
QuasiAlign: Position Sensitive P-Mer Frequency

Clustering with Applications to Genomic

Classification and Differentiation

Anurag Nagar
Southern Methodist University

Michael Hahsler
Southern Methodist University

Abstract

Recent advances in Metagenomics and the Human Microbiome provide a complex
landscape for dealing with a multitude of genomes all at once. One of the many challenges
in this field is classification of the genomes present in a sample. Effective metagenomic
classification and diversity analysis require complex representations of taxa. With this
package we develop a suite of tools, based on novel quasi-alignment techniques to rapidly
classify organisms using our new approach on a laptop computer instead of several multi-
processor servers. This approach will facilitate the development of fast and inexpensive
devices for microbiome-based health screening in the near future.

Keywords:˜data mining, clustering, Markov chain.

1. Introduction

Metagenomics (Handelsman, Rondon, Brady, Clardy, and Goodman 1998) and the Human
Microbiome Turnbaugh, Ley, Hamady, Fraser-Liggett, Knight, and Gordon (2007); Mai,
Ukhanova, and Baer (2010) provide a complex landscape for dealing with a multitude of
genomes all at once. One of the many challenges in this field is classification of the genomes
present in the sample. Effective metagenomic classification and diversity analysis require
complex representations of taxa.

A common characteristic of most sequence-based classification techniques (e.g., BAlibase
(Smith and Waterman 1981), BLAST (Altschul, Gish, Miller, Myers, and Lipman 1990),
T-Coffee (Notredame, Higgins, and Heringa 2000), MAFFT (Katoh, Misawa, Kuma, and
Miyata 2002), MUSCLE (Edgar 2004b,a), Kalign (Lassmann and Sonnhammer 2006) and
ClustalW2 and ClustalX2 (Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam,
Valentin, Wallace, Wilm, Lopez, Thompson, Gibson, and Higgins 2007)) is the use of com-
putationally very expensive sequence alignment. Statistical signatures (Vinga and Almeida
2003) created from base composition frequencies offer an alternative to using classic align-
ment. These alignment-free methods reduce processing time and look promising for whole
genome phylogenetic analysis where previously used methods do not scale well (Thompson,
Plewniak, and Poch 1999). However, pure alignment-free methods typically do not provide
the desired classification accuracy and do not offer large preprocessed databases which makes
the comparison of a sequence with a large set of known sequences impractical.

The position sensitive p-mer frequency clustering techniques developed in this package are

2 Position Sensitive P-Mer Frequency Clustering

particularly suited to this classification problem, as they require no alignment and scale well
for large scale data because it is based on high-throughput data stream clustering techniques
resulting in so called quasi-alignments. Also the growth rate of the size of the learned profile
models has proven to be sublinear due to the compression achieved by clustering (Kotamarti,
Hahsler, Raiford, McGee, and Dunham 2010). Note also that the topology of the model is not
predetermined (as for HMMs (Eddy 1998)), but is learned through the associated machine
learning algorithms.

2. Using TRACDS for Genomic Applications

Sequence clustering using position sensitive p-mer clustering is based on the idea of com-
puting distances between sequences using p-mer frequency counts instead of computationally
expensive alignment between the original sequences. This idea is at the core of so-called
alignment-free methods (Vinga and Almeida 2003). However, in contrast to these methods
we count p-mer frequencies position specific (i.e., for different segments of the sequence) and
then use high-throughput data stream clustering to group similar segments. This approach
completely avoids expensive alignment of sequences prior to building the models. Even so,
because of the clustering of like sequence segments, a probabilistic local quasi-alignment is
automatically achieved.

The occurrences of letters or base compositions {A, C, U, G} of a 16S˜rRNA sequence provide
frequency information. The occurrences of all patterns of bases of length p generates a p-
mer frequency representation for a sequence. Instead of global frequencies, we count p-mer
frequencies locally to retain positional information by first splitting the sequence into segments
of a given size L. Within each segment we count the frequencies for all possible p-mers. We
call this frequency profile a Numerical Summarization Vector (NSV). For example, suppose
we have an input segment containing ACGTGCACG. If counting 2-mers, the NSV count
vector would be

〈0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 1, 0〉
representing counts for the subpatterns

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT.

As we move down the input sequence, in each new segment p-mers are counted. Segment
sizes may be varied and may or may not overlap. Also different values for p could be used
within the same sequences.

Figure˜1 summarizes the model building process. NSVs representing segments are clustered
using high-throughput data stream clustering techniques and the sequence information for
the NSVs is preserved in a directed graph G = (N,E), where N = c1, c2, . . . , cN is the set
of clusters and E = e1, e1, . . . , eE is the set of transitions between clusters. This graph can
be interpreted as a Markov Chain, however, unlike a classical Markov Model, each node is
not bound to one symbol. In fact, each node represents a cluster consisting of NSVs that are
found to be similar during the model building process according to a similarity or dissimilarity
metric. Since several NSVs (i.e., segments) can be assigned to the same cluster, the resulting
model compresses the original sequence (or sequences if several sequences are clustered into
the same model). The directed edges are associated with additional information representing
the probabilities of traversal assigned during the model building process.

The similarity between NSVs used for clustering can be calculated using several measures.

Anurag Nagar, Michael Hahsler 3

CAACATGAGAGTTTGATCCT

Sequence
GGCTCAGAACGAACGCTGG CGGCAGGCTTAACACATGCA AGTCGAGCGCCCCGCAAGGG ...

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

NSV 1 1 1 2 2 2 1 0 1 3 0 0 1 0 1 2 2

NSV 2 2 2 1 0 1 0 2 2 2 2 2 0 0 1 1 0

NSV 3 1 2 1 1 4 0 1 1 0 3 2 0 1 0 1 1

NSV 4 1 0 3 0 1 3 3 0 1 3 2 1 0 1 0 0

Segment 1 Segment 2 Segment 3 Segment 4 more segments

... more NSVs

1

2
3

P-Mer Counts
Cluster Model

Start

NSV 1
NSV 3

NSV 4

NSV 2

Figure 1: The Model Building Process. The sequence is split into several segments. For each
segment a Numerical Summary Vectors (NSV) is calculated by counting the occurrence of
p-mers (2-mers in this case). Model building starts with an empty cluster model. As each
NSV is processed, it is compared to the existing clusters of the model. If the NSV is not
found to be close enough (using a distance measure on the NSVs) a new cluster is created.
For example Cluster˜1 (circle) is created for NSV˜1, Cluster˜2 for NSV˜2 and Cluster˜3 for
NSV˜3. NSV˜3 was found close enough to NSV˜1 and thus was also assigned to Cluster˜1.
In addition to the clusters also the transition information between the clusters (arrows) is
recorded. When all NSVs are processed, the model building process is finished.

Measures suggested in the literature to compare sequences based on p-mer counts (alignment-
free methods) include Euclidean distance, squared Euclidean distance, Kullback-Leibler dis-
crepancy and Mahalanobis distance (Vinga and Almeida 2003). Recently, for Simrank (De-
Santis, Keller, Karaoz, Alekseyenko, Singh, Brodie, Pei, Andersen, and Larsen 2011) an even
simpler similarity measure, the number of matching p-mers (typically with p = 7), was pro-
posed for efficient search of very large database. In the area of approximate string matching
Ukkonen proposed the approximate the expensive computation of the edit distance (Leven-
shtein 1966) between two strings by using q-grams (analog to p-mers in sequences). First
q-gram profiles are computed and then the distance between the profiles is calculated using
Manhattan distance (Ukkonen 1992). The Manhattan distance between two p-mer NSVs x
and y is defined as:

dManhattan(x, y) =
4p∑
i=1

|xi − yi|

Manhattan distance also has a particularly straightforward interpretation for NSVs. The
distance counts the number of p-mers by which two sequences differ which gives the following
lower bound on the edit distance between the original sequences sx, sy:

dManhattan(x, y)/(2p) ≤ dEdit(sx, sy)

This relationship is easy to proof since each insertion/deletion/substitution in a sequences
destroys at the most p p-grams and introduces at most p new p-grams. Although, we can

4 Position Sensitive P-Mer Frequency Clustering

construct two completely different sequences with exactly the same NSVs (see (Ukkonen 1992)
for a method for regular strings), we are typically interested in sequences of high similarity
in which case dManhattan(x, y)/(2p) gets closer to the edit distance. However, not that our
approach is not bound to using Manhattan distance, it can be use any distance/similarity
measure defined on the frequency counts in NSVs.

A p-mer frequency cluster model can be created for a single sequence and compresses the
sequence information first by creating NSVs and then reduces the number of NSVs to the
number of clusters needed to represent the whole sequence. Typically, we will create a cluster
model for a whole family of sequences by simply adding the NSVs of all sequences to a single
model following the procedure in Figure˜1. This will lead to even more compression since
many sequences within a family will share NSVs stemming from similar sequence segments.
We explored this approach for taxonomic classification in (Kotamarti et˜al. 2010).

3. QuasiAlign Package

QuasiAlign builds on the packages Biostrings for biological sequence analysis, RSQLite and
DBI for storage and data management functionality, caTools for Base64 encoding of mod-
els, and rEMM for model building using TRACDS (Transitions Among Clusters for Data
Streams).

The main components of the package are:

• Data storage an management (GenDB)

• Sequence to NSV conversion

• Model creation

• Visualization

• Classification

3.1. GenDB: Data storage an management

At the heart of the QuasiAlign package are genetic databases (GenDB) which are used for
efficient storage and retrieval. By default we use s light-weight SQLite databases, but any
other compatible database such as mySQL or Oracle can also be used. Figure˜2 shows an
example of the basic table layout of a GenDB instance with a table containing classification
information, a table containing the sequence information and a meta data table. For each
sequence we will have an entry in the classification table and an corresponding entry in
the sequence table. The tables are connected by a unique sequence ID as the primary key.
Classification and sequence are separated because later we will also add tables with NSVs for
sequences which will share the classification table.

3.2. Classification

The classification score evaluates how likely it is that a sequence was generated by a given
model (Hahsler and Dunham 2012). It is calculated by the length-normalized product or sum

Anurag Nagar, Michael Hahsler 5

Classification

org_name (text)

Kingdom (text)

Phylum (text)

Class (text)

Order (text)

Family (text)

Genus (text)

Species (text)

Otu (text)

Sequences

org_name (text)

data (BLOB)

1 1

metaData

name (text) PK

type (text)

annotation (text)

ID (text) PK ID (text) PK

Figure 2: Entity Relationship diagram of genetic database

of probabilities on the path along the new sequence. The scores for a new sequence of length
l are defined as:

Pprod = l−1

√√√√l−1∏
i=1

as(i)s(i+1) (1)

Psum =
1

l − 1

l−1∑
i=1

as(i)s(i+1) (2)

where s(i) is the state the ith NSV in the new sequence is assigned to. NSVs are assigned to
the closest cluster. Note that for a sequence of length l we have l − 1 transitions. If we want
to take the initial transition probability also into account we extend the above equations by
the additional initial probability aε,s(1):

Pprod = l

√√√√l−1∏
i=1

as(i)s(i+1) (3)

Psum =
1

l

(
aε,s(1) +

l−1∑
i=1

as(i)s(i+1)

)
(4)

FIXME: State algorithm.

FIXME: Can we compare the score for different models? What if one model is
more complicated than the other? It will have automatically a lower score!

FIXME: Models will have a different number of states depending on the data.
Can we have different thresholds for different models? Are they still comparable?

FIXME: How do we handle if the closest cluster is very different from the NSV?

FIXME: How do we handle missing states/transitions?

FIXME: How can we incorporate PAM/BLOSUM substitution matrices into dis-
tance computation on NSVs (Manhattan on k-gram counts)?

FIXME: How can we compute distance between two models for phylogenetic
analysis?

6 Position Sensitive P-Mer Frequency Clustering

FIXME: How do we know that a score is significant higher than a score created
by chance?

3.3. Other components

4. Examples

In the following we will demonstrate the key features of QuasiAlign using several examples.

4.1. Setting up a GenDB

First, we load the library into the R environment.

R> library(QuasiAlign)

To start we need to create an empty GenDB to store and organize sequences.

R> db<-createGenDB("example.sqlite")

R> db

Object of class GenDB with 0 sequences

DB File: example.sqlite

Tables: classification, metaData, sequences

The above command creates an empty database with a table structure similar to Figure˜2
and stores it in the file example.sqlite. If a GenDB already exists, then it can be opened using
openGenDB().

The next step is to import sequences into the database by reading FASTA files. This is accom-
plished by function addSequences(). This function automatically extracts the classification
information from the FASTA file’s description lines. The default is to expect classification in
the format used by the Greengenes project, however other meta data readers can be imple-
mented (see manual page for addSequences).

The command below uses a FASTA file provided by the package, hence we use system.file()
instead of just a string with the file name.

R> addSequences(db,

+ system.file("examples/phylums/Firmicutes.fasta", package="QuasiAlign"))

Read 100 entries. Added 100 entries.

After inserting the sequences, various querying and limiting functions can be used to check
the data and obtain a subset of the sequences. To get a count of the number of sequences in
the database, the function nSequences() can be used.

R> nSequences(db)

Anurag Nagar, Michael Hahsler 7

[1] 100

The function getSequences() returns the sequences as a vector. In the following example
we get all sequences in the database and then show the first 50 bases of the first sequence.

R> s <- getSequences(db)

R> s

A DNAStringSet instance of length 100

width seq names

[1] 1521 TTTGATCCTGGCTCAGG...CGGCTGGATCACCTCCT 1250

[2] 1392 ACGGGTGAGTAACGCGT...TTGGGGTGAAGTCGTAA 13651

[3] 1384 TAGTGGCGGACGGGTGA...TCGAATTTGGGTCAAGT 13652

[4] 1672 GGCGTGCCTAACACATG...TGTAAACACGACTTCAT 13654

[5] 1386 ATCTCACCTCTCAATAG...CGAAGGTGGGGTTGGTG 13655

[6] 1438 GCGGACGGGTGAGTAAC...GCTGGATCACCTCCTTA 13657

[7] 1392 ACGGGTGAGTAACGCGT...TTGGGGTGAAGTCGTAA 13658

[8] 1526 AGAGTTTGATCCTGGCT...GCTGGATCACCTCCTTA 13659

[9] 1440 ATCTCACCTCTCAATAG...GCTGGATCACCTCCTTA 13661

...

[92] 1516 GGCTCAGGACGAACGCT...GTAGCCGTTCGAGAACG 13852

[93] 1506 CGAACGCTGGCGGCGTG...GTAGCCGNTCGAGAACG 13853

[94] 1505 ATCCTGGCTCAGGACGA...AGTCGTAACAAGGTAGC 13855

[95] 1447 ATGCAAGTCGAACGGGG...GGGGCCGATGATTGGGG 13856

[96] 1446 ATGCAAGTCGAACGGGG...GGGGCCGATGATTGGGG 13857

[97] 1511 ATCCTGGCTCAGGACGA...AGTCGTAACAAGGTAGC 13858

[98] 1544 ATCCTGGCTCAGGACGA...GGTGGATCACCTCCTTC 13860

[99] 1482 GGACGAACGCTGGCGGC...GCCGATGATTGGGGTGA 13861

[100] 1485 GACGAACGCTGGCGGCG...GAAGTCGTAACAAGGTA 13862

R> length(s)

[1] 100

R> s[[1]]

1521-letter "DNAString" instance

seq: TTTGATCCTGGCTCAGGACGAACGCTGGCGG...TGTACCGGAAGGTGCGGCTGGATCACCTCCT

R> substr(s[[1]], 1, 50)

50-letter "DNAString" instance

seq: TTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAATGCATGCAAG

Sequences in the database can also be filtered using classification information. For example,
we can get all sequences of the genus name “Desulfosporomusa” by specifying rank and name.

8 Position Sensitive P-Mer Frequency Clustering

R> s <- getSequences(db, rank="Genus", name="Desulfosporomusa")

R> s

A DNAStringSet instance of length 7

width seq names

[1] 1498 TNGAGAGTTTGATCCTGG...TGGGGCCGATGATCGGGG 13834

[2] 1481 CTGGCGGCGTGCCTAACA...ATTGGGGTGAAGTCGTAA 13836

[3] 1510 GACGAACGCTGGCGGCGT...AGCCGTATCGGAAGGTGC 13839

[4] 1503 ACGCTGGCGGCGTGCCTA...GGTAGCCGTATCGGAAGG 13844

[5] 1503 ACGCTGGCGGCGTGCCTA...GGTAGCCGTATCGGAAGG 13845

[6] 1429 ACGCTGGCGGCGTGCCTA...GAAGCCGGTGGGGTAACC 13846

[7] 1504 ACGCTGGCGGCGTGCCTA...GGTAGCCGTATCGGAAGG 13847

To obtain a single sequence, getSequences can be used with rank equal to ”id” and supplying
the sequence’s greengenes ID as the name.

R> s <- getSequences(db, rank="id", name="1250")

R> s

A DNAStringSet instance of length 1

width seq names

[1] 1521 TTTGATCCTGGCTCAGGA...GCGGCTGGATCACCTCCT 1250

The database also stores a classification hierarchy. We can obtain the classification hierarchy
used in the database with getTaxonomyNames().

R> getTaxonomyNames(db)

[1] "Kingdom" "Phylum" "Class" "Order" "Family" "Genus"

[7] "Species" "Otu" "Org_name" "Id"

To obtain all unique names stored in the database for a given rank we can use getRank().

R> getRank(db, rank="Order")

Order

1 Thermoanaerobacterales

2 Clostridiales

The 100˜sequences in our example data base contain organisms from 2 different orders. We
can obtain the rank name for each sequence individually by using all=TRUE. The folowing
code counts how many sequences we have for each genus.

R> table(getRank(db, rank="Genus", all=TRUE)[,1])

Anurag Nagar, Michael Hahsler 9

Acidaminococcus Carboxydothermus Coprothermobacter

2 2 1

Desulfosporomusa Desulfotomaculum Dialister

7 20 3

Mitsuokella Moorella Pelotomaculum

1 4 4

Phascolarctobacterium Selenomonas Syntrophomonas

2 9 6

Thermacetogenium Thermaerobacter Thermoanaerobacter

1 1 10

Thermoanaerobacterium Thermosinus Veillonella

8 2 5

unknown

12

This informartion can be easily turned into a barplot showing the abundance of different
orders in the data database (see Figure˜3).

R> oldpar <- par(mar=c(12,5,5,5)) ### make space for labels

R> barplot(sort(

+ table(getRank(db, rank="Genus", all=TRUE)[,1]),

+ decreasing=TRUE), las=2)

R> par(oldpar)

Filtering also works for getRank(). For example, we can find the genera within the order
“Thermoanaerobacterales”.

R> getRank(db, rank="Genus",

+ whereRank="Order", whereName="Thermo")

Genus

1 Coprothermobacter

2 Moorella

3 Thermacetogenium

4 Carboxydothermus

5 Thermoanaerobacter

Note that partial matching is performed from“Thermo”to“Thermoanaerobacterales.” Partial
matching is available for ranks and names in most operations in QuasiAlign.

We can also get the complete classification hierarchy for different ranks down to individual
sequences. In the following we get the classification hierarchy for genus Thermaerobacter,
then all orders matching Therm and then for a list of names.

R> getHierarchy(db, rank="Genus", name="Thermaerobacter")

Kingdom Phylum Class

"Bacteria" "Firmicutes" "Clostridia"

10 Position Sensitive P-Mer Frequency Clustering

D
es

ul
fo

to
m

ac
ul

um
un

kn
ow

n
T

he
rm

oa
na

er
ob

ac
te

r
S

el
en

om
on

as
T

he
rm

oa
na

er
ob

ac
te

riu
m

D
es

ul
fo

sp
or

om
us

a
S

yn
tr

op
ho

m
on

as
V

ei
llo

ne
lla

M
oo

re
lla

P
el

ot
om

ac
ul

um
D

ia
lis

te
r

A
ci

da
m

in
oc

oc
cu

s
C

ar
bo

xy
do

th
er

m
us

P
ha

sc
ol

ar
ct

ob
ac

te
riu

m
T

he
rm

os
in

us
C

op
ro

th
er

m
ob

ac
te

r
M

its
uo

ke
lla

T
he

rm
ac

et
og

en
iu

m
T

he
rm

ae
ro

ba
ct

er

0

5

10

15

20

Figure 3: Abundance of different orders in the database.

Anurag Nagar, Michael Hahsler 11

Order Family Genus

"Clostridiales" "Sulfobacillaceae" "Thermaerobacter"

Species Otu Org_name

NA NA NA

Id

NA

R> getHierarchy(db, rank="Genus", name="Therm")

Kingdom Phylum Class Order

[1,] "Bacteria" "Firmicutes" "Clostridia" "Thermoanaerobacterales"

[2,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"

[3,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"

[4,] "Bacteria" "Firmicutes" "Clostridia" "Thermoanaerobacterales"

[5,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"

Family

[1,] "Thermoanaerobacteraceae"

[2,] "Sulfobacillaceae"

[3,] "Thermoanaerobacterales Family III. Incertae Sedis"

[4,] "Thermoanaerobacteraceae"

[5,] "Veillonellaceae"

Genus Species Otu Org_name Id

[1,] "Thermacetogenium" NA NA NA NA

[2,] "Thermaerobacter" NA NA NA NA

[3,] "Thermoanaerobacterium" NA NA NA NA

[4,] "Thermoanaerobacter" NA NA NA NA

[5,] "Thermosinus" NA NA NA NA

R> getHierarchy(db, rank="Genus", name=c("Acid", "Thermo"))

Kingdom Phylum Class Order

[1,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"

[2,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"

[3,] "Bacteria" "Firmicutes" "Clostridia" "Thermoanaerobacterales"

[4,] "Bacteria" "Firmicutes" "Clostridia" "Clostridiales"

Family

[1,] "Veillonellaceae"

[2,] "Thermoanaerobacterales Family III. Incertae Sedis"

[3,] "Thermoanaerobacteraceae"

[4,] "Veillonellaceae"

Genus Species Otu Org_name Id

[1,] "Acidaminococcus" NA NA NA NA

[2,] "Thermoanaerobacterium" NA NA NA NA

[3,] "Thermoanaerobacter" NA NA NA NA

[4,] "Thermosinus" NA NA NA NA

To get individual sequences we can use again the unique sequence id.

12 Position Sensitive P-Mer Frequency Clustering

R> getHierarchy(db, rank="id", name="1250")

Kingdom

"Bacteria"

Phylum

"Firmicutes"

Class

"Clostridia"

Order

"Thermoanaerobacterales"

Family

"Thermodesulfobiaceae"

Genus

"Coprothermobacter"

Species

"unknown"

Otu

"otu_2281"

Org_name

"X69335.1Coprothermobacterproteolyticusstr.ATCC35245"

Id

"1250"

4.2. Converting Sequences to NSV

In order to create position sensitive p-mer clustering models, we need to first create Numerical
Summarization Vectors (NSVs). The QuasiAlign package can easily convert large number of
sequences in the database to NSV format and store them in the same database. The following
command will convert all the sequences to NSV format and store them in a table called NSV.

R> createNSVTable(db, table = "NSV")

CreateNSVTable: Read 100 entries (ok: 100 / fail: 0)

CreateNSVTable: Read 100 entries. Added 100 entries.

In the function call above we used the default values for most of the parameters such as word,
overlap, and last window. Custom parameter settings and filter criteria can be easily specified
in the following way:

R> createNSVTable(db, table = "NSV_genus_Thermosinus",

+ rank = "genus", name = "Thermosinus",

+ window = 100, overlap = 0, word = 3, last_window = FALSE)

CreateNSVTable: Read 2 entries. Added 2 entries.

R> db

Anurag Nagar, Michael Hahsler 13

Object of class GenDB with 100 sequences

DB File: example.sqlite

Tables: NSV, NSV_genus_Thermosinus, classification, metaData, sequences

The above command converts only the sequences that belong to the genus “Thermosinus”
and stores them in a separate NSV table called NSV genus Thermosinus. The parameters for
creating NSVs are also part of the command, such as window size is 100, overlap is 0, word
size is 3, and last window parameter is FALSE indicating that the last (incomplete) window
will be ignored.

When a new sequence or NSV table is created, its name and meta information is stored in
the metaData table. The meta data can be queried using the metaGenDB() function.

R> metaGenDB(db)

name type

1 sequences sequence

2 NSV NSV

3 NSV_genus_Thermosinus NSV

annotation

1

2 rank=;name=;window=100;overlap=0;word=3;last_window=FALSE;

3 rank=genus;name=Thermosinus;window=100;overlap=0;word=3;last_window=FALSE;

The annotation column contains information about how the NSVs were created.

The sequences in the NSV tables can be queried and filtered using getSequences() in the
same way as regular sequences, however, the result is an object of class NSVSet.

R> NSVs <- getSequences(db, rank="Genus", name="Desulfosporomusa", table="NSV")

R> NSVs

Object of class NSVSet for 7 sequences (3-mers)

Number of segments (table with counts):

14 15

3 4

R> length(NSVs)

[1] 7

R> names(NSVs)

[1] "13834" "13836" "13839" "13844" "13845" "13846" "13847"

The code above selects the NSVs for the genus “Desulfosporomusa” in table NSV. Note se-
quences of NSVs are not strings like the original sequences but tables of p-mer counts and
thus are stored internally in a list. The code below shows the dimensions of the NSV table
for the first sequence and then shows the first 2 rows and 16 columns of the table.

14 Position Sensitive P-Mer Frequency Clustering

A
A

A
A

A
C

A
A

G
A

AT
A

C
A

A
C

C
A

C
G

A
C

T
A

G
A

A
G

C
A

G
G

A
G

T
AT

A
AT

C
AT

G
AT

T
C

A
A

C
A

C
C

A
G

C
AT

C
C

A
C

C
C

C
C

G
C

C
T

C
G

A
C

G
C

C
G

G
C

G
T

C
TA

C
T

C
C

T
G

C
T

T
G

A
A

G
A

C
G

A
G

G
AT

G
C

A
G

C
C

G
C

G
G

C
T

G
G

A
G

G
C

G
G

G
G

G
T

G
TA

G
T

C
G

T
G

G
T

T
TA

A
TA

C
TA

G
TA

T
T

C
A

T
C

C
T

C
G

T
C

T
T

G
A

T
G

C
T

G
G

T
G

T
T

TA
T

T
C

T
T

G
T

T
T

0

1

2

3

4

5

6

Figure 4: p-mer frequency plot.

R> dim(NSVs[[1]])

[1] 14 64

R> NSVs[[1]][1:5,1:16]

AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT

[1,] 0 5 1 1 3 0 3 1 3 1 1 4 1 1 1 0

[2,] 3 5 3 2 3 3 1 2 3 0 0 2 1 0 2 0

[3,] 1 0 3 0 1 1 1 0 2 3 3 2 0 2 2 1

[4,] 1 1 1 2 2 0 5 3 2 2 2 2 0 1 2 0

[5,] 2 1 4 3 0 1 3 0 1 1 3 2 1 0 2 2

However, regular subsetting is also implemented on NSVSets. For example, we can directly
select for the first five sequences the first segment and then create a barplot showing the p-mer
frequencies including wiskers for the minimum and maximum appearance in sequences.

R> NSVs[1:5,1]

Object of class NSVSet for 5 sequences (3-mers)

Number of segments (table with counts):

1

5

R> plot(NSVs[1:5,1])

Finally, we can close a GenDB after we are done working with it. The database can later be
reopened using openGenDB().

Anurag Nagar, Michael Hahsler 15

R> closeGenDB(db)

To permanently remove the database we need to delete the file (for SQLite databases) or
remove the database using the administrative tool for the database management system.

R> unlink("example.sqlite")

FIXME: Is there a purge function in DBI to do this?

Often, we would like to convert sequences from many FASTA files into NSV format in the
database in a single step. The convenience function processSequences() loads all FASTA
files from a directory into the database and then converts them into NSVs.

R> db<-createGenDB("example.sqlite")

R> processSequences(system.file("examples/phylums", package="QuasiAlign"), db)

Processing file: /tmp/Rtmpyh6x6g/Rinst5c1931a08740/QuasiAlign/examples/phylums/Firmicutes.fasta

Read 100 entries. Added 100 entries.

Processing file: /tmp/Rtmpyh6x6g/Rinst5c1931a08740/QuasiAlign/examples/phylums/Planctomycetes.fasta

Read 100 entries. Added 100 entries.

Processing file: /tmp/Rtmpyh6x6g/Rinst5c1931a08740/QuasiAlign/examples/phylums/Proteobacteria.fasta

Read 100 entries. Added 100 entries.

CreateNSVTable: Read 100 entries (ok: 100 / fail: 0)

CreateNSVTable: Read 200 entries (ok: 200 / fail: 0)

CreateNSVTable: Read 300 entries (ok: 300 / fail: 0)

CreateNSVTable: Read 300 entries. Added 300 entries.

Additional parameters (e.g., window or word) will be passed on to creating the NSVs.

4.3. Creating a model

The NSVs created in the previous section can be used for model generation. The models can
be created at for all sequences in the database or for any set of sequences selected using filters.

R> model <- GenModelDB(db, rank="Genus", name="Desulfosporomusa", table="NSV",

+ measure="Manhattan", threshold =30)

GenModel: Creating model for Genus: Desulfosporomusa

GenModel: Processed 7 sequences

R> model

Object of class GenModel with 7 sequences

Genus : Desulfosporomusa

Model:

EMM with 42 states/clusters.

Measure: Manhattan

Threshold: 30

Centroid: FALSE

Lambda: 0

16 Position Sensitive P-Mer Frequency Clustering

●

●

●

●

●

●

●
●

●
●●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

1

2

3

4

5

6

7

8
9

101112
13

14

15
16

17

18 19
20

21 22

23

24

25

26

2728

29

30

31

32 33
34

35

36

37

38

39

40

41

42

Figure 5: Default plot of a model as a graph using a standard graph-layout algorithm.

The above command builds a model using a subset of the sequences in the NSV table that
belong to the genus “Desulfosporomusa”. For creating the model, we use Manhattan distance
with a threshold of 30 for clustering NSVs. For more details about model creation, please see
the reference manual of the rEMM package (Hahsler and Dunham 2012). In addition a limit
parameter can be used to restrict the maximum number of sequences to be used in model
creation.

The model is a compact signature of the sequences and can be easily and efficiently used for
analysis. It can be plotted to get a visual display of the various states and transitions using
plot().

R> plot(model)

R> plot(model, method="MDS")

R> plot(model, method="graph")

Anurag Nagar, Michael Hahsler 17

−60 −40 −20 0 20 40

−
60

−
40

−
20

0
20

40

These two dimensions explain 18.28 % of the point variability.
Dimension 1

D
im

en
si

on
 2

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

2122

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41
42

Figure 6: Plot of the model using MDS do display more similar clusters closer together.

18 Position Sensitive P-Mer Frequency Clustering

●1

●2

●3

●4

●5

●6

●7

●8

●9

●10

●11

●12

●13

●14

●15

●16

17

18

●19

●20

●21

●22

●23

●24

●25

26

●27

28

●29

●30

●31

●32

●33

●34

●35

●36

●37

●38

●39

●40

●41

●42

Figure 7: Plot of the model using Graphviz .

Anurag Nagar, Michael Hahsler 19

The default plot which displays the model as a graph is shown in Figure˜5. A plot where the
clusters are arranged using multi-dimensional scaling to place similar clusters closer together
is shown in Figure˜6. Figure˜7 shows the model using the Graphviz library.

4.4. Classification

To classify a new sequence at a particular rank level (e.g., at the phylum level), we need to
have the set of all models at this level to classify against. For example, we need to create
models for each phylum present in the database for predicting the phylum of an unclassified
sequence. This can be accomplished using createModels(), which creates a set of models
and stores them in a directory specified by the modelDir parameter.

The following command creates models for all phylums stored in the database and stores them
in directory models (which is created first) and places them in the subdirectory phylum.

R> dir.create("models")

R> createModels(modelDir="models", rank="phylum", db)

GenModel: Creating model for phylum: Firmicutes

GenModel: Processed 100 sequences

GenModel: Creating model for phylum: Planctomycetes

GenModel: Processed 100 sequences

GenModel: Creating model for phylum: Proteobacteria

GenModel: Processed 100 sequences

The models are now stored as compressed files.

R> list.files("models/phylum")

[1] "Firmicutes.rds" "Planctomycetes.rds" "Proteobacteria.rds"

A model can be loaded using the readRDS().

R> model <- readRDS("models/phylum/Firmicutes.rds")

R> model

Object of class GenModel with 100 sequences

Phylum : Firmicutes

Model:

EMM with 619 states/clusters.

Measure: Manhattan

Threshold: 30

Centroid: FALSE

Lambda: 0

Once all models have been constructed, they can be used to score and classify new sequences.
We can compare the new sequences against just one model or all the models stored in a

20 Position Sensitive P-Mer Frequency Clustering

directory using scoreSequence(). Below, we use the getSequences() to get 5 random
sequences from the NSV table and then score them against the model for “Firmicutes” using
the function scoreSequence().

R> random_sequences <- getSequences(db, table="NSV", limit=5, random=TRUE)

R> random_sequences

Object of class NSVSet for 5 sequences (3-mers)

Number of segments (table with counts):

14

5

R> scoreSequence(model, random_sequences)

4439 4451 4529 13816 2777

0.07692 0.15385 0.07692 1.00000 0.07692

The default method for scoring a sequence against a model is the supported transitions
method. It can be changed by the method parameter in the scoreSequence(). To find
the actual classification, we can use the Greengenes ids of the sequences. The code snippet
below illustrated this:

R> ids <- names(random_sequences)

R> hierarchy <- getHierarchy(db, rank="id",name=ids)

R> hierarchy[,"Phylum"]

[1] "Proteobacteria" "Proteobacteria" "Proteobacteria"

[4] "Firmicutes" "Planctomycetes"

We can see that those sequences that belong to the phylum “Firmicutes” have the highest
score of 1.0. The above commands also shows how easily the actual classification hierarchy
of a sequence can be easily obtained using the getHierarchy() for those sequences whose
Greengenes id is known.

The function classify() can be used to classify sequences in NSV format against all the
models stored in a directory. It returns a data.frame containing the score matrix and the
actual and predicted ranks.

R> unknown <- getSequences(db, table="NSV", rank="Phylum", limit=5, random=TRUE)

R> classification<-classify(modelDir="models", unknown, rank="Phylum")

classify: Creating score matrix for Firmicutes

classify: Creating score matrix for Planctomycetes

classify: Creating score matrix for Proteobacteria

R> classification

Anurag Nagar, Michael Hahsler 21

$scores

Firmicutes Planctomycetes Proteobacteria

4476 0.09091 0.0000 1.00000

13845 1.00000 0.0000 0.07143

2780 0.14286 0.8571 0.07143

35108 0.00000 1.0000 0.07692

4480 0.23077 0.2308 0.69231

$prediction

id predicted actual

[1,] "4476" "Proteobacteria" "Proteobacteria"

[2,] "13845" "Firmicutes" "Firmicutes"

[3,] "2780" "Planctomycetes" "Planctomycetes"

[4,] "35108" "Planctomycetes" "Planctomycetes"

[5,] "4480" "Proteobacteria" "Proteobacteria"

R> table(classification$prediction[,"actual"],

+ classification$prediction[,"predicted"])

Firmicutes Planctomycetes Proteobacteria

Firmicutes 1 0 0

Planctomycetes 0 2 0

Proteobacteria 0 0 2

The default method for classify() is supported_transitions, but other methods can also
be easily used.

4.5. Assessing classification accuracy

For validation we split the data into a training and test set. We use the training sequences for
generating the models and then evaluate classification accuracy on the hold out test set. This
is implemented in function validateModels(). The parameter pctTest is used to specify the
fraction of sequences to be used for test dataset.

R> validation <- validateModels(db, modelDir="models", rank="phylum", pctTest=.1)

GenModel: Creating model for phylum: Firmicutes

GenModel: Processed 90 sequences

GenModel: Creating model for phylum: Planctomycetes

GenModel: Processed 90 sequences

GenModel: Creating model for phylum: Proteobacteria

GenModel: Processed 90 sequences

classify: Creating score matrix for Firmicutes

classify: Creating score matrix for Planctomycetes

classify: Creating score matrix for Proteobacteria

R> head(validation$scores)

22 Position Sensitive P-Mer Frequency Clustering

Firmicutes Planctomycetes Proteobacteria

13655 0.25000 0.16667 0.08333

13677 0.30769 0.07692 0.23077

13687 0.23077 0.00000 0.38462

13691 0.08333 0.08333 0.50000

13762 0.07692 0.07692 0.53846

13812 0.15385 0.07692 0.15385

R> head(validation$prediction)

id predicted actual

[1,] "13655" "Firmicutes" "Firmicutes"

[2,] "13677" "Firmicutes" "Firmicutes"

[3,] "13687" "Proteobacteria" "Firmicutes"

[4,] "13691" "Proteobacteria" "Firmicutes"

[5,] "13762" "Proteobacteria" "Firmicutes"

[6,] "13812" "Firmicutes" "Firmicutes"

R> table(validation$prediction[,"actual"],

+ validation$prediction[,"predicted"])

Firmicutes Planctomycetes Proteobacteria

Firmicutes 6 1 3

Planctomycetes 1 8 1

Proteobacteria 0 0 10

The function validateModels() returns a list of two vectors - the first containing the scores
of the test sequences against the training models and the second containing the predicted
rank of the sequences based on the highest score. The prediction vector can be used to find
the classification accuracy of the models.

4.6. Visualizing Sequences and NSVs

One of the unique advantages of QuasiAlign is that it is able to cluster similar sequences very
rapidly and accurately as compared to other methods such as multiple sequence alignment. In
this section, we will show how QuasiAlign can be used to plot sequences and visualize similar
portions or segments of sequences. Since we already have clusters and associated sequence
details available as metadata information in the model, visualization is extremely fast and
rapid. Thus it is a very powerful and efficient alternative to multiple sequence alignment. It
can provide a visual clue about similar portions of sequences or areas of a sequence which are
highly conserved across species.

Each model has associated metadata which gives a list of sequences. Each list contains a
vector of states to which the corresponding segments are classified to. Here is an example:

R> model <- GenModelDB(db, rank="Gen", name="Syntro")

Anurag Nagar, Michael Hahsler 23

GenModel: Creating model for Gen: Syntro

GenModel: Processed 6 sequences

R> model$clusterInfo

$`13685`
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

$`13687`
[1] 15 16 17 18 19 20 21 22 23 24 25 26 27 28

$`13688`
[1] 29 30 17 31 19 32 21 22 23 33 25 26 27 34

$`13689`
[1] 35 36 17 37 19 38 39 22 23 40 25 26 27 41

$`13690`
[1] 1 42 3 4 5 6 43 8 9 10 11 12 13 14

$`13692`
[1] 44 45 46 17 47 19 48 49 50 23 51 25 52 53 54

In certain cases, we are interested in finding details about which sequences and segments are
part of a state. This can be easily obtained using the getModelDetails().

R> getModelDetails(model, state=17)

sequence segment

1 13687 3

2 13688 3

3 13689 3

4 13692 4

The above command gives the sequences and the segments within them that are part of state
17. The state parameter can be ommitted to obtain details of all the states. To see the
actual segments that are part of a state, the function getModelSequences() can be used. It
can provide both the DNA sequences as well as the NSV for a state. The commands below
illustrate this.

R> sequences <- getModelSequences(db, model, state=17, table="sequences")

R> sequences

A DNAStringSet instance of length 4

width seq names

[1] 100 CAGTAGCCGGCCTGAGAG...ATTGCGCAATGGGGGAAA 13687

[2] 100 GCAACGATCAGTAGCCGG...TGGGGAATATTGCGCAAT 13688

[3] 100 TCAGTAACCGACCTGAGA...TATTGCTCAATGGGGGAA 13689

[4] 100 GAGAGGGTGGACGGCCAC...GGGAAACCTCGACGCAGC 13692

24 Position Sensitive P-Mer Frequency Clustering

R> nsv <- getModelSequences(db, model, state=17, table="NSV")

R> nsv[[1]]

AAA AAC AAG AAT ACA ACC ACG ACT AGA AGC AGG AGT ATA ATC ATG ATT

[1,] 1 0 0 2 2 0 3 3 3 2 2 2 1 0 1 1

CAA CAC CAG CAT CCA CCC CCG CCT CGA CGC CGG CGT CTA CTC CTG CTT

[1,] 1 3 4 0 2 1 1 2 0 1 4 0 1 1 3 0

GAA GAC GAG GAT GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT

[1,] 2 4 4 0 3 4 1 0 5 4 8 1 1 0 2 0

TAA TAC TAG TAT TCA TCC TCG TCT TGA TGC TGG TGT TTA TTC TTG TTT

[1,] 0 1 1 1 0 1 0 0 2 1 4 0 0 0 1 0

A clearer picture about the clustering will emerge when we visualize the sequences and seg-
ments and see how they fit into clusters. In this section, we will introduce some of the plots
that are commonly used in the Biological sciences such as the Sequence Logo plot. We will
also use the barplot to plot the distribution of NSVs in a cluster of sequences.

At the sequence level we can inspect consensus sequences using the function
consensusString().

R> consensus <- consensusString(sequences)

R> substring(consensus, 1, 20)

[1] "BMRDNRVYSRVYNKVVRVVS"

Similarly, consensus matrix can also be created using all the combinations or just the DNA
bases.

R> consensusMat <- consensusMatrix(sequences, baseOnly=TRUE)

R> consensusMat[,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

A 0 2 2 2 1 1 2 0 0 1

C 1 2 0 0 1 0 1 2 2 0

G 2 0 2 1 1 3 1 0 2 3

T 1 0 0 1 1 0 0 2 0 0

other 0 0 0 0 0 0 0 0 0 0

In certain cases, we might want to visually see which sequences and segments are classified
together. For that, the function modelStatesPlot() comes handy. It can take one or more
sequences and visually show which sequences are part of it.

R> modelStatesPlot(model,states=17)

We can also visualize more than one states easily.

R> modelStatesPlot(model,states=3:6)

Anurag Nagar, Michael Hahsler 25

nucleotide positions

se
qu

en
ce

s

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

5

17
V1 V2 V3 V4 V5 V6 V7 V8 V9

Figure 8: Plot showing the sequences and segments which are part of state 17

One of the more popular approaches in bioinformatics for comparing and analyzing sequences
is Multiple Sequence Alignment. It is often a computationally expensive process involving
comparing each base one at a time between pairs of sequences. QuasiAlign is based on a
rapid clustering approach and is thus able to accomplish rapid clustering and classification of
sequences. The function compareSequences() can compare two or more genetic sequences
and find areas of similarity between them. It visually depicts segments (or windows) which
are clustered together in a state.

R> compareSequences(model,sequences=c(2,3))

Figure 10 shows a comparison of sequences 2 and 3. It can be thought of as similar to
Sequence Alignment, but we deal with similar windows (or segments of sequences) rather
than individual bases. The labels on the windows show the state to which they are classified
to. This approach is computationally more efficient than the approach taken by sequence
alignment. Similarly, we can easily compare more than two sequences. Figure 11 shows
how we can compare more than two sequences by modifying the sequences parameter in the
compareSequences() function. Note that the sequences parameter takes the index of the
number of the sequences.

26 Position Sensitive P-Mer Frequency Clustering

nucleotide positions

se
qu

en
ce

s

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

5
3 4 5 6

V1 V2 V3 V4 V5 V6 V7 V8 V9

Figure 9: Plot showing the sequences and segments which are part of states 3 through 6

Anurag Nagar, Michael Hahsler 27

segments

se
qu

en
ce

s

1 2 3 4 5 6 7 8 9 10 12 14

13
68

5
13

68
7

13
68

8
13

68
9

13
69

0
13

69
2

17 19 21 22 23 25 26 27

Figure 10: Comparing Sequences of the model to visually analyze similar areas.

28 Position Sensitive P-Mer Frequency Clustering

segments

se
qu

en
ce

s

1 2 3 4 5 6 7 8 9 10 12 14

13
68

5
13

68
7

13
68

8
13

68
9

13
69

0
13

69
2

17 19 22 23 25 26 27

Figure 11: Comparing Multiple Sequences of the model to visually analyze similar areas.

R> compareSequences(model,sequences=c(2:4))

4.7. Finding conserved segments across sequences

One of the problems in bioinformatics is finding sequences or segments across sequences that
are highly similar. This is especially useful in functional and phylogenetic analysis of species
and sequences. As a preliminary step, QuasiAlign includes a function findLargestCommon()

which searches for two or more sequences in a model that have the largest common portions.
The common areas are identified by getting a count of common segments and then finding
those sequences that share the maximum number of common segments.

R> common <- findLargestCommon(model,limit=5)

R> common

[[1]]

NULL

Anurag Nagar, Michael Hahsler 29

[[2]]

[1] 1 5

[[3]]

[1] 2 3 4

[[4]]

[1] 2 3 4 6

[[5]]

integer(0)

In the above code, the function findLargestCommon() outputs a list containing sequences
which share the maximum number of states. For example, the second element of the list
would give the two sequences which share the maximum number of states and so on. It is
possible to find the two most similar sequences by the following command:

R> compareSequences(model,common[[2]])

The output in Figure 12 shows that the sequences 13685 (index=1) and 13690 (index=5)
share the most number of states and are likely very similar in functions and origin. In a
similar way, we can find out the three most similar sequences. Figure 13 shows the results.

R> compareSequences(model,common[[3]])

Acknowledgments

This research is supported by research grant no. R21HG005912 from the National Human
Genome Research Institute (NHGRI / NIH).

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). “Basic local alignment search
tool.” Journal of Molecular Biology, 215(3), 403–410. ISSN 0022-2836.

DeSantis T, Keller K, Karaoz U, Alekseyenko A, Singh N, Brodie E, Pei Z, Andersen G,
Larsen N (2011). “Simrank: Rapid and sensitive general-purpose k-mer search tool.” BMC
Ecology, 11(1). ISSN 1472-6785. doi:10.1186/1472-6785-11-11.

Eddy SR (1998). “Profile hidden Markov models.” Bioinformatics, 14(9), 755–763. ISSN
1367-4803.

Edgar R (2004a). “MUSCLE: a multiple sequence alignment method with reduced time and
space complexity.” BMC Bioinformatics, 5(1), 113+. ISSN 1471-2105.

http://dx.doi.org/10.1186/1472-6785-11-11

30 Position Sensitive P-Mer Frequency Clustering

segments

se
qu

en
ce

s

1 2 3 4 5 6 7 8 9 10 12 14

13
68

5
13

68
7

13
68

8
13

68
9

13
69

0
13

69
2

1 3 4 5 6 8 9 10 11 12 13 14

Figure 12: The function findLargestCommon() can be used to find the most common se-
quences. In this figure, we check for the 2 most similar sequences.

Anurag Nagar, Michael Hahsler 31

segments

se
qu

en
ce

s

1 2 3 4 5 6 7 8 9 10 12 14

13
68

5
13

68
7

13
68

8
13

68
9

13
69

0
13

69
2

17 19 22 23 25 26 27

Figure 13: The function findLargestCommon() can be used to find the most common se-
quences. In this figure, we check for the 3 most similar sequences.

32 Position Sensitive P-Mer Frequency Clustering

Edgar RC (2004b). “Muscle: multiple sequence alignment with high accuracy and high
throughput.” Nucleic Acids Research, 32, 1792–1797.

Hahsler M, Dunham MH (2012). rEMM: Extensible Markov Model for Data Stream Clustering
in R. R package version 1.0-3., URL http://CRAN.R-project.org/.

Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998). “Molecular biological
access to the chemistry of unknown soil microbes: a new frontier for natural products.”
Chemistry and Biology, 5(10), 245–249. ISSN 1074-5521.

Katoh K, Misawa K, Kuma K, Miyata T (2002). “MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform.” Nucleic Acids Research, 30(14),
3059–3066.

Kotamarti RM, Hahsler M, Raiford D, McGee M, Dunham MH (2010). “Analyzing Taxonomic
Classification Using Extensible Markov Models.” Bioinformatics, 26(18), 2235–2241. doi:
10.1093/bioinformatics/btq349.

Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F,
Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007). “Clustal W and
Clustal X version 2.0.” Bioinformatics, 23, 2947–2948. ISSN 1367-4803.

Lassmann T, Sonnhammer EL (2006). “Kalign, Kalignvu and Mumsa: web servers for multiple
sequence alignment.” Nucleic Acids Research, 34. ISSN 1362-4962.

Levenshtein V (1966). “Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals.” Soviet Physics Doklady, 10.

Mai V, Ukhanova M, Baer DJ (2010). “Understanding the Extent and Sources of Varia-
tion in Gut Microbiota Studies; a Prerequisite for Establishing Associations with Disease.”
Diversity, 2(9), 1085–1096. ISSN 1424-2818.

Notredame C, Higgins DG, Heringa J (2000). “T-Coffee: A novel method for fast and accurate
multiple sequence alignment.” Journal of Molecular Biology, 302(1), 205–217. ISSN 0022-
2836.

Smith TF, Waterman MS (1981). “Identification of common molecular subsequences.” Journal
of Molecular Biology, 147(1), 195–197. ISSN 0022-2836.

Thompson JD, Plewniak F, Poch O (1999). “BAliBASE: a benchmark alignment database
for the evaluation of multiple alignment programs.” Bioinformatics, 15(1), 87–88. ISSN
1460-2059.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007). “The
Human Microbiome Project.” Nature, 449, 804–810.

Ukkonen E (1992). “Approximate String Matching with q-grams and Maximal Matches.”
Theoretical Computer Science, 92(1), 191–211.

Vinga S, Almeida J (2003). “Alignment-free sequence comparison–a review.” Bioinformatics,
19(4), 513–523. ISSN 1367-4803. doi:10.1093/bioinformatics/btg005.

http://CRAN.R-project.org/
http://dx.doi.org/10.1093/bioinformatics/btq349
http://dx.doi.org/10.1093/bioinformatics/btq349
http://dx.doi.org/10.1093/bioinformatics/btg005

Anurag Nagar, Michael Hahsler 33

Affiliation:

Anurag Nagar
Computer Science and Engineering
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: anagar@smu.edu

Michael Hahsler
Computer Science and Engineering
Lyle School of Engineering
Southern Methodist University
P.O. Box 750122
Dallas, TX 75275-0122
E-mail: mhahsler@lyle.smu.edu
URL: http://lyle.smu.edu/~mhahsler

mailto:anagar@smu.edu
mailto:mhahsler@lyle.smu.edu
http://lyle.smu.edu/~mhahsler

	Introduction
	Using TRACDS for Genomic Applications
	QuasiAlign Package
	GenDB: Data storage an management
	Classification
	Other components

	Examples
	Setting up a GenDB
	Converting Sequences to NSV
	Creating a model
	Classification
	Assessing classification accuracy
	Visualizing Sequences and NSVs
	Finding conserved segments across sequences

