DSD object.

options The CLI params defined when creating the DSD object.

javaObj The underlying Java object associated with DSD_MOA objects.

References

MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering Albert Bifet,
Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl.
Journal of Machine Learning Research (JMLR) Workshop and Conference Proceedings. Volume
11: Workshop on Applications of Pattern Analysis (2010).

See Also

DSD_Gaussian_Static, DSD_ReadStream,

DSD_DataFrame, write_stream

Examples

dsc <- DSC_DenStream(initPoints=100)
dsd <- DSD_MOA()
cluster(dsc, dsd, 1000)
get_centers(dsc)

DSD_ReadStream 15

DSD_ReadStream DataStreamData: ReadStream (from an open connection or a file
name)

Description

A DSD object that reads a data stream from an R connection.

Usage

DSD_ReadStream(x, sep=",", loop=FALSE)

Arguments

x An open connection, or a file path/URL to be opened as a connection.

sep The character string that separates dimensions in data points in the stream.

loop If enabled, the object will loop through the stream when the end has been
reached. If disabled, the object will warn the user upon reaching the end.

Details

DSD_ReadStream uses read.table() to read in data from an R connection. The connection
is responsible for maintaining where the stream is currently being read from. In general, the con-
nections will consist of files stored on disk but have many other possibilities (see connection).

The get_points() method can pass additional params to read.table() to alter how the
reading is done. By default, the comment.char is set to an empty string for performance reasons.

Value

description The name of the class of the DSD object.

con The connection where the data stream is being read from.

sep The character string that separates dimensions in data points in the stream.

loop A flag that determines whether or not the stream will loop.

See Also

DSD_MOA, DSD_ReadStream, DSD_Gaussian_Static,

DSD_DataFrame, write_stream reset_stream

Examples

creating data and writing it to disk
dsd <- DSD_Gaussian_Static(k=3, d=5)
write_stream(dsd, "dsd_data.txt", n=100, sep=",")

reading the same data back in
dsd2 <- DSD_ReadStream("dsd_data.txt", sep=",")

16 get_centers

get_centers get_centers

Description

Gets the centers of micro-clusters (if available) from a DSC object

Usage

get_centers(x, ...)

Arguments

x The DSC object the centers are being requested from.

... Additional parameters to pass to get_centers().

Details

Each DSC object has a unique way for returning data points, but they all are called through the
generic function, get_centers(). This is done by using the S3 class system.

All of the DSC_MOA classes use the same function that first checks for the existence of micro-
clusters (as deemed in the MOA framework), extracts those micro-clusters, then manually extracts
the center from each of those micro-clusters and packages them into a matrix.

Value

A matrix of data that contains the centers of the micro-clusters (these can be either the centroids
or medoids depending on the algorithm). There are some DSC classes that do not generate micro-
clusters–an error will be given in these cases.

The number of columns in the matrix is dependent on the data stream that was used as input data to
the DSC object, and the number of rows will differ upon the algorithm being used.

See Also

DSClusterer, DSC_CobWeb, DSC_ClusTree, DSC_StreamKM, DSC_DenStream, DSC_Clustream,
DSData

Examples

setting up the objects
dsd <- DSD_Gaussian_Static()
dsc <- DSC_DenStream(initPoints=100)
cluster(dsc, dsd, 500)

getting the centers
d <- get_centers(dsc)

get_points 17

get_points get_points

Description

Gets points from a DSD object.

Usage

get_points(x, n=1, ...)

Arguments

x The DSD object.

n The number of data points being requested.

... Additional parameters to pass to get_points()

Details

Each DSD object has a unique way for returning data points, but they all are called through the
generic function, get_points(). This is done by using the S3 class system. See the man page
for the specific DSD class on the semantics for each implementation of get_points().

Value

Returns a matrix of x$d columns and n rows.

See Also

DSD_Gaussian_Static, DSD_ReadStream,

DSD_DataFrame, DSD_MOA, write_stream cluster

Examples

dsd <- DSD_Gaussian_Static()
d <- get_points(dsd, 100)

nclusters nclusters

Description

Returns the number of micro-clusters from the DSC object.

Usage

nclusters(x)

18 reset_stream

Arguments

x A DSC object.

Details

This function will return the number of micro-clusters from the DSC object if there are any, or if
they are supported. This is done by calling get_centers() and retrieving the number of rows
in the return matrix.

Value

An integer; the number of micro-clusters in the clustering.

See Also

DSClusterer, DSC_CobWeb, DSC_ClusTree, DSC_StreamKM, DSC_DenStream, DSC_Clustream,
get_centers

Examples

setting up the objects
dsd <- DSD_Gaussian_Static()
dsc <- DSC_DenStream(initPoints=100)
cluster(dsc, dsd, 500)

retrieving the results
get_centers(dsc)
nclusters(dsc)

reset_stream reset_stream

Description

Resets the counter in a DSD object to the beginning.

Usage

reset_stream(x)

Arguments

x Either a DSD_ReadStream or DSD_DataFrame object.

Details

Resets the counter of the stream object that is passed in. For DSD_ReadStream objects, this is
done by calling seek() on the underlying connection. For DSD_DataFrame, the counter stored
in the environment variable is moved back to 1.

See Also

DSD_ReadStream, DSD_DataFrame, write_stream

write_stream 19

Examples

initializing the objects
dsd <- DSD_Gaussian_Static(k=3, d=2)
replayer <- DSD_DataFrame(get_points(dsd, 100), k=3)
dsc1 <- DSC_Clustream()
dsc2 <- DSC_CobWeb()

clustering the same data in 2 DSC objects
cluster(dsc1, replayer, 100)
reset_stream(replayer) # resetting the dsd to its original state
cluster(dsc2, replayer, 100)

write_stream write_stream

Description

Writes points to a connection from a DSD object.

Usage

write_stream(dsd, con, n=100, sep=",", col.names=FALSE,
row.names=FALSE, ...)

Arguments

dsd The DSD object that will generate the data points for output.

con The R connection to be written to.

n The number of data points to be written to the connection.

sep The character that will seperate attributes in a data point.

col.names A flag that determines if column names will be output.

row.names A flag that determines if row names will be output.

... Additional parameters that are passed to write.table().

Details

write_stream() accepts either a connection directly, or the file name to be written to. The
sep parameter defines how the dimensions in each data point are separated. Behind the scenes we
are using the write.table() function to write the data to disk. We are able to pass additional
parameters to this function to alter how the data is written. By default, the column names and row
names are hidden.

Additionally, the parameter comment.char in write.table is hidden due to performance
reasons.

Value

There is no value returned from this operation.

20 write_stream

See Also

write.table, DSD_Gaussian_Static, DSD_ReadStream,

DSD_DataFrame, DSD_MOA,

Examples

creating data and writing it to disk
dsd <- DSD_Gaussian_Static(k=3, d=5)
write_stream(dsd, "dsd_data.txt", n=100, sep=",")

Index

cluster, 2, 17
connection, 15

DSC_Clustream, 2, 3, 3, 5–10, 16, 18
DSC_ClusTree, 2–4, 4, 6–10, 16, 18
DSC_CobWeb, 2–5, 5, 7–10, 16, 18
DSC_DenStream, 3–6, 6, 8–10, 16, 18
DSC_MOA, 2, 4–7, 7, 9, 10
DSC_StreamKM, 2–8, 8, 10, 16, 18
DSC_tNN, 9
DSClusterer, 2, 3, 3, 4–10, 16, 18
DSD_DataFrame, 2, 10, 10, 13–15, 17, 18,

20
DSD_Gaussian_Static, 10, 11, 12, 14,

15, 17, 20
DSD_MOA, 2, 11, 13, 13, 15, 17, 20
DSD_ReadStream, 2, 10, 11, 13–15, 15, 17,

18, 20
DSData, 2, 3, 8, 10, 16

get_centers, 2, 16, 18
get_points, 17

nclusters, 17

reset_stream, 11, 15, 18

write.table, 20
write_stream, 11, 13–15, 17, 18, 19

21

	Introduction
	Background
	Background
	Data Stream Clustering

	Background
	Data Stream Classification
	The MOA Framework

	The stream Framework
	The stream Framework
	DataStreamData

	The stream Framework
	DataStreamTask

	The stream Framework
	Class Interaction

	The stream Framework
	Extension

	Examples
	Creating a data stream

	Examples
	Reading and writing data streams

	Examples
	Replaying a data stream

	Examples
	Clustering a data stream

	Examples
	Full experimental comparison

	Conclusion and Future Work
	cluster
	DSClusterer
	DSC_Clustream
	DSC_ClusTree
	DSC_CobWeb
	DSC_DenStream
	DSC_MOA
	DSC_StreamKM
	DSC_tNN
	DSData
	DSD_DataFrame
	DSD_Gaussian_Static
	DSD_MOA
	DSD_ReadStream
	get_centers
	get_points
	nclusters
	reset_stream
	write_stream
	Index

